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Free Vibration of Non-Uniform Euler-Bernoulli Beams by
the Adomian Modified Decomposition Method

Hsin-Yi Lai1, C. K. Chen1,2 and Jung-Chang Hsu1

Abstract: An innovative solver for the free vibration of an elastically restrained
non-uniform Euler-Bernoulli beam with tip mass of rotatory inertia and eccentric-
ity resting on an elastic foundation and subjected to an axial load is proposed. The
technique we have used is based on applying the Adomian modified decomposition
method (AMDM) to our vibration problems. By using this method, any ith natural
frequencies can be obtained one at a time and some numerical results are given to
illustrate the influence of the physical parameters on the natural frequencies of the
dynamic system. The computed results agree well with those analytical and numer-
ical results given in the literatures. These results indicate that the present analysis
is accurate, and provides a unified and systematic procedure which is simples and
more straightforward than the other analyses.

Keyword: Wedge beam, Cone beam, Winkler’s elastic foundation, Natural fre-
quency, Euler-Bernoulli beam, Adomian modified decomposition method.

1 Introduction

In the vibration analysis, the structures were often modeled as beams vibrating in
flexural motion. The influence of tip mass, rotatory inertia, eccentricity, taper ratio,
axial force, elastic foundation, and elastic end restraints on the natural frequen-
cies of flexural vibration of a beam were investigated by many investigators. The
transverse vibrations of uniform beams with a concentrated mass at the tip have
been studied in these literatures [Mabie and Rogers (1974); Laura, Pombo and
Susemihl (1974); Lee (1973)]. Goel (1976) generalized the analysis and consid-
ered the rotational flexibility of the constraint. The free vibrations of constrained
beams carrying a heavy tip body, including the rotatory inertia and eccentricity have
been studied in these literatures [Chang (1993); Grossi, Aranda and Bhat (1993);
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Maurizi, Belles and Rosales (1990); Liu and Huang (1988); Alvarez, Iglesias and
Laura (1988); Lau (1984); To (1982)]. Auciello (1996) presented the exact so-
lution for the frequency equation of tapered cantilever beams with a concentrated
mass at the tip, with account taken of the rotatory inertia of the mass, and its ec-
centricity. Beams with a mass and spring at the end subjected to an axial force had
been studied in these literatures [Naguleswaran (1991); Bokaian (1990); Grossi and
Laura (1982); Takahashi (1980)]. Laura and Cortinez (1985) presented transverse
vibrations of a cantilever beam subjected to a variable axial force. Recently, Nag-
uleswaran (2004) studied the vibration of a uniform Euler-Bernoulli beam under
linearly varying axial force. Nallim (1999) presented a general algorithm for the
study of the dynamical behavior of beams. It allows the inclusion of a number
of complicating effects such as varying cross-sections, presence of an arbitrarily
placed concentrated mass, ends elastically restrained against rotation and transla-
tion and presence of an axial, tensile force. Free vibrations of analysis of beams
on elastic foundation have been studied in these literatures [Chen (2000); Thambi-
ratnam and Zhuge (1996); Lee and Lin (1995)]. Finally, Batra and Porfiri (2005)
applied the Meshless Local Petrov-Galerkin (MLPG) method to examine the vi-
brations of cracked Euler-Bernoulli beams. Vinod, Gopalakrishnan and Ganguli
(2006) applied the spectral finite element formulation for a rotating uniform Euler-
Bernoulli beam subjected to small duration impact. Huang and Shih (2007) applied
the Conjugate Gradient Method (CGM) to study an inverse problem in estimating
simultaneously the time-dependent applied force and moment of an Euler-Bernoulli
beam.

In this study, a new computed approach called Adomian modified decomposition
method (AMDM) is introduced to solve the free vibration problems. The concept
of AMDM was first proposed by Adomian and was applied to solve linear and
nonlinear initial/boundary value problems in physics [Adomian (1994); Adomian
and Rach (1992); Adomian and Rach (1991)]. In this paper, the free vibration
problems of elastically restrained non-uniform Euler-Bernoulli beams resting on
an elastic foundation, with tip mass of rotatory inertia and eccentricity under an
axial load are considered. Using the AMDM, the governing differential equation
becomes a recursive algebraic equation and the boundary conditions at the right
end become simple algebraic frequency equations which are suitable for symbolic
computation. Moreover, after some simple algebraic operations on these frequency
equations any ith natural frequency can be obtained. Finally, some problems of
free vibration of uniform and non-uniform beams are solved and showed excellent
agreement with the published results to verify the accuracy and efficiency of the
present method.
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2 The principle of AMDM

In order to solve vibration problems by the Adomian modified decomposition method
(AMDM) the basic theory is stated in brief in this section. Consider the equation

Fy(x) = g(x), (1)

where F represents a general nonlinear ordinary differential operator involving both
linear and nonlinear parts, and g(x) is a given function. The linear terms in Fy are
decomposed into Ly + Ry, where L is an invertible operator, which is taken as the
highest-order derivative and R is the remainder of the linear operator. Thus, Eq. (1)
can be written as

Ly+Ry+Ny = g, (2)

where Ny represents the nonlinear terms in Fy. Equation (2) corresponds to an
initial value problem or a boundary-value problem. Solving for Ly, one can obtain

y = Φ+L−1g−L−1Ry−L−1Ny, (3)

where Φ is an integration constant, and LΦ = 0 is satisfied. Corresponding to an
initial-value value problem, the operator L−1 may be regarded as a definite integra-
tion from 0 to x. In order to solve Eq. (3) by the AMDM we decompose y into the
infinite sum of convergent series

y =
∞

∑
k=0

ckxk, (4)

and the nonlinear term Ny is decomposed as

Ny =
∞

∑
k=0

xkAk(c0,c1, · · · ,ck), (5)

where the Ak are known as Adomian coefficients. The given function g(x) is also
decomposed as

g(x) =
∞

∑
k=0

gkxk, (6)

By plugging Eqs. (4), (5), and (6) into Eq. (3) gives

y =
∞

∑
k=0

ckxk

= Φ+L−1

(
∞

∑
k=0

gkxk

)
−L−1R

(
∞

∑
k=0

ckxk

)
−L−1

(
∞

∑
k=0

xkAk(c0,c1, · · · ,ck)

) (7)
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The coefficients ck of each term in series (7) can be decided by the recurrence
relation, and the power series solutions of linear homogeneous differential equa-
tions in initial value problems yield simple recurrence relations for the coefficients
ck.However, in practice all the coefficients ck in series (7) cannot be determined ex-
actly, and the solutions can only be approximated by a truncated series ∑n−1

k=0 ckxk.

3 Using the AMDM to analyze the free vibration problem of non-uniform
beam

Let us consider the non-uniform beam of length l resting on the elastic foundation
and subjected to an axial load as shown in Fig. 1, the beam is constrained with
the rotational and translational flexible ends, and with a concentrated mass at the
tip, with account taken of the rotatory inertia of the mass, and its eccentricity. The
equation of motion for transverse vibrations of a non-uniform elastic beam is given
by

∂ 2

∂x2

[
EI(x)

∂ 2y(x, t)
∂x2

]
− ∂

∂x

[
s(x)

∂y(x, t)
∂x

]
+k∗(x)y(x, t)+ρA(x)

∂ 2y(x, t)
∂ t2

= 0, (8)

where y(x, t) is the transverse deflection of the beam, E is Young’s modulus, A(x)
is the cross-sectional area at the position x, I(x) is the moment of inertia of A(x),
ρ is the mass density of the beam material (mass per unit volume), k∗(x) is the
Winkler’s foundation modulus, s(x) is an axial tensile force and t is time.

For any mode of vibration, the lateral deflection y(x, t) may be written in the form

y(x, t) = Y(x)h(t), (9)

where Y (x) is the modal deflection and h(t) is a harmonic function of time t. If ω
denotes the circular frequency of h(t), then

∂ 2y(x, t)
∂ t2 = −ω2Y (x)h(t), (10)

and the eigenvalue problem of Eq. (8) reduces to the differential equation

d2

dx2

[
EI(x)

d2Y (x)
dx2

]
− d

dx

[
s(x)

dY(x)
dx

]
+k∗(x)Y(x)−ρA(x)ω2Y (x) = 0 (11)

The boundary conditions are given by

EI(x)
d2Y (x)

dx2 +(JL +MLe2
L)ω2 dY (x)

dx
−kRL

dY (x)
dx

−MLeLω2Y(x) = 0 (12)
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Figure 1: A general elastically end restrained non-uniform beam resting on the
elastic foundation and subjected to an axial load

d
dx

[
EI(x)

d2Y (x)
dx2

]
− s(x)

dY (x)
dx

+MLeLω2 dY (x)
dx

+kT LY (x)−MLω2Y (x) = 0

(13)

at x = 0, and

EI(x)
d2Y (x)

dx2 +kRR
dY (x)

dx
− (JR +MRe2

R)ω2 dY (x)
dx

−MReRω2Y (x) = 0 (14)

d
dx

[
EI(x)

d2Y (x)
dx2

]
− s(x)

dY (x)
dx

+MReRω2 dY (x)
dx

−kT RY (x)+MRω2Y (x) = 0

(15)

at x = l, where kT L, kRL, ML, JL, eL, and kT R, kRR, MR, JR, eR are the translational
spring constants, the rotational spring constants, the concentrated masses attached
at beam tip, the moments of inertia of the tip masses, the eccentricities which are
the distances between the beam tip and the center of the tip mass at the left end and
right end of the beam, respectively, and sL = s(0), sR = s(l) are the axial tensile
forces which act on the beam at the left and right ends, respectively.

In this paper, assuming both the depth b(x) and the height h(x) of the cross-section
of the beam can vary linearly according to the taper ratios of the beam αb = b1/b0
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, and αh = h1/h0, that is,

b(x) = b0

[
1+(αb −1)

x
l

]
; h(x) = h0

[
1+(αh −1)

x
l

]
(16)

where b0, b1 are the cross-sectional depths at x = 0 and x = l, respectively, and h0,
h1 are the cross-sectional heights at x = 0 and x = l, respectively, then the area and
the moment of inertia of the section will vary according to the following laws:

A(x) = b(x)h(x) = A0

[
1+(αb −1)

x
l

][
1+(αh −1)

x
l

]
, (17)

I(x) =
b(x)[h(x)]3

12
= I0

[
1+(αb −1)

x
l

][
1+(αh −1)

x
l

]3
, (18)

where A0 = b0h0 and I0 = b0h3
0/12 are the cross-sectional area and the moment of

inertia at x = 0. By setting

βb = 1−αb ; βh = 1−αh (19)

Eq. (11) can be written as

d2

dx2

[(
1−βb

x
l

)(
1−βh

x
l

)3 d2Y (x)
dx2

]
− d

dx

[
s(x)
EI0

dY (x)
dx

]
+

k∗(x)
EI0

Y(x)

− ρA0ω2

EI0

(
1−βb

x
l

)(
1−βh

x
l

)
Y (x) = 0 (20)

and the boundary conditions of Eqs. (12), (13), (14), and (15) can also be written
as

d2Y (x)
dx2 +

ω2(JL +MLe2
L)−kRL

EI0

dY (x)
dx

− MLeLω2

EI0
Y (x) = 0, (21)

d3Y (x)
dx3 − (βb +3βh)

l
d2Y (x)

dx2 +
MLeLω2 − sL

EI0

dY (x)
dx

+
kTL −MLω2

EI0
Y (x) = 0, (22)

at x = 0, and

d2Y (x)
dx2 +

kRR

EI1

dY (x)
dx

− (JR +MRe2
R)ω2

EI1

dY (x)
dx

− MReRω2

EI1
Y(x) = 0, (23)

d3Y (x)
dx3 − 1

l

(
βb

1−βb
+

3βh

1−βh

)
d2Y (x)

dx2 +
MReRω2 − sR

EI1

dY (x)
dx

+
MRω2 −kT R

EI1
Y(x)

= 0 (24)
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at x = l, where I1 = αbα3
h I0 = I0(1−βb)(1−βh)3.

Without loss of generality, the following dimensionless quantities are introduced.

X =
x
l
; Y (X) =

Y(x)
l

; Ω2 =
ρA0ω2l4

EI0
; S(X) =

s(x)l2

EI0
;

SL =
sLl2

EI0
; SR =

sRl2

EI1
; K∗(X) =

k∗(x)l4

EI0
; KT L =

kT Ll3

EI0
;

KT R =
kT Rl3

EI1
; KRL =

kRLl
EI0

; KRR =
kRRl
EI1

; μL =
ML

Mb
;

μR =
MR

Mb
; δL =

eL

l
; δR =

eR

l
; γL =

√
JL

MLl2 ; γR =
√

JR

MRl2 ;

μmL =
(2αbαh +αb +αh +2)

6
μL; μmR =

(2αbαh +αb +αh +2)
6αbα3

h

μR;

(25)

where Mb = ρA0l(2αbαh +αb +αh +2)/6 is the whole mass of the beam and Ω =
ω
√

ρA0l4/EI0 is the dimensionless natural frequency of the beam, then the Eq.
(20) simplifies in the dimensionless form as follows:

d2

dX2

[
(1−βbX)(1−βhX)3 d2Y (X)

dX2

]
− d

dX

[
S(X)

dY(X)
dX

]
+K∗(X)Y (X)

−Ω2(1−βbX)(1−βhX)Y (X) = 0 (26)

Eq. (26) can be expanded as following

d4Y (X)
dX4 −2

(
βb

1−βbX
+

3βh

1−βhX

)
d3Y (X)

dX3

+6

[
βbβh

(1−βbX)(1−βhX)
+

β 2
h

(1−βhX)2

]
d2Y (X)

dX2

− 1
(1−βbX)(1−βhX)3

[
S(X)

d2Y (X)
dX2 +

dS(X)
dX

dY (X)
dX

−K∗(X)Y (X)
]

− Ω2

(1−βhX)2 Y(X) = 0 (27)

the boundary conditions of Eqs. (21), (22), (23), and (24) are given by the following
dimensionless forms

Y ′′(0)+[μmL(δ 2
L + γ2

L)Ω2 −KRL]Y ′(0)−μmLδLΩ2Y (0) = 0, (28)

Y ′′′(0)− (βb+3βh)Y ′′(0)+(μmLδLΩ2 −SL)Y ′(0)+(KTL−μmLΩ2)Y(0) = 0, (29)
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and

Y ′′(1)+
[
KRR −μmR(δ 2

R + γ2
R)Ω2]Y ′(1)−μmRδRΩ2Y (1) = 0, (30)

Y ′′′(1)−
(

βb

1−βb
+

3βh

1−βh

)
Y ′′(1)+(μmRδRΩ2 −SR)Y ′(1)

− (KT R −μmRΩ2)Y(1) = 0 (31)

where Y ′(X) = dY (X)/dX, Y ′′(X) = d2Y (X)/dX2, Y ′′′(X) = d3Y (X)/dX3. As-
suming the dimensionless axial tensile force S(X) and dimensionless Winkler’s
foundation modulus K∗(X) can be expressed in the form of power series of X ,
respectively, then

S(X) =
∞

∑
j=0

S jX
j (32)

K∗(X) =
∞

∑
j=0

K∗
j X j (33)

where S(0) = S0 = SL and S(1) = SR.

The deflection Y(X) can be solved by the AMDM. Eq. (27) can be expressed in the
following form

Y (X) = Φ(X)+L−1
{

2

(
βb

1−βbX
+

3βh

1−βhX

)
d3Y(X)

dX3

−
[

6βbβh

(1−βbX)(1−βhX)
+

6β 2
h

(1−βhX)2 −
S(X)

(1−βbX)(1−βhX)3

]
d2Y (X)

dX2

+
1

(1−βbX)(1−βhX)3

dS(X)
dX

dY (X)
dX

+
[

Ω2

(1−βhX)2 −
K∗(X)

(1−βbX)(1−βhX)3

]
Y(X)

}
(34)

where L−1 =
∫ x

0

∫ x
0

∫ x
0

∫ x
0 · · ·dXdXdXdX . Now the decompositionY (X) = ∑∞

k=0CkXk
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can be put together with Eq. (34) to yield

Y (X) =
∞

∑
k=0

CkXk

= Φ(X)+L−1

{
2

(
βb

1−βbX
+

3βh

1−βhX

) ∞

∑
k=0

(k +1)(k +2)(k +3)Ck+3Xk

−
[

6βbβh

(1−βbX)(1−βhX)
+

6β 2
h

(1−βhX)2 −
S(X)

(1−βbX)(1−βhX)3

]

·
∞

∑
k=0

(k +1)(k +2)Ck+2Xk

+
1

(1−βbX)(1−βhX)3

dS(X)
dX

∞

∑
k=0

(k +1)Ck+1Xk

+
[

Ω2

(1−βhX)2 −
K∗(X)

(1−βbX)(1−βhX)3

] ∞

∑
k=0

CkXk

}
(35)

where we have

Φ(X) = Y(0)+Y ′(0)X +
Y ′′(0)

2
X2 +

Y ′′′(0)
6

X3, (36)

as the initial term of the decomposition. By using the power series, one can obtain

1
1−βbX

=
∞

∑
j=0

(βbX) j;
1

1−βhX
=

∞

∑
j=0

(βhX) j; βb �= 0, βh �= 0 (37)

In order to simplify the expression in Eq. (35) the theorem of Cauchy product is
used as follows

∞

∑
j=0

(βbX) j
∞

∑
j=0

(βhX) j =
∞

∑
j=0

X j
j

∑
m=0

β m
h β j−m

b (38)

and

1
(1−βhX)2 =

∞

∑
j=0

(βhX) j
∞

∑
j=0

(βhX) j =
∞

∑
j=0

( j +1)β j
h X j (39)

1
(1−βhX)3 =

∞

∑
j=0

(βhX) j

[
∞

∑
j=0

(βhX) j

]2

=
∞

∑
j=0

( j +1)( j +2)
2

β j
h X j (40)
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1
(1−βbX)(1−βhX)3 =

∞

∑
j=0

(βbX) j
∞

∑
j=0

( j +1)( j +2)
2

(βhX) j

=
∞

∑
j=0

X j
j

∑
p=0

(p+1)(p+2)
2

β p
h β j−p

b

=
∞

∑
j=0

B( j,βh,βb)X j

(41)

In the above equation the expression B( j,βh,βb) is defined as

B( j,βh,βb) =
j

∑
p=0

(p+2)(p+1)
2

β p
h β j−p

b , βh �= 0 , βb �= 0 (42)

where

B( j,β ,β )=
( j +3)( j +2)( j +1)

3!
β j, β �= 0, (43)

B( j,β ,0)=
( j +2)( j +1)

2
β j, β �= 0, (44)

B( j,0,β )= β j, β �= 0, (45)

from the Eqs. (32), (33), (41) and theorem of Cauchy product, one can get

S(X)
(1−βbX)(1−βhX)3 =

∞

∑
j=0

S jX
j

∞

∑
j=0

X jB( j,βh,βb) =
∞

∑
j=0

X j
j

∑
m=0

B(m,βh,βb)S j−m,

(46)

1
(1−βbX)(1−βhX)3

dS(X)
dX

=
∞

∑
j=0

X j
j

∑
m=0

B(m,βh,βb)( j−m+1)S j−m+1, (47)

K∗(X)
(1−βbX)(1−βhX)3 =

∞

∑
j=0

X j
j

∑
m=0

B(m,βh,βb)K∗
j−m, (48)
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Then the Eq. (35) can be written as

∞

∑
k=0

CkXk = Φ(X)+L−1
∞

∑
k=0

Xk
k

∑
j=0

{
( j +1)( j +2)( j +3)(2β k− j+1

b +6β k− j+1
h )Cj+3

− ( j +1)( j +2)Cj+2[6(k− j +1)β k− j+2
h +

k− j

∑
m=0

(6β m+1
h β k− j−m+1

b

−B(m,βh,βb)Sk− j−m)]+( j +1)Cj+1

k− j

∑
m=0

(k− j−m+1)B(m,βh,βb)Sk− j−m+1

+Cj[(k− j + 1)β k− j
h Ω2 −

k− j

∑
m=0

B(m,βh,βb)K∗
k− j−m]

}
(49)

By integrating (49), one can obtain

∞

∑
k=0

CkXk =Y (0)+Y ′(0)X+
Y ′′(0)

2
X2+

Y ′′′(0)
6

X3 +
∞

∑
k=0

{
Xk+4

(k +1)(k +2)(k +3)(k +4)
k

∑
j=0

{( j +1)( j +2)( j +3)Cj+3(2β k− j+1
b +6β k− j+1

h )

− ( j +1)( j +2)Cj+2[6(k− j +1)β k− j+2
h +

k− j

∑
m=0

(6β m+1
h β k− j−m+1

b

−B(m,βh,βb)Sk− j−m)]+( j +1)Cj+1

k− j

∑
m=0

(k− j−m+1)B(m,βh,βb)Sk− j−m+1

+Cj[(k− j+ 1)β k− j
h Ω2 −

k− j

∑
m=0

B(m,βh,βb)K∗
k− j−m]} (50)

Finally, equating coefficients of like powers of X , we derive the recurrence relation
for the coefficients Ck

C0 = Y (0), C1 = Y ′(0), C2 =
Y ′′(0)

2
, C3 =

Y ′′′(0)
6

, (51)
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and for k ≥ 4,

Ck =
1

k(k−1)(k−2)(k−3)

k−4

∑
j=0

{( j +3)( j +2)( j +1)Cj+3(2β k− j−3
b +6β k− j−3

h )

− ( j +2)( j +1)Cj+2[6(k− j−3)β k− j−2
h +

k− j−4

∑
m=0

(6β m+1
h β k− j−m−3

b

−B(m,βh,βb)Sk− j−m−4)]+( j+1)Cj+1

k− j−4

∑
m=0

(k− j−m−3)B(m,βh,βb)Sk− j−m−3

+Cj[(k− j−3)β k− j−4
h Ω2 −

k− j−4

∑
m=0

B(m,βh,βb)K∗
k− j−m−4]} (52)

Therefore, we can find the coefficients Ck from the recurrent equations (51), and
(52), and then we can get the solution Y (X) from Eq. (35). The series solution,
of course, is Y (X) = ∑∞

k=0CkXk. However, in practice all the coefficients Ck in
series solution cannot be determined exactly, and the solutions can only be ap-
proximated by a truncated series ∑n−1

k=0 CkXkwith n-term approximation. We can
now form successive approximants φ [n](X) = ∑n−1

k=0 CkXkas n increases and the
boundary conditions are also met. Thus φ [1](X) = C0, φ [2](X) = φ [1](X)+C1X ,
φ [3](X) = φ [2](X)+C2X2, · · · , serve as approximate solutions with increasing ac-
curacy as n→∞, and is also obligated to, of course, satisfy the boundary conditions.

The four coefficients Ck(k = 0,1,2,3) in Eq. (51) can be decided by the B.C.s of
Eqs. (28) and (29). In this case, the two coefficients C0 and C1 can be chosen as the
arbitrary constants and the other two coefficients C2 and C3 can be expressed as the
functions of C0, C1 and Ω, that is, from Eqs. (28), (29) and (51), by setting

C2 =
1
2

[
KRL −μmL(δ 2

L + γ2
L)Ω2]C1 +

1
2

μmLδLΩ2C0, (53)

C3 =
1
6

{
(βb +3βh)

[
KRL −μmL(δ 2

L + γ2
L)Ω2]+(SL −μmLδLΩ2)

}
C1

+
1
6

[
(βb +3βh)μmLδLΩ2 +(μmLΩ2−KT L)

]
C0 (54)

From above one can find that the initial term Φ(X) in Eq. (36) is the function of C0,
C1 and Ω, and by substituting the Eqs. (36), (53), (54) into the recurrence relation
of Eq. (52), the coefficients Ck(k ≥ 4) are the function of C0, C1 and Ω. Hence the
n-term approximation φ [n](X) = ∑n−1

k=0 CkXk of the mode shape Y (x) is really the
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function of C0, C1 and Ω. By substituting φ [n](X) into B.C.s of Eqs. (30), (31), the
two equations are obtained:

f [n]
r0 (Ω)C0 + f [n]

r1 (Ω)C1 = 0, r = 1,2 (55)

By use of Cramer’s rule for nontrivial solutions C0 and C1 the frequency equation
is given as

∣∣∣∣∣ f
[n]
10 (Ω) f [n]

11 (Ω)
f [n]
20 (Ω) f [n]

21 (Ω)

∣∣∣∣∣ = 0. (56)

The ith estimated dimensionless natural frequency Ω[n]
i corresponding to the ap-

proximate term n is obtained by the frequency equation (56), and n is decided by
the following equation:

∣∣∣Ω[n]
i −Ω[n−1]

i

∣∣∣ ≤ ε , (57)

where Ω[n−1]
i is the ith estimated dimensionless natural frequency corresponding to

the approximate term n−1, and ε is a preset small value. If Eq. (57) is satisfied,
then Ω[n]

i is the ith dimensionless natural frequency Ωi of the free vibration problem,

that is Ωi = Ω[n]
i . By substituting Ω[n]

i into any one of the Eq. (55), one can obtain

C1 = − f [n]
r0 (Ω[n]

i )

f [n]
r1 (Ω[n]

i )
C0, r = 1 or 2, (58)

and all the other coefficients Ck(k ≥ 2) can obtain from Eqs. (53), (54) and (52).

Furthermore, the ith mode shape φ [n]
i (X) corresponding to the ith dimensionless

natural frequency Ω[n]
i is obtained by

φ [n]
i (X) =

n−1

∑
k=0

C[i]
k Xk, (59)

where C[i]
k (X) is Ck(X) whose Ω is substituted by Ω[n]

i .

Finally, by use of the above formula of AMDM, the free vibration of the uniform
Euler-Bernoulli beam (αb = αh = 1), the non-uniform Euler-Bernoulli wedge beam
(αb = 1,αh = α) and the non-uniform Euler-Bernoulli cone beam (αb = αh = α)
are, respectively, analyzed. Let’s discuss as follows.
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3.1 Uniform Euler-Bernoulli beam (αb = αh = 1;β = βh = 0)

In this case, the uniform beam resting on the elastic foundation and subjected to an
axial load is considered, the area and moment of inertia of the section are constants,
that is A(x) = A1 = A0, I(x) = I1 = I0and the mass of the beam is Mb = ρA0l, the
mass ratio are μmL = μL and μmR = μR. The equation of motion in dimensionless
form in Eq. (26) can be written as

d4Y (X)
dX4 − d

dX

[
S(X)

dY(X)
dX

]
+
[
K∗(X)−Ω2]Y(X) = 0, (60)

and the recurrence relation for the coefficients Ck in Eq. (52) can be written as

Ck =
k−4
∑
j=0

[
( j +2)( j +1)Sk− j−4Cj+2+( j +1)(k− j−3)Sk− j−3Cj+1−K∗

k− j−4Cj

]
+Ω2Ck−4

k(k−1)(k−2)(k−3)
(61)

for k ≥ 4.

3.2 Euler-Bernoulli wedge beam (αb = 1,αh = α ;βb = 0,βh = β )

In this case, the wedge beam resting on the elastic foundation and subjected to an
axial load is considered, The area and moment of inertia of the section in the two
ends of beam are A1 = αA0, and I1 = α3I0, and the mass of the beam is Mb =
ρA0l(α +1)/2. The equation of motion in dimensionless form in Eq. (26) can be
written as

d4Y (X)
dX4 − 6β

1−β X
d3Y (X)

dX3 +
[

6β 2

(1−β X)2 −
S(X)

(1−β X)3

]
d2Y (X)

dX2

− 1
(1−β X)3

dS(X)
dX

dY(X)
dX

+
[

K∗(X)
(1−β X)3 −

Ω2

(1−β X)2

]
Y (X) = 0 (62)
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The recurrence relation for the coefficients Ck in Eq. (52) can be written as

Ck =
1

k(k−1)(k−2)(k−3)

k−4

∑
j=0

{
6( j +3)( j +2)( j +1)β k− j−3Cj+3

− ( j +2)( j +1)Cj+2

[
6(k− j−3)β k− j−2−

k− j−4

∑
m=0

B(m,β ,0)Sk− j−m−4

]

+( j +1)Cj+1

k− j−4

∑
m=0

(k− j−m−3)B(m,β ,0)Sk− j−m−3

+Cj

[
(k− j−3)β k− j−4Ω2 −

k− j−4

∑
m=0

B(m,β ,0)K∗
k− j−m−4

]}
(63)

for k ≥ 4.

3.3 Euler-Bernoulli cone beam (αb = αh = α ;β = βh = β )

In this case, the cone beam resting on the elastic foundation and subjected to an
axial load is considered, the parameters are Mb = ρA0l(α2 +α +1)/3, A1 = α2A0

and I1 = α4I0, the equation of motion in dimensionless form in Eq. (26) can be
written as

d4Y (X)
dX4 − 8β

1−β X
d3Y (X)

dX3 +
[

12β 2

(1−β X)2 −
S(X)

(1−β X)4

]
d2Y (X)

dX2

− 1
(1−β X)4

dS(X)
dX

dY(X)
dX

+
[

K∗(X)
(1−β X)4 −

Ω2

(1−β X)2

]
Y (X) = 0 (64)

The recurrence relation for the coefficients Ck in Eq (61) can be written as

Ck =
1

k(k−1)(k−2)(k−3)

k−4

∑
j=0

{
8( j +3)( j +2)( j +1)β k− j−3Cj+3

− ( j +2)( j +1)Cj+2

[
12(k− j−3)β k− j−2−

k− j−4

∑
m=0

B(m,β ,β )Sk− j−m−4

]

+( j +1)Cj+1

k− j−4

∑
m=0

(k− j−m−3)B(m,β ,β )Sk− j−m−3

+Cj

[
(k− j−3)β k− j−4Ω2 −

k− j−4

∑
m=0

B(m,β ,β )K∗
k− j−m−4

]}
(65)

for k ≥ 4.
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In the above three cases, the two coefficients C0 and C1 can be chosen as the ar-
bitrary constants and the other two coefficients C2 and C3 can be determined by
the boundary conditions of Eqs. (53) and (54). Hence the dimensionless natural
frequency can be obtained from Eqs. (55), (56) and (57).

4 Numerical results and discussions

First, the wedge beam(α = 2/3, β = 1/3) with elastically restrained ends (KRL = 1,
KT L = KT R = KRR = 100), which supports a tip mass (μR = 1,μL = 0) and subjected
to a constant axial, tensile force (S(X) = S0 = SL = α3SR) is discussed. If there is
no an elastic foundation (K∗(X) = 0), no inertia of moment of mass and eccentricity
(γR = δR = 0,γL = δL = 0), then the equation of motion in dimensionless form in
Eq. (62) can be written as

d4Y (X)
dX4 − 6β

1−β X
d3Y (X)

dX3 +
[

6β 2

(1−β X)2 −
S0

(1−β X)3

]
d2Y (X)

dX2

− Ω2

(1−β X)2 Y(X) = 0 (66)

By the AMDM one can set Y (X) = ∑∞
k=0CkXk and take the n-term series solution

φ [n](X) = ∑n−1
k=0 CkXk as the approximate solution of Y (X), the boundary conditions

in Eqs. (28)-(31) are given as

(φ [n])′′(0)−KRL(φ [n])′(0) = 0, (67)

(φ [n])′′′(0)−3β (φ [n])′′(0)−SL(φ [n])′(0)+KT Lφ [n](0) = 0, (68)

(φ [n])′′(1)+KRR(φ [n])′(1) = 0, (69)

(φ [n])′′′(1)− 3β
1−β

(φ [n])′′(1)−SR(φ [n])′(1)− (KTR −μmRΩ2)φ [n](1) = 0. (70)

The recurrence relation for the coefficients Ck in Eq. (63) can be written as

Ck =
1

k(k−1)(k−2)(k−3)

k−4

∑
j=0

β k− j−4
{

6β ( j +3)( j +2)( j +1)Cj+3

− ( j +2)( j +1)(k− j−3)[6β 2− (k− j−2)
2

S0]Cj+2

+(k− j−3)Ω2Cj

}
(71)
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for k ≥ 4. Setting SR = 2,μR = 1, one can get S0 = SL = 16/27, and μmR = 45/16.
If the coefficients C0 and C1 are chosen as the arbitrary constants, then from the
Eqs. (53), (54), (67) and (68) one can obtain

C2 =
KRL

2
C1 = 0.5C1, (72)

C3 =
3β KRL +SL

6
C1 − KT L

6
C0 = 0.265432C1 −16.6667C0 (73)

Substituting Eqs. (72) and (73) into Eq. (71) one can obtain

C4 = 0.12963C1 +(0.0416667Ω2 −8.33333)C0 (74)

and

C5 = (0.00833333Ω2 −0.0609511)C1 +(0.0222222Ω2 −3.82716)C0 (75)

Following the same recursive procedure, one can calculate up to C26 and obtain the
27th approximate solution φ [27](X) = ∑26

k=0CkXk, substituting it into Eqs. (69) and
(70) and using Eq. (56), one can obtain the frequency equation as follows.

1.44509×106 −64427.457034Ω2 +438.539481Ω4−0.606327Ω6

+0.000224389Ω8−2.734157×10−8Ω10 +1.339248×10−12Ω12

−3.181450×10−17Ω14 +5.533083×10−22Ω16 +9.582362×10−28Ω18

−1.736535×10−30Ω20 +1.675003×10−35Ω22 +4.020806×10−40Ω24

−3.549679×10−46Ω26 = 0 (76)

Solving Eq. (76), one can obtain the first three roots

Ω[27]
1 = 5.226878; Ω[27]

2 = 12.620143; Ω[27]
3 = 28.751623 (77)

By the same procedure one can obtain for n = 26

Ω[26]
1 = 5.226879; Ω[26]

2 = 12.620140; Ω[26]
3 = 28.751607 (78)

From Eqs. (77) and (78) one can get∣∣∣Ω[27]
1 −Ω[26]

1

∣∣∣ = 0.0000006;
∣∣∣Ω[27]

2 −Ω[26]
2

∣∣∣= 0.000003∣∣∣Ω[27]
3 −Ω[26]

3

∣∣∣ = 0.000016
(79)
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Hence by setting ε = 0.00002 in Eq. (57) the first three dimensionless natural
frequencies can be obtained one at a time. If one sets ε = 0.000001, then the first
dimensionless natural frequency Ω1 = Ω[27]

1 = 5.226878 can be obtained from Eq.
(79). Substituting Ω1 into C4 −C26 and using Eq. (59), one can obtain the closed
form series solution of the first mode shape.

φ [27]
1 (X) = C0(1+16.767780X+8.38389X2 −12.21596X3 −5.021388X4

+1.619472X5 +1.771573X6 +0.489858X7 +0.0757699X8 +0.0248059X9

+0.019772X10 +0.0119799X11 +0.00587826X12 +0.00262539X13

+0.00112961X14 +0.000477649X15 +0.000199575X16 +0.0000825243X17

+0.0000338004X18 +0.0000137245X19 +5.529254×10−6X20

+2.211929×10−6X21 +8.79243×10−7X22 +3.4749×10−7X23

+1.366155×10−7X24 +5.345408×10−8X25 +2.082368×10−8X26
)

Finally, the dimensionless natural frequencies of free vibration of beams with sev-
eral complicated effects are obtained by using the above method. In the following
cases, the small value ε in Eq. (57) is set to be 0.000001 and the numerical results
are compared with those results in the literatures.

4.1 Uniform Euler-Bernoulli beam

The dimensionless natural frequencies Ω of the uniform beam with the left end
elastically restrained and the right end supported with the dimensionless tip mass
μR, rotatory inertia γR of tip mass, and eccentricity δR are listed in Table 1-2. In
Table 1, it can be observed that the dimensionless natural frequencies determined
by the proposed method converge very rapidly, and the first dimensionless natural
frequencies can be obtained one at a time for the approximate term n = 30, and the
convergent solutions for the approximate term n = 30 and those given by Auciello
(1996) are very consistent. Table 2 shows the convergent dimensionless natural
frequencies for the approximate term n with different values of γR and μR, and the
results are in agreement with Chang (1993).

In Figure 2, the square root
√

Ω1 of the first dimensionless natural frequency for
a uniform cantilever beam with the physical parameters γR and δR are shown. In
Figure 3, the square root

√
Ω1 of the first dimensionless natural frequency for a

uniform cantilever beam with the physical parameters μR and γR are shown. It can
be observed that the first dimensionless natural frequency decreases when the tip
mass μR or rotatory inertia γR of the mass or eccentricity δR are increased, and the
tip mass μR has greater influence on the natural frequencies than γR and δR.
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Table 1: The square roots
√

Ω of the first three dimensionless natural frequencies of
a uniform cantilever beam with a tip mass, the rotatory inertia of the mass, and its
eccentricity at the free end; (I) Auciello (1996). (II) To (1982). (KT L → ∞,KRL →
∞,KT R = 0,KRR = 0; μR = γR = 1; K∗(X) = S(X) = μL = δL = γL = 0)

δR
√

Ω Present (I) (II)
n = 10 n = 20 n = 30

0.4
√

Ω1 0.850678 0.850678 0.850678 0.850678 0.85068√
Ω2 1.977850 1.980129 1.980129 1.980129 1.98013√
Ω3 5.095397 4.945065 4.945079 4.945079 4.94508

0.6
√

Ω1 0.810481 0.810481 0.810481 0.810481 0.81048√
Ω2 2.042304 2.045433 2.045433 2.045433 2.04543√
Ω3 5.322921 4.978207 4.978225 4.978225 4.97823

0.8
√

Ω1 0.772802 0.772802 0.772802 0.772801 0.77280√
Ω2 2.099542 2.103698 2.103698 2.103697 2.10370√
Ω3 5.675757 5.015739 5.015764 5.015764 5.01576

Table 2: The square roots
√

Ω of the first five dimensionless natural frequencies of
a uniform cantilever beam with a tip mass, the rotatory inertia of the mass, and its
eccentricity at the free end; (I) Chang (1993). (KT L → ∞,KRL → ∞,KT R = 0,KRR =
0; K∗(X) = S(X) = μL = δL = γL = δR = 0)

√
Ω γR = 0.0 γR = 0.3 γR = 0.9

μR = 0.2 μR = 0.4 μR = 2.0
Present (I) Present (I) Present (I)
n = 46 n = 42 n = 39√

Ω1 1.616402 1.616400 1.429860 1.429860 0.818981 0.818977√
Ω2 4.267062 4.267062 3.036912 3.036911 1.620778 1.620777√
Ω3 7.318373 7.318371 5.234071 5.234072 4.826015 4.826014√
Ω4 10.401563 10.401563 8.135284 8.135284 7.913892 7.913892√
Ω5 13.506702 13.506702 11.195621 11.195621 11.039366 11.039366

The square roots
√

Ω of the first three dimensionless fundamental frequencies of
a cantilever beam under linearly varying axial force for three different boundary
conditions are listed in Table 3. The computed results are in agreement with those
given by Nallim and Grossi (1999) and Naguleswaran (2004). The square roots√

Ω of the first five dimensionless fundamental frequencies of a uniform beam with
elastically restrained ends, which supports a tip mass and is subjected to a constant
axial, tensile force are listed in Table 4, the computed results compared with those
given by Nallim and Grossi (1999) are very consistent. In Figure 4, the square
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Figure 2: Plot of the square root of the
first dimensionless natural frequency√

Ω1 for a uniform cantilever beam with
the dimensionless moment of inertia of
mass γR and eccentricity δR (μR = 1)
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Figure 3: Plot of the square root of the
first dimensionless natural frequency√

Ω1 for a uniform cantilever beam with
the dimensionless mass μR and moment
of inertia of mass γR (δR = 1)
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Figure 4: Plot of The square roots
√

Ω1

of the first dimensionless natural fre-
quency of a uniform beam with elas-
tically restrained ends, which supports
a tip mass μR and is subjected to a
constant axial, tensile force S0 (kT L →
∞,kT R = 5,kTR = 10,kRR = 0)
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Figure 5: Plot of The square roots
√

Ω1

of the first dimensionless natural fre-
quency of a cone beam with e a tip
mass, the rotatory inertia of the mass,
and its eccentricity at the left end (α =
1.1; kT R = ∞,kRR = 1; δL = 0.4; μR =
δR = γR = 0)

root
√

Ω1 of the first dimensionless natural frequency for a uniform beam (KT L →
∞,KT R = 5,KTR = 10,KRR = 0 ;δR = γR = 0) with the physical parameters μR and
S0 are shown. It can be observed that the first dimensionless natural frequency
decreases when the tip mass μR is increased, and increases when the constant axial
tensile force S0 is increased.

Finally, the first five dimensionless natural frequencies Ω of a uniform cantilever
beam having a tip mass at the free end and resting on the elastic foundation are
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Figure 6: Plot of The square roots
√
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of the first dimensionless natural fre-
quency of a non-uniform beam with
elastically restrained ends, which sup-
ports a tip mass and is subjected to a
constant axial force (α = 1.5; KT R =
100,KRR = 1; SR = 10; μR = 0.8)
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Figure 7: Plot of the square roots
√

Ω
of the first dimensionless natural fre-
quencies of a cantilever cone beam rest-
ing on an elastic foundation and sub-
jected to a constant axial force (α = 0.9;
KT L → ∞,KRL → ∞,KTR = 0,KRR = 0;
K∗(X) = K∗

0 ; S(X) = SL = S0; μL =
δL = γL = μR = δR = γR = 0)

Table 3: The square roots
√

Ω of the first three dimensionless natural frequencies
of a uniform beam under linearly varying axial force S(X) = SL + S1X ; (I) Nallim
(1999). (II) Naguleswaran (2004). (SL = S0; SR − SL = S1; K∗(X) = μL = δL =
γL = μR = δR = γR = 0)

BC∗ √
Ω SL = 10,S1 = 0 SL = 10,S1 = 4 SL = 10,S1 = 100

Present (I) Present (II) Present (II)
n = 43 n = 43 n = 49

cl\cl∗
√

Ω1 4.995742 4.995742 5.043666 5.0437 5.876812 5.8768√
Ω2 8.080354 8.080355 8.123404 8.1234 8.971967 8.9720√
Ω3 11.176983 11.176988 11.212177 11.2122 11.959541 11.9595

pn\pn∗
√

Ω1 3.742159 3.742159 3.832191 3.8322 5.003168 5.0032√
Ω2 6.648044 6.648044 6.714075 6.7141 7.861698 7.8617√
Ω3 9.679520 9.679521 9.728076 9.7281 10.699028 10.6990

cl\ f r∗
√

Ω1 2.677212 _ 2.766044 2.7660 3.587605 3.5876√
Ω2 5.319243 _ 5.454186 5.4542 6.973598 6.9736√
Ω3 8.225463 _ 8.316068 8.3161 9.743540 9.7435

* BC: boundary condition
* cl\cl: clamped-clamped. pn\pn: pinned-pinned. cl\ f r: clamped-free.

listed in Table5. From this table one can find that the natural frequencies increase
when the physical parameter K∗

0 increases and the tip mass μR has greater influence
on the natural frequencies than the constant Winkler’s foundation modulus K∗

0 .
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Table 4: The square roots
√

Ω of the first five dimensionless natural frequencies of
a uniform beam with elastically restrained ends, which supports a tip mass and is
subjected to a constant axial, tensile force; (I) Nallim (1999). (KT L → ∞,KT R =
10,KRR = 0; S(X) = S0; K∗(X) = μL = δL = γL = δR = γR = 0)√

Ω S0 = 10 S0 = 10 S0 = 2
μR = 0.4,KRL = 5 μR = 0.2,KRL = 1.25 μR = 1,KRL = 0.2
Present (I) Present (I) Present (I)
n = 47 n = 43 n = 47√

Ω1 2.365255 2.3653 2.478762 2.4788 1.735489 1.7355√
Ω2 4.321753 4.3218 4.361232 4.3612 3.462256 3.6423√
Ω3 7.046657 7.0467 7.017856 7.0179 6.450325 6.4503√
Ω4 9.984168 9.9842 9.947356 9.9474 9.538063 9.5381√
Ω5 13.006049 13.0061 12.971575 12.9719 12.652027 12.6521

Table 5: The first five dimensionless natural frequencies Ω of a uniform cantilever
beam having a tip mass at the free end and resting on the elastic foundation; (I)
Chen (2000). (KT L → ∞,KRL → ∞,KTR = 0,KRR = 0; S(X) = 0; μL = δL = γL =
δR = γR = 0);

K∗
0 = 1 K∗

0 = 5 K∗
0 = 10

μR Ω ( I ) Present Present Present
0 Ω1 3.65544 3.655457 4.166817 4.728886

Ω2 22.0572 22.057170 22.147658 22.260250
Ω3 61.7057 61.705310 61.737714 61.778194
Ω4 120.911 120.906022 120.922563 120.943235
Ω5 199.894 199.861952 199.871959 199.884466

1 Ω1 1.61782 1.617825 1.838580 2.078853
Ω2 16.2781 16.278070 16.389697 16.528532
Ω3 50.9054 50.905327 50.943271 50.990665
Ω4 105.205 105.202925 105.221608 105.244957
Ω5 179.251 179.234716 179.245759 179.259562

4.2 Non-uniform Euler-Bernoulli beam

The dimensionless natural frequencies of the cone beam with the right end elasti-
cally restrained (KT L = 0,KRL = 0) and the left end supported with the tip mass μL,
rotatory inertia γL of the mass, and eccentricity δL are listed in Table 6-7. In Table
6, the square roots

√
Ω of the first three dimensionless natural frequencies of a can-

tilever cone beam (KT R → ∞,KRR → ∞) with μL, γL and δL at the left end are listed.
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Table 6: The square roots
√

Ω of the first three dimensionless natural frequencies
of a cantilever cone beam with a tip mass, the rotatory inertia of the mass, and its
eccentricity at the left end; (I) Auciello(1996). (KT L = 0,KRL = 0,KT R → ∞,KRR →
∞; K∗(X) = S(X) = μR = δR = γR = δL = 0)

γL α μL
√

Ω1
√

Ω2
√

Ω3

Present (I) Present (I) Present (I)
0 1.2 0.2 1.805116 1.805113 4.531398 4.531399 7.682833 7.682832

0.6 1.519992 1.519988 4.343868 4.343868 7.542352 7.542352
1 1.373710 1.373712 4.289385 4.289384 7.507076 7.507077
2 1.180605 1.180607 4.242897 4.242896 7.478641 7.478642

2 0.2 2.392498 2.392505 5.375538 5.375542 8.914100 8.914098
0.6 1.949576 1.949585 5.190742 5.190740 8.804084 8.804081
1 1.744152 1.744161 5.145041 5.145038 8.779423 8.779421
2 1.485704 1.485718 5.108415 5.108412 8.760286 8.760283

0.3 1.2 0.2 1.759470 1.75946 3.493510 3.49351 5.666955 5.66696
0.6 1.459658 1.45965 2.870282 2.87028 5.298093 5.29809
1 1.312503 1.31250 2.590249 2.59025 5.182562 5.18256
2 1.122787 1.12279 2.228088 2.22809 5.079316 5.07931

2 0.2 2.268663 2.26867 3.648385 3.64839 6.290136 6.29014
0.6 1.808854 1.80886 2.949114 2.94912 5.974270 5.97427
1 1.608437 1.60845 2.640890 2.64090 5.888834 5.88884
2 1.363162 1.36317 2.253207 2.25322 5.818075 5.81808

0.6 1.2 0.2 1.634324 1.63432 2.779846 2.77985 5.472032 5.47203
0.6 1.312147 1.31214 2.301968 2.30197 5.214797 5.21480
1 1.168702 1.16870 2.082917 2.08292 5.129180 5.12918
2 0.991773 0.99177 1.795562 1.79556 5.051225 5.05122

2 0.2 1.954460 1.95445 3.048977 3.04898 6.199473 6.19948
0.6 1.511025 1.51101 2.514297 2.51430 5.939125 5.93913
1 1.334368 1.33435 2.261011 2.26102 5.867125 5.86713
2 1.124886 1.12487 1.935209 1.93522 5.807008 5.80701

In Table 7, the square roots
√

Ω of the first three dimensionless natural frequencies
of a cone beam (αb = αh = α = 1.1) with μL, γL and δL at the left end are listed.
Comparing the natural frequencies with those given by Auciello (1996) one can
find that the results are very consistent. In Figure 5, the square roots

√
Ω1 of the

first dimensionless natural frequency of a cone beam (α = 1.1; KT R = ∞,KRR = 1;
δL = 0.4) with μL and γL are shown. It can be observed that the first dimensionless
natural frequency decreases when the tip mass μL or rotatory inertia γL of the mass
or eccentricity δL are increased, and the tip mass μL has greater influence on the
natural frequencies than γL and δL.
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Table 7: The square roots
√

Ω of the first three dimensionless natural frequencies of
a cone beam with a tip mass, the rotatory inertia of the mass, and its eccentricity at
the left end; (I) Auciello (1996). (αb = αh = α = 1.1; KT L = 0,KRL = 0; K∗(X) =
S(X) = μR = δR = γR = 0, μL = 1)

δL KT R γL KRR
√

Ω1
√

Ω2
√

Ω3

Present (I) Present (I) Present (I)
0.4 ∞ 0.6 0.1 0.467440 0.46743 1.854354 1.85436 4.358113 4.35811

1 0.755247 0.75524 1.948854 1.94886 4.454283 4.45428
10 0.934568 0.93456 2.182581 2.18258 4.834589 4.83459

0.8 0.1 0.455279 0.45527 1.694337 1.69434 4.290900 4.29090
1 0.730454 0.73044 1.790888 1.79089 4.390606 4.39061
10 0.893032 0.89303 2.022673 2.02267 4.779324 4.77932

1 0.1 0.441668 0.44166 1.583463 1.58347 4.256810 4.25681
1 0.703347 0.70334 1.685046 1.68505 4.358455 4.35845
10 0.850076 0.85007 1.921416 1.92142 4.751734 4.75174

1 0.6 0.1 0.461893 0.46189 1.165266 1.16527 2.480518 2.48052
1 0.700855 0.70085 1.197686 1.19769 2.634190 2.63419
10 0.801468 0.80146 1.238412 1.23842 2.891271 2.89127

0.6 ∞ 0.6 0.1 0.443598 0.44359 1.873048 1.87305 4.436802 4.43680
1 0.712291 0.71228 1.983125 1.98312 4.530416 4.53041
10 0.873804 0.87380 2.248241 2.24824 4.905603 4.90560

0.8 0.1 0.434100 0.43410 1.729272 1.72928 4.345483 4.34548
1 0.693283 0.69328 1.837962 1.83796 4.442982 4.44298
10 0.843081 0.84307 2.092539 2.09254 4.827034 4.82703

1 0.1 0.423220 0.42322 1.621961 1.62196 4.295470 4.29547
1 0.671929 0.67192 1.732486 1.73249 4.395387 4.39539
10 0.809974 0.80997 1.984642 1.98464 4.784972 4.78497

1 0.6 0.1 0.439333 0.43933 1.162500 1.16251 2.520126 2.52013
1 0.671065 0.67105 1.184762 1.18476 2.684893 2.68489
10 0.773954 0.77395 1.212624 1.21262 2.960296 2.96030

The square roots
√

Ω of the first five dimensionless natural frequencies of a non-
uniform beam with elastically restrained ends, which supports a tip mass and is
subjected to a constant axial, tensile force are listed in Table 8. These results are in
agreement with those given by Nallim and Grossi (1999). In Figure 6, the square
roots

√
Ω1 of the first dimensionless natural frequency of a cone beam (α = 1.5)

with KT L and KRL are shown. It can be observed that the first dimensionless natural
frequency increases when the dimensionless translational spring constant KT L or
the rotational spring constant KRL is increased, and the parameter KT L has greater
influence on the natural frequencies than the parameter KRL.

Finally, the square roots
√

Ω of the first five dimensionless natural frequencies of a
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cantilever cone beam (α = 0.9) resting on an elastic foundation and subjected to a
constant axial force are listed in Table 9. The computed results are very consistent
with Lee and Lin (1995). In Figure 7, one can found that the first dimensionless
natural frequency increases when the dimensionless axial tensile force S0 or the
constant Winkler’s foundation modulus K∗

0 is increased, and the parameter S0 has
greater influence on the natural frequencies than the parameter K∗

0 .

5 Conclusion

By the method proposed in this study, the dimensionless natural frequencies of the
free vibration of non-uniform Euler-Bernoulli beams can be obtained. This paper
presents a simple, computationally efficient and accurate approximate approach.
The innovative solver developed is very general and takes into account a great va-
riety of complicated effects, such as non-uniform cross-sections, effects of an axial
force and elastic foundation, presence of a tip mass with the rotatory inertia of mass
and eccentricity, and ends elastically restrained against translational and rotational
springs.

By using the proposed method, any ith natural frequencies can be obtained one
at a time for some approximate term n, the larger the approximate term is giving,
more natural frequency can be found at the same time. The computed results are
compared closely with the results obtained by using other analytical and numerical
methods in the literatures.

This study provides a unified and systematic procedure which is seemingly simpler
and more straightforward than the other methods, and constitutes an efficient tool
for the design of beam with the vibration problem.
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Table 9: The square roots
√

Ω of the first five dimensionless natural frequencies of
a cantilever cone beam resting on an elastic foundation and subjected to a constant
axial force; (I) Lee and Lin (1995) (αb = αh = α ; KT L → ∞,KRL → ∞,KT R =
0,KRR = 0; K∗(X) = K∗

0 ; S(X) = SL = S0; μL = δL = γL = μR = δR = γR = 0)

α
√

Ω K∗
0 = 0, S0 = 0 K∗

0 = 5, S0 = 0 K∗
0 = 5, S0 = −1

Present (I) Present (I) Present (I)
0.9

√
Ω1 1.916690 1.9167 2.099078 2.0991 1.917866 1.9179√
Ω2 4.642225 4.6422 4.656327 4.6563 4.557427 4.5574√
Ω3 7.693415 7.6934 7.696487 7.6965 7.646115 7.6461√
Ω4 10.742333 10.742 10.743459 10.744 10.709758 10.710√
Ω5 13.796984 13.797 13.797515 13.798 13.772349 13.772




