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A Local Meshless Shepard and Least Square Interpolation
Method Based on Local Weak Form

Y.C. Cai1 and H.H. Zhu1

Abstract: The popular Shepard PU approximations are easy to construct and
have many advantages, but they have several limitations, such as the difficulties
in handling essential boundary conditions and the known problem of linear depen-
dence regarding PU-based methods, and they are not the good choice for MLPG
method. With the objective of alleviating the drawbacks of Shepared PU approxi-
mations, a new meshless PU-based Shepard and Least Square (SLS) interpolation
is employed here to develop a new type of MLPG method, which is named as Lo-
cal Meshless Shepard and Least Square (LMSLS) method. The SLS interpolation
possesses the much desired Kronecker-delta property, hence the prescribed nodal
displacement boundary conditions can be implemented as easily as in FEM. Based
on the local Petrov-Galerkin weak form, the present LMSLS method utilizes a lo-
cal polygonal domain to simplify the integration and the discrete equations and is
a truly meshless method which constructs interpolation without using mesh and in-
tegrates the local weak form without a background mesh. Additionally, the orthog-
onal basis functions are used to totally eliminate the matrix inversion and matrix
multiplication in the computation of the SLS interpolation. Numerical examples
show that the present method has a high accuracy and convergence rate.

Keyword: Meshless, MLPG, point interpolation, Kronecker property, partition
of unity.

1 Introduction

In recent years, a type of Meshless Local Petrov-Galerkin (MLPG) methods pro-
posed by Atluri and Zhu (1998, 2000) has gained much attention in the area of
meshless methods. The MLPG methods are truly meshless methods as no meshes
are required either for the purposes of interpolation of the trial and test functions
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or for the purposes of integration of the weak form. Various nodal-based meshless
interpolation schemes, such as Moving Least Square (MLS) interpolation [Atluri
and Zhu (2000)], Point Interpolation (PI) [Liu (2001)], Kriging Interpolation (KI)
[Gu, Wang and Lam (2007)] and Radial Basis Function (RBF) [Gilhooley, Xiao
and Batra (2008)] have been applied to a series of MLPG-type methods, and re-
markable successes have been reported [Atluri and Shen (2005); Atluri, Liu and
Han (2006a,2006b); Pecher, Elston and Raynes (2006); Vavourakis, Sellountos
and Polyzos (2006); Atluri, Liu and Han (2006); Yuan, Chen and Liu (2007); Ma
(2008)] . The MLPG methods have now been widely extended to a variety of prob-
lems including plate analysis [Sladek, Sladek, Wen and Aliabadi (2006); Sladek,
Sladek, Krivacek, Wen and Zhang (2007); Jarak, Soric and Hoster (2007); Sladek,
Sladek, Solek, Wen and Atluri (2008) ], fracture mechanics [Gao, Liu and Liu
(2006); Sladek, Sladek, Zhang, Solek and Starek (2007); Long, Liu and Li (2008)],
3D elasticity [Han and Atluri (2004)], topology-optimization of structures [Li and
Atluri (2008a,2008b)], fluid flows [Arefmanesh, Najafi and Abdi (2008); Moham-
madi (2008)], thermoanalysis [Ching and Chen (2006); Sladek, Sladek, Zhang and
Tan (2006); Wu, Shen and Tao (2007); Sladek, Sladek, Zhang and Solek (2007)],
dynamic analysis [Han, Liu, Rajendran and Atluri (2006); Ma (2007)], and others
[Johnson and Owen (2007); Chen, Liu and Cen (2008); Dang and Sankar (2008)].

Generally, the MLPG method can also be based on the so-called Partition of Unity
(PU). Partition of unity is a powerful tool in mathematics and has been widely
used to constructed meshless approximations in the past decades. The PU-based
approximations have many advantages including the freedom of selecting diverse
local approximation spaces, the ability to enable the extrinsic basis to vary from
node to node and thus facilitating hp-adaptivity, and the good tolerance to the dis-
torted nodes. However, the popular PU functions [Babuška, Banerjee and Osborn
(2004); Belytschko, Krongauz and Organ (1996); Griebel and Schweitzer (2002);
Melenk and Babuška (1996); Oden, Duarte and Zienkiewicz (1998)] have several
limitations such as the large increase of the unknowns at nodes when higher order
polynomials are used, the difficulties in handling essential boundary conditions and
the known problem of linear dependence regarding PU-based methods. Thus, as
stated in Atluri and Shen (2002), the PU methods are not a good choice for MLPG
method because the test functions also need more unknowns per node, otherwise
sufficient equations cannot be obtained to determine the unknowns.

With the objective of alleviating the drawbacks and inheriting the advantages of
the PU-based approximations, a new Local Meshless Shepard and Least Square
(LMSLS) method based on the local Petrov-Galerkin weak form is proposed. The
method employs the meshless Shepard and Least Square (SLS) interpolation pro-
posed by the present authors as the trial function. The SLS interpolation is con-



A Local Meshless Shepard and Least Square Interpolation Method Based on Local Weak Form181

structed by using the least-square shape function as a local approximation, and
by using the Shepard shape function as a partition of unity. The SLS interpola-
tion is truly meshless and possesses the Kronecker-delta property. The previously-
mentioned disadvantages in the popular PU functions can be overcome, and the
new PU-based SLS interpolation is well suited for developing a new type of MLPG
method. Additionally, a new integration scheme over the sub-domain is proposed
to simplify the integration and the discrete equations of the LMSLS method.

In order to simplify the computation of the SLS interpolation and avoid the ill-
conditioned matrix in least square formulation, orthogonal basis functions are con-
structed for the SLS interpolation by using a Schmidt orthogonalization. The matrix
inversion and matrix multiplication in the computation of the SLS interpolation can
be totally eliminated through the use of the orthogonal basis functions.

The proposed LMSLS method is a truly meshless method which constructs interpo-
lation without using mesh and integrates the local weak form without a background
mesh. As far as we know this is also the first work of the local-weak form method
using the PU-based approximation. Numerical results demonstrate the performance
of the present method.

2 PU-based SLS interpolation

2.1 Popular Shepard PU approximations

If a domain Ω is covered by overlapping patches or sub- domains Ωi, a general
construction of PU approximation can be expressed as

uh(x) = ∑
i

χi(x)Li(x) (1)

where Li(x) are the polynomials of function centered about the node xi; The shape
function χi(x) satisfies the zeroth order consistency condition.

Most of the meshless PU approximations [Babuška, Banerjee and Osborn (2004);
Belytschko, Krongauz and Organ (1996); Griebel and Schweitzer (2002); Melenk
and Babuška (1996); Oden, Duarte and Zienkiewicz (1998)] make use of the Shep-
ard function as the partition of unity and choose polynomials as the local approxi-
mations. If we choose Li(x) to be:

Li(x) = ∑
J

βJipJ(x) (2)

where βJi are unknowns relevant to node i, pT (x)= [1,x,y, · · ·] are polynomial basis
functions. The Shepard PU approximations can be written as

uh(x) = ∑
i

φ 0
i (x)∑

J

βJipJ(x) (3)
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where

φ 0
i (x) =

wi(x)
n
∑
j=1

wj(x)
(4)

is the known Shepard function or the zeroth-order MLS shape function, wi(x) is
the weight function associated with node i, n is the number of nodes such that
wi(x) > 0.

By introducing higher order polynomials Li(x) in Eq.(3), the performance of the
PU approximation can be improved. For example, if we use linear basis pJ(x), the
Shepard PU approximation in Eq.(3) can attain linear consistency. The Shepard
PU approximations are easy to construct and have many advantages. Neverthe-
less, note that this kind of method requires at least three unknowns per node in a
2-dimensional problem in order to attain linear consistency. This may lead to sin-
gular global matrices due to the known problem of linear dependence regarding PU
based methods and may bring difficulties to the imposition of the essential bound-
ary conditions. Furthermore, as stated in Atluri and Shen (2002), PU methods are
not a good choice for the MLPG method because the test functions also need more
unknowns per node to obtain sufficient equations to determine unknowns.

Several other PU-constructions in the literature [Macri and De (2008); Oh, Kimb
and Honga (2008); Rajendran and Zhang (2007)] are proposed to partially over-
come the drawbacks of the PU methods. However, the requirement of a FE mesh
is a demerit in these PU methods as compared to meshfree methods.

2.2 PU-based SLS interpolation

Here a PU-based meshless Shepard and Least Square (SLS) interpolation is em-
ployed wherein the Shepard shape function is used for partition of unity, and the
least square shape function is used for local approximation. By using this kind of
SLS interpolation, most problems of the popular Shepard PU approximations can
be eliminated.

Suppose that the support of node i is defined by a circle of radius dmi with xi as its
centre, and there are M nodes in the support Ωi (Fig.1). For a given point x(x ∈ Ω),
the SLS interpolation uh(x) at x can be defined by

uh(x) =
n

∑
i=1

φ 0
i (x)uLi(x) (5)

where the local approximation uLi(x) is defined as

uLi(x) =
M

∑
J=1

Φi
J(x)uJ (6a)
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and

Φi
J(x) =

m

∑
j=1

p j(x)
(
A−1B

)
jJ (6b)

is the least square function associated with node J (J = 1, · · · ,M); m is the number
of terms in the basis; and

B = PT =
[
p(x1) p(x2) · · · p(xM)

]
(6c)

A = PT P (6d)

Figure 1: Discrete model of domain Ω

The least-square approximation in Eq.(6) does not satisfy the condition of uLi (xi) =
ui at node i and will bring difficulties in the imposition of essential boundary con-
ditions. Therefore, we make a modification to Eq.(6) as

uLi(x) =
M

∑
J=1

Φ̄i
J(x)uJ = Φ̄ΦΦiu (7a)

where

Φ̄ΦΦi(x) =
[
Φi

1(x)−Φi
1 (xi) , · · · ,1+Φi

i(x)−Φi
i (xi) , · · · ,Φi

M(x)−Φi
M (xi)

]
(7b)

uT = [u1,u2, · · · ,uM] (7c)
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and xi is the coordinate of node i.

From Eq.(7b) we can obtain Φ̄i
i (xi) = 1 and Φ̄i

J (xi) = 0 (J �= i) at x = xi, and
M
∑

J=1
Φ̄i

J(x) =1. This means that uLi (xi) = ui is satisfied in the modified Eq.(7).

Substituting Eq.(7) into Eq.(5) leads to the following formulation of a new meshless
point interpolation approximation:

uh(x) =
n

∑
i=1

φ 0
i (x)uLi(x) =

n

∑
i=1

φ 0
i (x)

(
M

∑
J=1

Φ̄i
J(x)uJ

)
(8)

Let R be the total number of nodes, which are in the supports of all the nodes
associated with the given point x such that wi(x) > 0, (i = 1,2, · · · ,n). Eq.(8) can
be rewritten as

uh(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ 0
1

φ 0
2
...

φ 0
n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

T ⎡
⎢⎢⎢⎣

Φ̄1
1 · · · Φ̄1

n Φ̄1
n+1 · · · Φ̄1

R
Φ̄2

1 · · · Φ̄2
n Φ̄2

n+1 · · · Φ̄2
R

... · · · ...
... · · · ...

Φ̄n
1 · · · Φ̄n

n Φ̄n
n+1 · · · Φ̄n

R

⎤
⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1

u2
...

uR

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=ΦΦΦ0
1×nΦ̄ΦΦn×RuR×1 =

R

∑
k=1

N̄k(x)uk

(9)

where ΦΦΦ0 is the vector of the Shepard shape function associated with the n neigh-
boring nodes of the given point x, Φ̄ΦΦ is the matrix of the modified Least Square
Point Interpolation(LSPI) shape function, and N̄k(x) is the SLS shape used later in
this paper.

The commonly used bases in Eq.(6) in 2-D problems are the linear basis:

pT (x) = [1,x,y] (10a)

or the quadratic basis:

pT (x) =
[
1,x,y,xy,x2,y2

]
(10b)

The linear dependence problem has been a bottleneck for the PU-based method
in which both the PU functions and the local functions are taken as explicit poly-
nomials. However, the present SLS interpolation naturally eliminates the linear
dependency problem associated with other PU-based approximations because no
additional degrees of freedom have been added to the global stiffness matrix and
the definition of the local approximations as shown in Eq.(9). Also, the limitation
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of the PU-based approximation in the application of the local weak form can be
overcome.

Krongauz and Belytschko (1997) proposed another meshless method satisfying the
linear consistency by using the Shepard function, but this method is applicable to
the limited problems only when the derivatives of an unknown function appear in a
PDE.

2.3 Weight functions of the SLS interpolation

The Shepard function φ 0
i (x) in Eq.(4) satisfies the Kronecker-delta property if

weight function wi(x) is singular at x = xi. The following singular weight func-
tion [Lancaster and Salkauskas (1981)] is used in this study:

wi(x) =

{
d2

mi
d2

i +ε cos2
(

πdi
2dmi

)
, di ≤ dmi

0, di > dmi

(11)

where dmi is the radius of support of node i; di = ‖x−xi‖ is the Euclidian distance
between point x and node xi; and ε = 1E − 10 is a small number to avoid the
numerical difficulty resulting from the singularity at nodes.

The support dmi for node i(Figure 1) is taken as

dmi = α ·b · ci (12)

where α is a coefficient chosen as 1.1 ≤ α ≤ 3.5; b is a coefficient in which b = 2
is for the nodes at the boundary, and b = 1 is for the other nodes; and ci is chosen
as the distance to the fourth nearest neighbor of node i.

2.4 Properties of the SLS interpolation

2.4.1 Kronecker-delta property of N̄k(x)

At the n neighboring nodes of the given point x, the shape function N̄k(x) of the
SLS satisfies the following delta property because of the properties of Φ̄i

i (xi) = 1
and Φ̄i

k (xi) = 0(k �= i) in Eq.(7b), and φ 0
k (xi) = δik in Eq.(9):

N̄k (xi) = δki, (i = 1,2, · · · ,n) (13)
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If we evaluate Eq.(9) at an arbitrary node i, i.e. at x = x1, we obtain

N̄(x1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
0
...
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

T ⎡
⎢⎢⎢⎣

1 0 · · · 0
Φ̄2

1 (x1) Φ̄2
2 (x1) · · · Φ̄2

n (x1)
...

... · · · ...
Φ̄n

1 (x1) Φ̄n
2 (x1) · · · Φ̄n

n (x1)

∣∣∣∣∣∣∣∣∣

0 · · · 0
Φ̄2

n+1 (x1) · · · Φ̄2
R (x1)

... · · · ...
Φ̄n

n+1 (x1) · · · Φ̄n
R (x1)

⎤
⎥⎥⎥⎦

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
0
...
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(14)

and

uh (x1) =
R

∑
k=1

N̄k (x1)uk = u1 (15)

Similarly we can show that

uh (x2) =
R

∑
k=1

N̄k (x2)uk = u2

· · · · · ·

uh (xn) =
R

∑
k=1

N̄k (xn)uk = un

(16)

Thus, the shape function N̄k(x) possesses the desirable delta property and hence
the nodal displacement boundary conditions in the present work can be imposed as
easily as in FEM.

2.4.2 Completeness property

The Shepard function φ 0
i (x) in Eq.(4) is the lowest order form of MLS shape func-

tions. It has zeroth-order completeness because it only reproduces const functions
exactly, which leads to poor results for solving elastostatics. In contrast, the SLS in-
terpolation in Eq.(9) is capable of exactly reproducing any function which appears
in the basis of p(x) in Eq.(10). The proof is given below:

Consider any arbitrary displacement field given by

ũ(x,y) = b1 +b2x+b3y+b4xy+ · · · (17)
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Substituting Eq.(17) into Eq.(7) results in

uLi(x) =
M

∑
J=1

Φ̄i
J(x)ũ(xJ)

=
M

∑
J=1

Φi
J(x)ũ(xJ)−

M

∑
J=1

Φi
J (xi) ũ(xJ)+ ũ(xi)

(18)

Since any function in the basis can be reproduced exactly in the least square ap-
proximation, it follows that

ũ(x) =
M

∑
J=1

Φi
J(x)ũ(xJ) (19)

Using Eq.(19) in Eq.(18) leads to

uLi(x) = ũ(x)− ũ(xi)+ ũ (xi) = ũ(x) (20)

Substituting Eq.(20) in Eq.(8) yields

uh(x) =
n

∑
i=1

φ 0
i (x)uLi(x) = ũ(x) ·

n

∑
i=1

φ 0
i (x) = ũ(x) (21)

Thus, the SLS interpolation preserves completeness up to the order of the basis.

2.4.3 Comparison of LS, MLS and SLS approximations

Least square approximation by polynomials is in widespread use, and is much sim-
pler and more efficient for computation and derivation by comparison with the MLS
approximation. The main drawback of the LS approach in Eq. (6) is that the ap-
proximation rapidly deteriorates if the number of points used largely exceeds that
of the m polynomial terms in p(x). However, this deficiency can be overcome in
the present Shepard Least-Square (SLS) interpolation.

The accuracy of the numerical solution will very much depend on the shape func-
tions used in each approximation. To understand better the differences of the LS,
MLS and SLS approximations, we plot some of the shape functions resulting from
these methods in one dimension.

The weight function used in the MLS method is the same as in Belytschko, Lu and
Gu (1994):

wi(x) =

⎧⎨
⎩

e−(di/ci)
2−e−(dmi/ci )

2

1−e−(dmi/ci)2 , if di ≤ dmi

0, if di > dmi

(22)
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Figure 2: Shape functions Ni(x) for p = (1,x,x2)

where dmi is the nodal support decided by Eq.(12) and ci = 0.3dmi is used in this
paper.

Fig.2 shows the shape functions for a quadratic basis (m = 3). The node space is
1 and the nodal support is 2.5. Note that the LS method yields very inaccurate
interpolating functions in this case with the value Ni (x) less than 0.5 everywhere.
The SLS interpolation gives Ni (x) = 1 at x = xi and Ni (x) = 0 at x = x j, j �= i.
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2.5 Orthogonal algorithm of the SLS interpolation

The necessity for solving Eq.(6a) can be eliminated by diagonalizing the matrix
A. For a given arbitrary basis function pk(x) (k = 1, · · · ,m), the orthogonal basis
function qk(x) (k = 1, · · · ,m) is obtained by using the Schmidt orthogonalization
procedure [Lu and Belytschko (1994)] as follows:

qk(x) = pk(x)−
k−1

∑
j=1

αk jq j(x), k = 1, · · · ,m (23a)

where

αk j =

M
∑

I=1
pk (xI)q j (xI)

M
∑

I=1
q2

j (xI)
(23b)

Above orthogonal function qk(x) satisfies the following orthogonality condition

M

∑
I=1

qk (xI)q j (xI) = 0, k �= j (24)

Because of the orthogonality condition (24), by using the orthogonal function qk(x)
in the least square procedure, Eq.(6) is written as

uLi(x) =
M

∑
J=1

Φi
J(x)uJ (25a)

where the shape function Φi
J(x) is defined by

Φi
J(x) =

m

∑
k=1

qk(x)CkJ (xJ) (25b)

CkJ (xJ) =
qk (xJ)

M
∑

J=1
q2

k (xJ)
(25c)

The derivatives of Φi
J(x) can be obtained as

Φi
J,l(x) =

m

∑
k=1

qk,l(x)CkJ (xJ) (26a)
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where

qk,l(x) = pk,l(x)−
k−1

∑
j=1

αk jq j,l(x), k = 1, · · · ,m (26b)

The PU-based SLS shape function may be looked upon as a composite function
of Shepard and least square shape functions. The composite SLS shape function
possesses the strengths of MLS and PU methods and at the same time overcome
the major drawbacks of these methods. The following are the prominent merits of
the SLS interpolation:

The SLS shape function is free from the linear dependence problem which is known
in PU-based method and possesses the much desired Kronecker-delta property.

The SLS interpolation is capable of exactly reproducing any function which appears
in the basis.

The proposed method inherits the advantages of PU-based method wherein high
order global approximation can be obtained by simply increasing the order of the
local approximation without necessarily adding new nodes.

The burden of matrix inversion and matrix multiplication in the SLS interpolation
can be totally eliminated, and the problem of ill-conditioned matrix of the least-
square method can be solved.

From Eq.(25) and Eq.(26) we can find that both the computation and the derivation
of the present SLS interpolation are much simpler than that of the MLS approxi-
mation.

Although the SLS shape functions possess the Kronecker-delta property and hence
the facility to impose the prescribed nodal displacement boundary conditions, the
satisfaction of exact displacement boundary conditions all along the edges is not
guaranteed by simply enforcing the boundary conditions at the nodes. The penalty
method or Lagrange multiplier method may have to be used for the purpose. This
aspect is rather similar to other point interpolation meshless methods.

3 The local weak form of LMSLS

For domain Ω bounded by Γ (Fig.3), the equilibrium equations and boundary con-
ditions of linear elasticity are given by

⎧⎪⎨
⎪⎩

σi j, j +bi = 0 in Ω
ui = ūi at Γu

σi jn j = t̄i at Γt

(27)
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where σi j is the stress tensor, bi are the body forces, n j are the unit normal to the
domain, Γu and Γt are the global boundaries with prescribed displacements and
tractions, respectively.

Figure 3: (a) The support and integration domains;(b)The construction of the lo-
cal integral domain for an interior node; (c) The construction of the local integral
domain for a boundary node

A generalized local weak form of the equilibrium equation is written as∫
Ωsi

vi (σi j, j +bi)dΩ = 0 (28)

where Ωsi is the integration domain or sub-domain for node i, vi is the test function.
Using the divergence theorem in Eq.(28), we obtain the following local weak-form:∫

∂Ωsi

viσi jn jdΓ−
∫

Ωsi

(vi, jσi j −vibi)dΩ = 0 (29)

where n j is the outward unit normal to the boundary ∂Ωsi. The boundary ∂Ωsi for
the sub-domain Ωsi is usually composed of three parts: the internal boundary Γsi,
the boundary Γsu and Γst , over which the essential and natural boundary conditions
are specified. Noticing that σi jn j = t̄i in Eq.(29), it is obtained that∫

Γsi

vitidΓ+
∫

Γsu

vitidΓ+
∫

Γst

vit̄idΓ−
∫

Ωsi

(vi, jσi j −vibi)dΩ = 0 (30)
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Different interpolations can be used for the test and trail functions in the local
weak form. Circular, elliptical, rectangular and others can be selected as the nodal
sub-domains. Furthermore, the sizes and shapes of the sub-domains of the test
and trial functions do not need to be the same. Depending upon the choice of
test functions, six MLPG formulations [Atluri and Shen (2002)] known as MLPG1
through MLPG6 have been developed. Of course, the test functions in these MLPG
methods can be chosen as the test function in the present LMSLS.

For the purpose of simplifying the integration and the discrete equations of LMSLS,
the local polygonal sub-domains are constructed as the integration domains Ωsi in
this paper.

Regarding the M nodes in the support of node i, a local polygon can be constructed
based on Delaunay algorithm as shown in Fig.3(b) and Fig.3(c). Similar n-sided
polygons or triangular domains are used to be the local domains in Barry (2004) and
Cai and Zhu (2004). However, their implementations require the construction of
global meshes, hence they lose the truly meshless character of the MLPG method.
Here, the local polygon is redefined by the M nodes in the support of i, and it
is obvious that the present LMSLS is truly meshless. Also, the construction of
the local polygon is simple and efficient because the Delaunay algorithm is only
performed in the support of node i.

In order to simplify the equation (30), we can deliberately select the test functions
vi such that they vanish over Γsi. This can be easily accomplished by selecting the
three-node triangular FEM shape functions Ni, which correspond to the node i of
the triangles constructing the polygonal sub-domain Ωsi, as test functions vi. Using
shape functions Ni in equation (30), we obtain the following local weak form:

∫
Γsu

NitidΓ+
∫

Γst

Nit̄idΓ−
∫

ΩSi

(Ni, jσi j −Nibi)dΩ = 0 (31)

For a local polygonal sub-domain Ωsi located entirely with the global domain Ω,
there is no intersection between ∂Ωsi and the global boundary Γ, and the integrals
over Γsu and Γst in equation (31) vanish.

Substituting the SLS approximation in Eq.(9) into the above equation leads to the
following discretized system of linear equations:(∫

Ωsi

vT
i DBdΩ−

∫
Γsu

NinDBdΓ
)
·U =

∫
Γst

Nit̄dΓ+
∫

Ωsi

NibdΩ (32)

recorded as

KU = F (33a)
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where D is the elasticity matrix, n is the matrix of the outward normal,

vi =

⎡
⎣Ni,x 0

0 Ni,y

Ni,y Ni,x

⎤
⎦ (33b)

Ni =
[

Ni 0
0 Ni

]
(33c)

n =
[

n1 0 n2

0 n2 n1

]
(33d)

B =

⎡
⎣N̄1,x 0 · · · N̄R,x 0

0 N̄1,y · · · 0 N̄R,y

N̄1,y N̄1,x · · · N̄R,y N̄R,x

⎤
⎦ (33e)

U =
{

u1 v1 · · · uR vR
}

(33f)

Equation (33) can be individually integrated over each triangle constructing the
local sub-domain Ωsi, as shown in Fig.3b and Fig.3c. In the present work, three
Gaussian points are used in each triangle.

4 Numerical example

The proposed LMSLS is programmed in C++. A series of numerical examples
are tested to study the efficiency of the present method. The results are compared
with the exact solutions, the MLPG1 solutions using MLS shape functions and the
results of reference solutions where available. In all examples, the MLPG1 method
employs the same numerical integration as the LMSLS method.

4.1 Standard patch tests

The first example is the standard patch test. The three patches shown in Fig.4
are tested. In these patch tests, the displacements are prescribed on all outside
boundaries by a linear function of x and y. Satisfaction of the patch test requires
that the displacement of interior nodes be given by the same linear function, and
the stress and strain be constant in the patch.

Since the exact solution is linear, a linear basis for the SLS interpolation is able
to represent this solution. α = 1.1 in Eq.(12) is used in this case. A linear elastic
material with E = 1 and ν = 0.25 is considered. The essential boundary conditions
are imposed at the discrete boundary nodes directly. The computational results in
Tab.1 show that the LMSLS passes the standard patch tests exactly.
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Figure 4: Nodal arrangements for the standard patch tests

Table 1: Computational results of the patch tests

Coordinates of interior nodes Displacements
Nodes Nodes Nodes Nodes Nodes Nodes

(a) (b) (c) (a) (b) (c)
1.0,1.0 0.8,0.9 1.0,2.0 1.0,1.0 0.8,0.9 1.0,2.0

- - 1.5,0.8 - - 1.5,0.8
- - 1.9,1.8 - - 1.9,1.8
- - 2.1,0.9 - - 2.1,0.9

4.2 A constant strain patch test

A constant strain patch test [Rajendran and Zhang (2007)] using three distributions
of 7, 28 and 126 irregular nodes is shown in Fig.5. The Young’s modulus is 1000,
Poission’s ration is 0.25 and the thickness of the plate is 1.

Since the exact solution is linear, a linear basis for the SLS interpolation is able to
represent this solution. α = 1.1 in Eq.(12) is used in this case. The computational
results in Tab.2 show that the present LMSLS passes the patch tests exactly.
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Figure 5: Nodal arrangements for the constant strain patch tests

Table 2: Results of the constant strain patch test

Number
of nodes

u4 v4 u5 v5 u7 v7

7 2.0 -0.125 2.5 0.0 4.0 -0.5
28 2.0 -0.125 2.5 0.0 4.0 -0.5
126 2.0 -0.125 2.5 0.0 4.0 -0.5
Exact 2.0 -0.125 2.5 0.0 4.0 -0.5

4.3 Cantilever beam

Consider a cantilever beam of dimensions l = 8m and d = 1m subjected to a tip shear
force at the free end as shown in Fig.6a. The material properties are E = 1×105Pa
and ν = 0.25. The problem is solved for the plane stress case.

In order to study the convergence of LMSLS and to make error estimation, dis-
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Figure 6: Cantilever beam and its nodal arrangement

placement norm and energy norm are defined by

‖u‖ =
(∫

Ω
uT ·udΩ

) 1
2

, ‖εεε‖ =
(∫

Ω
εεεT ·σdΩ

) 1
2

(34)

Relative error is defined by

ru =
‖unum−uexact‖

‖uexact‖ , re =
‖εεεnum−εεε exact‖

‖εεεexact‖ (35)

The analytical solution to this problem is given by Timoshenko and Goodier (1970):

σx (x,y) =
p(l−x)y

I
(36a)

σy = 0 (36b)

τxy (x,y) = − P
2I

(
d2

4
−y2

)
(36c)

ux = − py
6EI

[
(6l−3x)x+(2+ν)

(
y2 − d2

4

)]
(36d)

uy = − p
6EI

[
3νy2 (l −x)+(4+5ν)

d2x
4

+(3l−x)x2
]

(36e)

where I = d3

12 is the second moment of area of the beam.

The quadratic basis function is used in this example. Four distributions of 50,138,486
and 965 nodes are employed respectively for the convergence studies. The conver-
gence of relative displacement error norm is shown in Fig.7 and the convergence of
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relative energy error norm is shown in Fig.8. Fig.7 and Fig.8 show that the LMSLS
leads to convergence results and the accuracy of the LMSLS method is better than
the MLPG1 method. Compared with the results obtained using different size of
nodal support in the LMSLS method, it can be found that a bigger-sized nodal sup-
port will impair the accuracy of the present method. On the contrary, the accuracy
of the MLPG1 method is impaired substantially if a smaller-sized nodal support is
used.

Figure 7: Convergence of relative dis-
placement error norm

Figure 8: Convergence of relative en-
ergy error norm

Figure 9: Deflection of the cantilever
beam

Figure 10: Normal stress of the can-
tilever beam

It is known that the MLS approximation is sensitive to the value of support radius
dmi which severely limits its usefulness [Belytschko, Lu and Gu (1994)]. However,
the SLS interpolation alleviates this drawback and shows less sensitive to the radius
dmi. Furthermore, the reduction of the radius of nodal support means that fewer
nodes are selected for the SLS interpolation than for the MLS approximation, and
a lower computational cost is thus achieved.

The irregular distribution of 96 nodes employed here is shown in Fig.6(b). Fig.9
shows a comparison of the analytical solution, the MLPG1 solution and the present
numerical solution for the beam deflection along x-axis. Fig.10 illustrates the com-
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parison of normal stress σx at the section y = d/2. An excellent agreement with the
analytical solution is observed in this problem.

As stated by Augarde and Deeks (2008), it should be noted that the exact solution
in Eq. (36) is incorrect if boundary conditions are not matched exactly to the exact
solution. However, the error in the solution is confined to the support region where
the applied boundary condition does not match the analytical solution due to St
Venant’s effect, and thus the present LMSLS can still converge to the exact solution
in Eq. (36).

Table 3: Comparison for Cook beam

Number of nodes Methods VC σAmax σBmin

80
MLPG1 23.91 0.227 -0.206
LMSLS 23.76 0.231 -0.201

206
MLPG1 24.41 0.236 -0.208
LMSLS 24.33 0.235 -0.202

Reference solution 23.90 0.236 -0.201

4.4 Cook skew beam

A skew beam with distributed shear load F = 1/16 at the free edge is shown in
Fig.11. The problem is modeled using 80 and 206 irregular nodes shown in Figure
12, and solved for plane stress case. The Young’s modulus is 1 and Poission’s
ration is 1/3. α = 1.1 is used in the LMSLS method and α = 1.7 is used in the
MLPG1 method. The deflection at point C, the maximum principal stress at point
A and the minimum principal stress at point B are computed and listed in Tab.3
along with the results of reference solution [Chen, Cen, Long and Yao (2004)].
The quadratic basis function is used in this problem. It can be seen that the present
LMSLS exhibits a good accuracy.

5 Conclusions

A Local Meshless Shepard and Least Square method (LMSLS) based on the local
Petrov-Galerkin weak form is proposed for solving linear elasticity problems. The
following are some of the important observations from the present work:

(1) The SLS interpolation employed in the LMSLS method possesses the Kronecker-
delta property and thus the prescribed nodal displacement boundary conditions
can be imposed as easily as in FEM.
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Figure 11: Cook skew beam

Figure 12: Nodal arrangements for Cook skew beam

(2) In contrast to other PU-based methods, the present SLS interpolation is truly
meshless and has many merits, such as it requires no extra unknowns to define
the local approximations of nodes and it avoids the problem of linear depen-
dence.

(3) In the present LMSLS, the local polygons are constructed as integration do-
mains, and three-node triangular FEM shape functions are chosen as the test
functions. The new integration schedule, which can simplify the integration
and the discrete equations of LMSLS, is truly meshless. It can be used in other
MLPG type methods.
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(4) Both the standard patch test and the constant strain patch test can be passed in
LMSLS.

(5) In the present method, different sized nodal supports all lead to convergent re-
sults. However, increasing the radius of nodal support usually results in less
accuracy. Numerical results indicate that the LMSLS method shows less sen-
sitive to the value of nodal support radius than that of the MLPG1 method.

(6) The present LMSLS can be naturally extended to 3D problems. It is also ben-
eficial in solving many problems such as progressive fracture and propagation
interface because it is robust and mesh free.
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