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A Topology Optimization Design for the Continuum
Structure Based on the Meshless Numerical Technique

Zheng Juan1,2,3, Long Shuyao1,2, Xiong Yuanbo1,2 and Li Guangyao1

Abstract: In this paper, the meshless radial point interpolation method (RPIM)
is applied to carry out a topology optimization design for the continuum structure.
Considering the relative density of nodes as a design variable, and the minimization
of compliance as an objective function, the mathematical formulation of the topol-
ogy optimization design is developed using the SIMP (solid isotropic microstruc-
tures with penalization) interpolation scheme. The topology optimization problem
is solved by the optimality criteria method. Numerical examples show that the pro-
posed approach is feasible and efficient for the topology optimization design for the
continuum structure, and can effectively overcome the checkerboard phenomenon.

Keyword: radial point interpolation method (RPIM); topology optimization de-
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1 Introduction

Topology optimization design for the continuum structures is one of the most chal-
lenging research topics in the field of the structural optimization [Bendsoe and
Sigmund (2003)]. The purpose of the topology optimization design is to find the
optimal lay-out of a structure within a specified region. In this problem the only
known quantities are the applied loads, the possible support conditions, the vol-
ume of the structure to be constructed and possibly some additional design restric-
tions, and the physical size and the shape of the structure are unknown. The topol-
ogy optimization design for the continuum structures is essentially a discretized
0-1 variables problem. Recently, with the increase of interest in this field, vari-
ous models and methods for structural topology optimization were explored, with
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goals of improving the computational efficiency, and alleviating numerical instabil-
ities [Cisilino (2006), Li and Atluri (2008a,b), Michael and Wang (2004), Michael
and Zhou (2004), Tapp, Hansel, Mittelstedt and Becker (2004), Wang and Wang
(2006), Wang, Lim, Khoo and Wang (2007a, b, c, 2008), Zhou and Wang(2006)].
For the topology optimization design for the continuum structures, homogenization
approach [Bendsoe and Kikuchi (1988)], variable density approach [Bendsoe and
Sigmund (1999)] and evolutionary structural optimization (ESO) approach [Zhou
and Rozvany (2001)] are often employed. In the variable density approach, a den-
sity function ρ (x), which varies continuously between 1 and 0 with density 1 char-
acterizing the material and 0 the void (no material), is introduced to represent the
material distribution in the design domain. Solid isotropic microstructures with
penalizetion (SIMP) [Bendsoe and Sigmund (1999)] and rational approximation of
material properties (RAMP) [Stolpe and Svanberg (2001)] are two common density
interpolation models.

To date, the numerical method prevailing in topology optimization design is the
finite element method (FEM). However, FEM has a big limitation continuously
remeshing the finite element model when dealing with large deformation or moving
boundary problems. Meshless methods have been achieved remarkable progress in
recent years, such as smooth particle hydrodynamics method (SPH) [Monaghan
(1992)], element-free Galekin method (EFG) [Belytschko and Lu et al. (1994)],
meshless local Petrov-Galekin method (MLPG) [Atluri and Zhu (1998)]. The
meshless methods use a set of nodes scattered within the problem domain and
on boundaries of the domain. These nodes do not form a mesh meaning it does
not need any information on the relationship between nodes for the interpolation
of the unknown field variables. Since no element connectivity data is required, the
remeshing characteristic of FEM is avoided. Liu and Gu (2001) proposed the mesh-
less point interpolation methods (PIM) based on the Galekin weak form. However,
in PIM, as polynomial basis functions are used, the interpolation moment matrix
can be singular. As an interpolation scheme, radial basis functions (RBF) are be-
coming more and more attractive in meshless methods. In Raju, Phillips and Krish-
namurthy (2004), they adopt the RBF as the trial function in the MLPG formulation
for beam problems. The major advantage of radial PIM (RPIM) is that its shape
functions possess the Kronecker Delta function property, which allows simple en-
forcement of essential boundary conditions, and using RBF can effectively solve
the singularity problem of the polynomial PIM. Therefore, RPIM is currently used
more widely than the polynomial PIM. RPIM has been successfully applied to 2D
and 3D solid mechanics [Liu and Gu (2001); Liu and Zhang et al. (2005)], plate
and shell structures [Liu and Liu et al. (2002)], problems of smart materials [Liu
and Dai et al. (2003)], material non-linear problems in civil engineering [Wang et
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al. (2002)], and so on.

In this paper, the topology optimization design for the continuum structures is for-
mulated using the meshless radial point interpolation method for two-dimensional
elastostatics problems. Considering the relative density of nodes as a design vari-
able, the proposed method effectively eliminates the checkerboard phenomenon.
Finally, the feasibility and efficiency of the proposed method are illustrated with
several 2D examples that are widely used in the topology optimization design.

2 Meshless radial point interpolation method for plane elasticity

2.1 RPIM shape function

Consider an approximation function for a field variable u(x) in a domain. The func-
tion u(x) can be approximated by using a radial basis function with a polynomial
basis function as

u(x) =
n

∑
i=1

Ri (x)ai +
m

∑
j=1

Pj (x)b j = RT (x)a+PT(x)b (1)

where Ri (x) is a radial basis function (RBF), ai is the coefficient for Ri (x), Pj (x)
is monomial in the space coordinates xT = [x, y], b j is the coefficient for Pj (x), n
is the number for RBF, m is the number for the polynomial basis function, usually
m � n. For two-dimensional problems, the linear basis functions are given by
PT (x) = [1,x,y].
Using RBF can effectively overcome the singularity problem of the PIM based on
only polynomial basis function. There are four often used RBFs as follows

1) Multi-quadrics (MQ)

Ri (x,y) =
(

r2
i +(αcdc)

2
)q

αc ≥ 0

2) Gaussian (EXP)

Ri (x,y) = exp

[
−αc

(
ri

dc

)2
]

3) Thin Plate Spline (TPS)

Ri (x,y) = rη
i

4) Logarithmic

Ri (x,y) = rη
i logri
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where ri =
√

(x−xi)
2 +(y−yi)

2 is a distance between interpolating point (x,y)
and the node (xi,yi), αc, q, η are shape parameters, dc is a characteristic length
that relates to the nodal spacing in the local support domain of the point of interest
x, and it is usually the average nodal spacing for all the nodes in the local support
domain.

In order to determine the coefficients ai and b j in Equation (1), a support domain
is formed for the point of interest x, and n field nodes are included in the support
domain. Coefficients ai and b j in Equation (1) can be determined by enforcing
Equation (1) to be satisfied at these n nodes surrounding the point of interest x,
which leads to a set of n equations.

The interpolation at the kth node has

uk = u(xk,yk) =
n

∑
i=1

Ri (xk,yk)ai +
m

∑
j=1

Pj (xk,yk)b j k = 1,2, ...,n (2)

The matrix form of these equations can be expressed as

Us= R0a+Pmb (3)

However, there are n+m variables in Equation (3). The additional m equations can
be added using the following m constraint conditions.

n

∑
i=1

Pj (xi,yi)ai = PT
ma = 0, j = 1,2, . . .,m (4)

Combing Equations (3) and (4), we can obtain

Us =
{

Us

0

}[
R0 Pm

PT
m 0

]{
a
b

}
= G

{
a
b

}
(5)

Equation (1) can be re-written as

u(x) = RT (x)a+PT(x)b =
[
RT (x) PT(x)

]{a
b

}
(6)

Using Equation (5), we can obtain

u(x) =
[
RT (x) PT(x)

]
G−1Us = ΦΦΦT

(x)Us (7)

where ΦΦΦT (x) is the shape functions of the RPIM and can be expressed as

ΦΦΦT
(x) =

[
RT (x) PT(x)

]
G−1

= [φ1 (x) φ2 (x) · · · φn (x) φn+1 (x) · · · φn+m (x)]
(8)
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Finally, the shape functions of the RPIM corresponding to the nodal displacement
vector Φ (x) are obtained as

ΦT (x) = [φ1 (x) φ2 (x) · · · φn (x)] (9)

2.2 Discrete Equations of 2D plane problem [Liu and Gu (2004)]

Consider the following standard two-dimension problem of linear elasticity defined
in the domain Ω and bounded by Γ⎧⎪⎨
⎪⎩

LTσσσ +b = 0 ∈ Ω
σσσn = t ∈ Γt

u = u ∈ Γu

(10)

where σσσ is the stress tensor, which corresponds to the displacement field u, b is a
body force vector, L is differential operator defined by

L =

⎡
⎢⎣

∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

⎤
⎥⎦

t is the prescribed traction on the natural boundaries, u is the prescribed displace-
ment on the essential boundaries, n is the vector of unit outward at a point on the
natural boundary.

The variational form of Equation (10) is posed as follows∫
Ω

(Lδu)T (DLu)dΩ−
∫

Ω
δuTbdΩ−

∫
Γt

δuTtdΓ = 0 (11)

In order to obtain the discretized system equations, the problem domain Ω and its
boundary Γ are represented by properly distributed field nodes. Using the shape
functions of the RPIM the displacement at any point x can be approximated as

uh =
{

u
v

}
=

[
φ1 0 · · · φn 0
0 φ1 · · · 0 φn

]
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1

v1
...

un

vn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= ΦΦΦu (12)

where ΦΦΦ is the matrix of the shape functions, u is the vector of the displacements at
the field nodes in the support domain, and n is the number of nodes in the support
domain of a interest point at x.
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Equation (12) can also be written in the following form of nodal summation.

uh =
n

∑
I

[
φI 0
0 φI

]{
uI

vI

}
=

n

∑
I

ΦΦΦIuI (13)

where ΦΦΦI is the matrix of shape functions of node I, and uI is the nodal displace-
ments.

From Equation (13), we can obtain

δuh = ΦΦΦδu =
n

∑
I

ΦΦΦIδuI (14)

Using strain-displacement equations and the approximated displacements, the strains
can be obtained as

εεε = Luh = LΦu =

⎡
⎢⎣

∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

⎤
⎥⎦[

φ1 0 · · · φn 0
0 φ1 · · · 0 φn

]
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1

v1
...

un

vn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

or

εεε =

⎡
⎢⎣

∂φ1
∂x 0 · · · ∂φn

∂x 0
0 ∂φ1

∂y · · · 0 ∂φn
∂y

∂φ1
∂y

∂φ1
∂x · · · ∂φn

∂y
∂φn
∂x

⎤
⎥⎦
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1

v1
...

un

vn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= Bu =
n

∑
I

BIuI

Similarly,

Lδuh = LΦΦΦδu = Bδu =
n

∑
I

BIδuI (15)

The stress vector can be obtained using the constitutive equations.

σσσ = Dεεε = BDu =
n

∑
I

DBIδuI

where BI is the strain matrix about the Ith node, D is the material matrix for the
plane stress problem. They are given by

BI =

⎡
⎣φI,x 0

0 φI,y

φI,y φI,x

⎤
⎦ ,
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D =
E

1−μ2

⎡
⎣1 μ 0

μ 1 0
0 0 (1−μ)/2

⎤
⎦

Substituting Equation (15) into the first term of Equation (11), we have

∫
Ω

(Lδu)T (DLu)dΩ =
∫

Ω

(
n

∑
I

BIδuI

)T( n

∑
J

DBJuJ

)
dΩ

=
∫

Ω

n

∑
I

n

∑
J

δuT
I

[
BT

I DBJ
]

uJdΩ

(16)

Note that until this stage, I and J are based on the local numbering system for the
nodes in the local support domain. We can now change the numbering system form
the local one to the global one that records all the field nodes in the entire domain in
a unique manner from 1 to N, the total numbering of nodes in the problem domain.
Therefore, bothI and J in equation (16) can now vary from 1 to N .when node I and
node J are not in the same local support domain, the integrand vanishes. With this
operation, equation (16) can be expressed as

∫
Ω

(Lδu)T (DLu)dΩ =
∫

Ω

N

∑
I

N

∑
J

δuT
I

[
BT

I DBJ
]

uJdΩ

Move the integration inside the summations to arrive at

∫
Ω

(Lδu)T (DLu)dΩ =
N

∑
I

N

∑
J

δuT
I (

∫
Ω

[
BT

I DBJ
]

dΩ)uJ =
N

∑
I

N

∑
J

δuT
I KIJuJ (17)

where KIJ is called the nodal stiffness matrix and is defined as

KIJ =
∫

Ω
BT

I DBJdΩ

Finally, Equation (17) becomes∫
Ω

(Lδu)T (DLu)dΩ = δUTKU (18)

where K is the global stiffness matrix in the form of

K =

⎡
⎢⎢⎢⎣

K11 K12 · · · K1N

K21 K22 · · · K2N
...

...
. . .

...
KN1 KN2 · · · KNN

⎤
⎥⎥⎥⎦
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In Equation (18), the vector U is the global displacement vector that collects the
nodal displacements of all the nodes in the entire problem domain, which has the
form of

U =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1

u2
...

uN

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1

v1
...

uN

vN

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Substituting Equation (14) into the second term of Equation (11), and using the
same arguments in deriving the stiffness matrix, we have

∫
Ω

δuTbdΩ =
∫

Ω
(δ

n

∑
I

ΦΦΦIuI)TbdΩ (19)

Using the same arguments given Equation (16), Equation (19) can be expressed as

∫
Ω

δuTbdΩ =
∫

Ω
(δ

N

∑
I

ΦΦΦIuI)TbdΩ

Move the integration inside the summations to arrive at

∫
Ω

δuTbdΩ =
N

∑
I

δuT
I

∫
Ω

ΦΦΦT
I bdΩ =

N

∑
I

δuT
I Fb

I

where Fb
I is the nodal body force vector that is defined as

Fb
I =

∫
Ω

ΦΦΦT
I bdΩ

Finally, Equation (20) becomes∫
Ω

δuTbdΩ = δUTFb (20)

where Fb is the global body force vector assembled using the nodal body force
vectors for all the nodes in the entire problem domain, and is defined

Fb =

⎧⎪⎨
⎪⎩

Fb
1
...

Fb
N

⎫⎪⎬
⎪⎭
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The treatment for the last term in Equation (11) is exactly the same as that for the
second term, except that the body force vector is replaced by the traction vector and
the integrations are replaced by the boundary integrations. Hence, we can obtained

∫
Γt

δuTtdΓ =
n

∑
I

δuT
I

∫
Γt

ΦΦΦT
I tdΓ =

N

∑
I

δuT
I

∫
Γt

ΦΦΦT
I tdΓ =

N

∑
I

δuT
I Ft

I = δUTFt (21)

where Ft
I is the nodal traction force vector that is defined as

Ft
I =

∫
Γt

ΦΦΦT
I tdΓ

Ft is the global traction force vector assembled using the nodal traction force vec-
tors which is defined as

Ft =

⎧⎪⎨
⎪⎩

Ft
1
...

Ft
N

⎫⎪⎬
⎪⎭

Substituting Equations (18), (20) and (21) into Equation (11), we can obtain

δUTKU−δUTFb−δUTFt = 0

or

δUT
(

KU−Fb −Ft
)

= 0

Because δU is arbitrary, the above equation can be satisfied only if

KU = Fb +Ft

It can be re-written as

KU = F (22)

where F is the global force vector given by

F = Fb +Ft

Equation (22) is the final discretized system equations.
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3 Formulation of the topology optimization design

3.1 The SIMP model

In SIMP model [Bendsoe and Sigmund (1999)], a penalization factor which has
the effect of penalizing the intermediate density is introduced to ensure that the
continuous design variables are forced towards a 0-1 solution. The relation between
the density and the material tensor is written as

Ei jkl(x) = ρ p(x)E0
i jkl (23)

where E0
i jkl is the Young’s modulus of a given solid material, p is a penalization

factor.

The density of any point in the design domain can be interpolated by the nodal
density parameters and the RPIM shape function as follow

ρg =
np

∑
i=1

ΦΦΦiρi (24)

where ρi is the relative density of the ith node, and is the design variable, ΦΦΦi is
the RPIM shape function of the ith node, np is the number of nodes in the support
domain.

Considering the relative density of the nodes as a design variable, and the minimize
compliance as an objective function, the topology optimization problem based the
SIMP interpolation scheme can be formulated as follows

find ρ(x), x ∈ Ω
min c = FTU

s.t. KU = F

V =
∫

Ω
ρgdΩ = fV0

0 < ρmin ≤ ρi ≤ 1

(25)

where K is the global stiffness matrix, U is the displacement vector, F is the force
vector, V is the material volume of the design domain, V0 is the given volume of
the solid material, f is the prescribed volume fraction, ρmin is a lower bound on
density, introduced to prevent any possible singularity, in typical application, we
set ρmin = 0.001.

3.2 Solution methods

The topology optimization problem could be solved using several different ap-
proaches such as Optimality Criteria (OC) method [Zhou and Rozvany (1991)],
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Sequential Linear Programming (SLP) method [Fujii and Kikuchi (2000)] or the
method of Moving Asymptotes (MMA) [Svanberg (1987)] and others. The OC
method is simple to understand and implement, and is computationally efficient.
The effectiveness of the method comes from the fact that each design variable is
updated independently of the update of the other design variables. Following Sig-
mund(2001), a updating scheme for the design variables is formulated as follows

ρnew
i =

⎧⎪⎨
⎪⎩

max(ρmin,ρi −m) if ρiB
η
i ≤ max(ρmin,ρi −m)

ρiB
η
i if max(ρmin,ρi −m) < ρiB

η
i < min(1,ρi +m)

min(1,ρi +m) if min(1,ρi +m) ≤ ρiB
η
i

(26)

where Bi is given by the expression

Bi =
− ∂c

∂ρi

λ ∂V
∂ρi

where λ is a Lagrangian multiplier that can be found by a bi-sectioning algorithm,
m is a positive move-limit, η is a numerical damping coefficient. The introduction
m and η is to ensure the stability of the iteration.

3.3 Sensitivity analysis

We refer to the sensitivity analysis in FEM, using the adjoint method to calculate
the sensitivity of the objective function.

Rewrite the objective function by adding the zero function

c = FTU− ŨT (KU−F) (27)

where Ũ is any arbitrary, but fixed real vector.

By the derivative of Equation (27) with respect to the design variable, we can obtain
as

∂c
∂ρi

= FT ∂U
∂ρi

− ŨT
(

∂K
∂ρi

U+K
∂U
∂ρi

)
=

(
FT − ŨTK

) ∂U
∂ρi

− ŨT ∂K
∂ρi

U (28)

When Ũ satisfies the adjoint equation FT−ŨTK = 0, we obtain directly that Ũ = U,
Equation (28) can be re-written as

∂c
∂ρi

= −UT ∂K
∂ρi

U (29)

In this way the sensitivity analysis of the objective function transforms to calculate
the sensitivity of the stiffness matrix with respect to the design variable.
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By

K =
∫

Ω
ρ p

g BTDBdΩ

we can obtain

∂K
∂ρi

=
∫

Ω
pρ p−1

g ΦΦΦiBTDBdΩ (30)

The sensitivity of the volume constraint with respect to the design variable is ob-
tained as follows

∂V
∂ρi

=
∫

Ω
ΦΦΦidΩ (31)

4 Numerical examples

In this section, numerical examples will be given for demonstration of the feasibil-
ity and efficiency of the proposed approach.

4.1 A cantilever beam with a concentrated force applied on the middle of the
free end

A cantilever beam is fixed on the left side and is loaded with a concentrated force
F at the middle of the right side, as shown in Fig.1(a). The problem domain is rep-
resented by 441 field nodes, and 400 rectangular background cells are used for the
numerical integrations, in each background cell 2×2 Gauss points are employed.
The elastic material properties are chosen as Young’s modulus E = 3× 108 Pa,
Possion’s ratio μ = 0.3, and volume constraint is 50%.

The optimization result of the beam obtained by the present method is shown in
Fig.1(b). For comparison, the optimization result obtained by FEM is shown in
Fig.1(c) and the optimization result obtained by FEM with sensitivity filtering is
shown in Fig.1(d). And the variation of the objective function with iterative num-
ber is shown in Fig.2. In the present method, the value of the objective function
decreases from 0.4510 to 0.0478, and the number of iteration is 47. In FEM, the
value of the objective function decreases from 0.4496 to 0.0489, and the number
of iteration is 22, and in FEM with sensitivity filtering the value decreases from
0.4496 to 0.0535, and the number of iteration is 35. From these results, it can
be seen that the present approach can effectively eliminate the checkerboard phe-
nomenon arising in FEM, but the computational time increases.
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10

10
F

(a) Cantilever beam problem (b) Optimization result by present method 

(c) Optimization result by FEM 
(d) Optimization result by FEM with 

 sensitivity filtering 

Figure 1

4.2 A cantilever beam with a concentrated force applied at the right lower cor-
ner

A cantilever beam is fixed on the left side and is loaded with a concentrated force
F at the right lower corner, as shown in Fig.3(a). As in the previous example, the
problem domain is represented by 441 field nodes, and 400 rectangular background
cells are used for the numerical integrations, in each background cell 2×2 Gauss
points are employed. The elastic material properties are chosen as Young’s modulus
E = 3×108 Pa, Possion’s ratio μ = 0.3, and volume constraint is 40%.

The optimization result of the beam obtained by the present method is shown in
Fig.3(b). The optimization result obtained by RPIM with the relative density of the
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Figure 2 The variation of the objective function with iterative number

Gauss quadrature points as a design variable is shown in Fig.3(c) for comparison.
And the variation of the objective function with iterative number is shown in Fig.4.
In the present method, the value of the objective function decreases from 1.9150
to 0.1036, and the number of iteration is 89. In RPIM with the relative density of
the Gauss quadrature points as a design variable, the value of the objective func-
tion decreases from 1.9150 to 0.0907, and the number of iteration is 59. From
these results, it can be seen that the present approach can effectively eliminate the
checkerboard pattern with point state arising in the latter, but the computational
time increases.

5 Conclusions

In this paper, a topology optimization design is formulated using the radial point
interpolation method for two-dimensional elastostatics problems. Considering the
relative density of the nodes as a design variable and minimizing compliance as
an objective function, the mathematical formulation of the topology optimization
is developed using the SIMP interpolation scheme. The adjoint sensitivity analysis
method is employed to formulate the sensitivities of the objective function and
the volume constrain. Numerical examples demonstrate the proposed method can
effectively eliminate the checker-board phenomenon.
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