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A Meshless Method for Nonlinear, Singular and
Generalized Sturm-Liouville Problems

S.Yu. Reutskiy1

Abstract: A new numerical technique for solving generalized Sturm–Liouville
problem d2w

dx2 + q(x,λ )w = 0, bl [λ ,w(a)] = br [λ ,w(b)] = 0 is presented. In par-
ticular, we consider the problems when the coefficient q(x,λ ) or the boundary
conditions depend on the spectral parameter λ in an arbitrary nonlinear manner.
The method presented is based on mathematically modelling of physical response
of a system to excitation over a range of frequencies. The response amplitudes
are then used to determine the eigenvalues. The same technique can be applied
to a very wide class of the eigenproblems: the Sturm–Liouville problems, the
Schrodinger equation, the non-classical non-linear Sturm–Liouville problems, pe-
riodic problems. The results of the numerical experiments justifying the method
are presented.

Keyword: Non-linear eigenvalue problems; Singular Sturm–Liouville problems;
Numerical solution; Periodic eigenvalue problems; Parameter-dependent boundary
conditions

1 Introduction

In this paper we deal with the numerical solution of the following generalized
Sturm-Liouville problems:

d2w
dx2 +q(x,λ )w = 0 (1)

bl [λ ,w(a)] = br [λ ,w(b)] = 0 (2)

Here q(x,λ ) is a known function and is assumed to be sufficiently smooth and
separated from zero, so that

0 < q1 ≤ q(x,λ )≤ q2 < ∞, a ≤ x ≤ b. (3)
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The set of admissible values of λ is such that conditions (3) hold. For positive λ we
also use the notation λ = k2. The operators bl [...] and br [...] specify the boundary
conditions. So, we assume that the boundary conditions depend on the eigenpa-
rameter λ . When a and b are finite, the Sturm- Liouville eigenvalues problem is
regular; otherwise, it is singular.

Considering periodic Sturm-Liouville problems we assume that q(x,λ ) is a peri-
odic function q(x+T,λ ) = q(x,λ ). Such problems arise naturally in the inves-
tigation of parametric vibrations and parametric instability, e.g.,[ Akulenko and
Nesterov (2005); McLachlan (1947) ]. In this case the boundary conditions have
the form: w(0) = w(T ), w′(0) = w′(T).

The problem (1), (2) with q(x,λ ) = λ q1(x) is a classical problem of mathematical
physics [Morse and Feshbach (1953)] and many efforts have been applied to de-
velop its theory (see, e.g. [Courant and Hilbert (1989); Titchmarsh (1962); Boyce
and DiPrima (2004)]). However, apart from a few analytically solvable cases, there
is no general solution of this problem. Therefore, a large number of numerical
methods have been developed for many practical problems. The usual approach
to the numerical solution of the Sturm–Liouville problem is to use the Rayleigh
minimal principle. Then, using an approximation for w with a finite number of
free parameters, one gets the same problem in a finite-dimensional subspace which
can be solved by a standard procedure of linear algebra. This results in an effec-
tive algorithm which is usually applied for studying lower modes and described
in [Gould (1995); Collatz, Albrecht, and Velte (1987); Ghelardoni (1997)]. Pryce
(1993) has provided an excellent review of the mathematical background of Sturm-
Liouville eigenvalues problems and their numerical solutions, as well as a detailed
discussion of applications. A shooting technique for computing eigenvalues was
proposed by Ghelardoni and Gheri (2001). Its very effective modification - the
Lie-group shooting method has been recently suggested for the computations of
second order two-point boundary value problems (BVPs) [Liu (2008a, 2006b)] as
well as for singularly perturbated BVPs [Liu (2006c)]. It was suggested for solv-
ing time-varying linear systems in [Liu (2007)] and for inverse vibration problems
in [Liu (2008b)]. In [Liu (2008a)] the Lie-group shooting method was suggested
for computing eigenvalues and eigenfunctions of Sturm-Liouville problems. This
technique is applicable for regular as well as for singular Sturm-Liouville eigenval-
ues problems.

When the coefficient q(x,λ ) depends on the spectral parameter λ in an arbitrary
manner one gets a nonlinear Sturm–Liouville problem. This also concerns the
problems with parameter dependent boundary conditions. This class of problems
essentially differs from the classical case, and so far no regular method has been
proposed for solving nonlinear Sturm–Liouville problems. However, methods for
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computing the eigenvalues of the problems with parameter dependent boundary
conditions have been developed recently by Aliyev and Kerimov (2008); Annaby
and Tharwat (2006); Chanane (2008, 2007, 2005).

So, in this paper we focused on the numerical algorithm for solving 1) nonlin-
ear Sturm–Liouville problems; 2) Sturm–Liouville problems with parameter de-
pendent boundary conditions; 3) singular Sturm–Liouville problems; 4) periodic
Sturm–Liouville problems. The goal of the paper is to present a new numerical
technique which could cope with all these kinds of Sturn-Liouville eigenvalue prob-
lems.

Note that without a loss of generality we assume that 0 ≤ x ≤ 1 through the paper.
If the argument x varies on an arbitrary bounded segment [a,b], we can pass onto
another variable defined on the unit segment by letting x1 = (x−a)/(b−a).

The method presented in the paper is based on the following quite trivial state-
ment. Let we (x) be an arbitrary smooth enough function defined in the interval
[0,1] named below as the exciting field. If the response field wr is a solution of the
boundary value problem (BVP)

d2wr

dx2 +q(x,λ )wr = −d2we

dx2 −q(x,λ )we, (4)

bl [λ ,wr(0)] = −bl [λ ,we(0)], (5)

br [λ ,wr(1)] = −br [λ ,we(1)] , (6)

then the sum w(x,λ ) = wr + we satisfies the original problem (1), (2). Let F (λ )
be some norm of the solution w. This function of λ has maxima at the eigenvalues
and, under some conditions described below, can be used for their determining. The
growth of the amplitude of response near the eigenvalue is a sequence of the de-
generacy of the matrix of the linear algebraic system which approximates the BVP.
From this point of view the presented approach is similar to the one presented by
Li, Hu, Lu, Tsai, and Cheng (2006); Li (2008), where the degeneracy is measured
by the infinitesimal values of the minimal eigenvalue of the stiffness matrix of the
problem. Recently this technique has been applied for solving problems of free vi-
brations of beams, membranes and plates (see [Reutskiy (2005, 2006, 2007a,b,c)])
and for analysis of arbitrarily-shaped waveguides described in [Reutskiy (2008)].

The outline of this paper is as follows: the main algorithm with regularizing proce-
dures is described in Section 2. In Section 3 we present some examples of appli-
cation of the method presented to the standard and to the non-classical generalized
Sturm–Liouville problems. The modes calculation we present in Section 4. Finally,
in Section 5, we give the conclusion.
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2 Main algorithm

To illustrate the method presented in the simplest case, let us consider the wave
equation in homogeneous medium ∂ 2

tt u = ∂ 2
xxu with the Dirichlet conditions at the

endpoints of the interval [0,1], i.e., u(0, t) = u(1, t) = 0. Considering the time
dependence u(x, t) = e−iktw(x), we get the following eigenvalue problem on the
interval [0,1]:

d2w
dx2 +λ w = 0, λ = k2, (7)

w(0) = w(1) = 0, (8)

which admits of an analytic solution λn = k2
n = (nπ)2.

According to the method presented in the paper, we take an arbitrary smooth enough
we and get the response field wr as a solution of the BVP:

d2wr

dx2 +λ wr = −d2we

dx2 −λ we, (9)

wr (0) = −we (0) , wr (1) = −we (1) . (10)

Then, the sum w = we +wr satisfies the original BVP (7), (8) for any choice of we.
Note that from physical point of view the right hand side of (9) can be considered
as an external exciting source in the wave equation. And wr can be treated as a
response to this excitation. Let us introduce the norm of the solution as

F (λ ) =

√
Nt

∑
n=1

|w(xn)|2 /Nt , (11)

where the points xn are randomly distributed in [0,1]. We also use the dimensionless
form of this function: Fd (λ ) = F (λ )/F (1). The function F (λ ) characterizes the
value of the response of the system to the excitation with the wave number k =

√
λ .

Varying λ , we get the response curve and calculate the eigenvalues as positions of
maxima.

However, this initial form of the method is unfit for our goal. Indeed, a particular
solution of (9) is w̃r = −we. Looking for the response field in the form

wr = Ar exp(ikx)+Br exp(−ikx)−we (x) ,

k = λ 1/2,
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we get the linear system for Ar,Br

Ar +Br −we (0) = −we (0) , (12)

Ar exp(ik)+Br exp(−ik)−we (1) = −we (1) . (13)

For k �= nπ the system has the unique solution Ar = 0, Br = 0. Thus, w ≡ 0
and F = 0 with the machine precision. In Fig. 1 we place the response curve
corresponding to the exciting field

we (x) = 1+x2. (14)

5 10 15
k

5. � 10�16

1. � 10�15
F

Figure 1: The response curve F(k), k =
√

λ corresponding to the exciting field
we (x) = 1+x2. No smoothing.

To get a smooth response curve F (λ ) we use the following two regularizing pro-
cedures. Applying the first one, we substitute BVP (9), (10) as follows:

d2wr

dx2 +(λ + iε)wr = −d2we

dx2 −λ we (x) ,

wr (0) = −we (0) , wr (1) = −we (1) ,

where ε > 0 is a small value. So we shift the spectra of differential operator from
the real axis. On the other hand, from the physical point of view, this means that the
wave propagates in a weakly absorbing medium and the initial equation is replaced
by the equation ∂ 2

tt u = ∂ 2
xxu−ε∂tu. This wave equation also describes vibrations of

the string with friction [Morse and Feshbach (1953)]. Resulting BVP has a unique
non zero solution for all real λ .
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To illustrate this technique we take the same exciting field we (x) = 1 + x2. The
particular solution can also be taken in the same polynomial form

w̃r (x,λ ,ε) = − λ
λ + iε

x2 − 2+λ
λ + iε

+
2λ

(λ + iε)2 , (15)

If ε → 0, then w̃r (x,λ ,ε)→−we. But w̃r �= −we for ε �= 0. As a result, we get the
following system instead of (12), (13):

Ar +Br + w̃r (0,λ ,ε) = −we (0) , (16)

Are
ikε +Bre

−ikε + w̃r (1,λ ,ε) = −we (1) , (17)

where kε =
√

λ + iε . The response curves Fd (λ ) depicted in Fig. 2 correspond
to ε = 10−15 (left) and ε = 10−10 (right). The value ε = 10−15 is too small to
regularize the solution. The value ε = 10−10 provides a smooth curve.

The second regularizing procedure is as follows. We take wr as a solution of the
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Figure 2: The response curve ln(F(k)).
ε−procedure with ε = 10−15 (top) and
ε = 10−10 (bottom)
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Figure 3: The response curve ln(F(k)).
λ−procedure with Δλ = 10−15 (top)
and Δλ = 10−10 (bottom)
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BVP

d2wr

dx2 +λ wr = −d2we

dx2 − (λ +Δλ )we (x) ,

wr (0) = −we (0) , wr (1) = −we (1) .

For example, taking the same we (x) = 1+x2, we get the particular solution

w̃r (x,λ ,Δλ ) = −λ +Δλ
λ

x2 − 2+λ +Δλ
λ

+
2λ +Δλ

λ 2 (18)

and w̃r (x,λ ,Δλ ) �= −we. So, the linear system for Ar, Br takes the form

Ar +Br + w̃r (0,λ ,Δλ )= −we (0) ,

Are
ik +Bre

−ik + w̃r (1,λ ,Δλ ) = −we (1) ,

with w̃r given in (18). The system has non zero solutions for all λ except the
eigenvalues λn when the system becomes degenerate. However, due to the iterative
procedure of the solution and rounding errors we never solve the system with the
exact λn. We observe degeneration of the system as a considerable growth of the
solution in a neighbourhood of the eigenvalues. The data corresponding to Δλ =
10−15 and Δλ = 10−10 are presented in Fig. 3.

The value Δλ = 10−15 is too small to regularize the solution. But the value Δλ =
10−10 yields a smooth curve.

These two regularizing procedures are called the ε−procedure and the λ−procedure.
Numerous examples of application of this technique to different eigenvalue prob-
lems can be found in [Reutskiy (2005, 2006, 2007b, 2008)].

Having a smooth response curve, we apply the following simple algorithm. First,
we localize these maxima of F (λ ) on the intervals [ai,bi]. Next, we solve the
univariate optimization problem inside each one. In particular, we apply Brent’s
method based on a combination of parabolic interpolation and bisection of the func-
tion near the extremum(see [Press, Teukolsky, Vetterling, and Flannery (2002)]).

3 Numerical implementation of the algorithm

The same approach of the external excitation can be combined with an approximate
solution of BVP (4), (5), (6) for the response field wr. To solve the equation

d2w
dx2 +q(λ ,x)w = f (λ ,x) (19)

through the paper, we apply the asymmetric radial basis functions (RBF) colloca-
tion method proposed by Kansa (1990). This method is chosen as a truly meshless
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technique which can be extended easily onto the 2D case. Meshless methods rely
on a group of points. This means that the burdensome work of mesh generation
is avoided and more accurate description of irregular complex geometries can be
achieved. For more basic details about RBFs interested readers are referred to
[Buhmann (2003)].

In application to the BVP considered the Kansa’s method is as follows. We look for
an approximate solution of the BVP in the form of the linear combination:

w =
N+2

∑
j=1

u jΨ(x−ξ j) . (20)

The points ξi are taken as follows: ξi = Δx(i−0.5) , i = 1, ...,N, ξN+1 = −0.5/N,

ξN+2 = 1+0.5/N. So the endpoints of the interval [0,1] are not included; u j are the
free parameters of the problem. We use only the multiquadrics basis (MQ) RBFs
in this paper

Ψ(x−ξ ) =
[
c2 +(x−ξ )2

]1/2
, (21)

where c is the shape parameter, see [Fasshauer and Zhang (2007)]. The collocation
with the right hand side f at the interior points ξi gives N the equations:

N+2

∑
j=1

u j

[
d2Ψ(ξi−ξ j)

dx2 +q(λ ,ξi)Ψ(ξi−ξ j)
]

= f (λ ,ξi) .

Considering the boundary conditions of the type

α0
dw(0)

dx
+β0w(0) = γ0, α1

dw(1)
dx

+β1w(1) = γ1

we get the rest two equations:

N+2

∑
j=1

u j

[
α0

dΨ(0−ξ j)
dx

+β0Ψ(0−ξ j)
]

= γ0,

N+2

∑
j=1

u j

[
α1

dΨ(1−ξ j)
dx

+β1Ψ(1−ξ j)
]

= γ1.

Here

dΨ(x−ξ )
dx

= (x−ξ )
[
c2 +(x−ξ )2

]−1/2
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d2Ψ(x−ξ )
dx2 =

1[
c2 +(x−ξ )2

]1/2
− (x−ξ )2[

c2 +(x−ξ )2
]5/2

.

The (N +2)× (N +2) system is solved by a standard procedure of the Gauss
elimination.

Applying the method presented to the initial problem (1), (2) we get the sequence
of BVPs:

d2wr

dx2 +q(λ + iε ,x)wr = −d2we

dx2 −q(λ ,x)we (22)

bl [λ + iε ,wr(0)] = −bl [λ ,we(0)] , (23)

br [λ + iε ,wr(1)] = −br [λ ,we(1)], (24)

when the ε−procedure is used. Using the λ−procedure, we replace (22), (23), (24)
by the equation

d2wr

dx2 +q(λ ,x)wr = −d2we

dx2 −q(λ +Δλ ,x)we (25)

bl [λ ,wr(0)] = −bl [λ +Δλ ,we(0)] , (26)

br [λ ,wr(1)] = −br [λ +Δλ ,we(1)], (27)

Having wr (x,λ ) , we (x,λ ) and using the sum w(x,λ ) = we (x,λ )+ wr (x,λ ) , we
calculate the norm function F (λ ) like (11) and get the eigenvalues as the maxima
of the response curve.

Example 1. Consider the regular Sturm–Liouville problem

d2w
dx2 +

λ
(1+x)2 w = 0, w(0) = w(1) = 0 (28)

with the exact solution

wn = const ×√
1+x sin

(
nπ

ln(1+x)
ln2

)
,

λn = k2
n =

1
4

+
( nπ

ln2

)2
.

Some results are placed in Table 1. corresponding to we = 1+x2, Δλ = 10−3
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Table 1: The Sturm-Liouville problem (28). The exciting solution we = 1+x2. The
value of λ is shown. The top part: λ− procedure with Δλ = 10−3 ; the bottom part:
ε− procedure with ε = 10−3.

i λex N = 25 N = 50
Δλ = 10−3

1 20.79228845 20.792292 20.79228845
2 82.41915382 82.419185 82.41915736
3 185.13059609 185.13042 185.1306146
4 328.92661528 328.92475 328.9266485
5 513.80721138 513.79933 513.8072091

ε = 10−3

1 20.79228845 20.792293 20.79228847
2 82.41915382 82.419255 82.41915481
3 185.13059609 185.13095 185.1306048
4 328.92661528 328.92699 328.9266313
5 513.80721138 513.80503 513.8072333

The data placed in the three columns of Table 2 are obtained with we (x) = sin(x) ,

we (x) = exp(x) and we (x) = 1 + x2 correspondingly, N = 50 and with the help
of the ε− procedure with ε = 10−3. Thus, we found that the solution is not very
sensible to the particular choice of we (x). However, the optimal choice of the
exciting field needs further investigations.

The shape parameter c of the multiquadrics basis (MQ) RBFs through the paper is
taken in such a way that cN � 5÷10. For example, c = 0.4 for N = 25 and c = 0.2
for N = 50.

3.1 Non-linear Sturm–Liouville problems

Example 2. Let us consider the non-linear Sturm–Liouville problem

d2w
dx2 +

1

(λ +x2)2 w = 0, w(0) = w(1) = 0, (29)

when q(x,λ ) depends on the spectral parameter λ in a nonlinear manner. With
the help of some analytical tricks [Akulenko and Nesterov (2005)] it is possible to
construct the exact solution of the form

w(x,λ ) = const×(
λ +x2)1/2

sinϕ (x,λ ) (30)
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Table 2: The Sturm-Liouville problem (28). Different exciting solutions we(x).
The ε− procedure with ε = 10−3.

i we = sin(x) we = exp(x) we = 1+x2

1 20.79228844 20.79228843 20.79228845
2 82.41915508 82.41915491 82.41915736
3 185.1306036 185.1306041 185.1306146
4 328.9266316 328.9266286 328.9266485
5 513.8072262 513.8072301 513.8072091

ϕ (x,λ ) =
(
1+λ−1)1/2

arctan
(

xλ−1/2
)

(31)

The eigenvalues are roots of the equation:

ϕ (1,λn) = nπ .

The method of solution does not differ from the one described above. Applying the
ε−procedure, we consider the sequence of the BVPs

d2wr

dx2 +
1

(λ + iε +x2)2 wr = −d2we

dx2 − 1

(λ +x2)2 we,

wr (0) = −we (0) , wr (1) = −we (1) .

To solve the problems we use the asymmetric RBF collocation method described
at the beginning of the section. The rest part of the algorithm is the same. Using
Brent’s method we find the eigenvalues as maxima of the function F(λ ).

The data placed in Table 3 correspond to we = 1 + x2 and the smoothing λ− pro-
cedure with λ = 10−6.

Example 3. Let us consider the generalized Sturm–Liouville problem with the
eigenparameter in the boundary conditions.

d2w
dx2 +λ w = 0, 0 ≤ x ≤ 1, (32)

dw(0)
dx

+λ w(0) = 0,
dw(1)

dx
−λ w(1) = 0. (33)

The eigenvalues are roots of the equation [Annaby and Tharwat (2006)]

2λ cos
√

λ +
√

λ (1−λ ) sin
√

λ = 0.
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Table 3: Non-linear Sturm-Liouville problem (29). Exciting solution we = 1 + x2.
The λ−regularizing procedure with Δλ = 10−6 is applied.

i λex N = 200 N = 400
1 0.16564262693 0.1656426340 0.1656426307
2 0.04867383829 0.0486738399 0.0486738398
3 0.02321423872 0.0232142359 0.0232142391
4 0.01358401918 0.0135840131 0.0135840186
5 0.00891601673 0.0089160161 0.0089160151
6 0.00630115758 0.0063011890 0.0063011553
7 0.00468943806 0.0046895426 0.0046894369
8 0.00362594868 0.0036260682 0.0036259527
9 0.00288737785 0.0028879770 0.0028873943
10 0.00235360368 0.0023777447 0.0023536416

Using the λ−procedure, we solve the sequence of BVPs

d2wr

dx2 +λ wr = −d2we

dx2 − (λ +Δλ )we, 0 ≤ x ≤ 1,

dwr (0)
dx

+λ wr (0) = −dwe (0)
dx

− (λ +Δλ )we (0) ,

dwr (1)
dx

−λ wr (1) = −dwe (1)
dx

+(λ +Δλ )we (1) .

To solve the BVPs we apply Kansa’s method described above The data placed in
Table 4 correspond to we (x) = 1+x2 and Δλ = 10−3.

Example 4. Let us consider a non-linear Sturm–Liouville problem with the eigen-
parameter in the boundary conditions as the next example. This example is taken
from [Chanane (2005)].

d2w
dx2 +(λ −ex)w = 0, (34)

w(0) = 0, cos
√

λ dw(1)
dx

−
√

λ sin
√

λw(1) = 0. (35)

Applying the method presented with the smoothing λ− procedure, we get the BVPs
depending on the λ :
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Table 4: The Sturm-Liouville problem with the eigenparameter in the boundary
conditions (32), (33). The exciting solution we = 1 + x2. The λ− procedure with
Δλ = 10−3 is applied.

i
√

λex N = 100 N = 200
1 1.3065424 1.3070222 1.3065471
2 3.6731944 3.6734714 3.6731971
3 6.5846200 6.5848369 6.5846222
4 9.6316843 9.6317953 9.6316858
5 12.7232409 12.7233156 12.7232416
6 15.8341055 15.8341382 15.8341058
7 18.9549713 18.9549861 18.9549717
8 22.0816593 22.0816602 22.0816597
9 25.2120266 25.2120215 25.2120269
10 28.3448639 28.3448657 28.3448642

d2wr

dx2 +(λ −ex)wr = −d2we

dx2 − (λ +Δλ −ex)we,

wr (0) = −we (0) ,

cos
√

λ
dwr (1)

dx
−
√

λ sin
√

λwr (1)

= −cos
√

λ +Δλ
dwe (1)

dx
+

√
λ +Δλ sin

√
λ +Δλ we (1) .

Having wr (x,λ ) , we (x,λ ) and using the sum w(x,λ ) = we (x,λ )+ wr (x,λ ) , we
calculate the norm function F (λ ) and the eigenvalues as maxima of F(λ ) with the
help of Brent’s procedure. The exact eigenvalues are taken from the original work
by Chanane (2005). The RBF solution shown in Table 5 is obtained using N = 50
MQ RBFs (21) with c = 0.2.

3.2 Singular Sturm–Liouville problems

Here we consider the important case of the singular Sturm–Liouville problem de-
fined on the infinite or semi-infinite interval. This class of problems includes the
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Table 5: Non-linear Sturm-Liouville problem with the eigenparameter in the
boundary conditions (34), (35). The exciting solution we = 1 + x2. The smooth-
ing λ− procedure with Δλ = 10−6. RBF solution: N = 50, c = 0.2; FD solution:
Δx = 2×10−4.

i λex RBF FD
1 0.929062009 0.929049 0.92906204
2 6.747881413 6.747921 6.74788121
3 16.124547958 16.124566 16.12454756
4 31.220275879 31.220419 31.22027703
5 50.733928680 50.734036 50.73392672
6 75.581466675 75.581594 75.58147128

Schrödinger equation

d2w
dx2 +[λ −V (x)]w = 0 (36)

widely used in quantum calculations [Chen and Shizgal (1998, 2001); Shizgal and
Chen (1996)]. Here V (x) is the potential.

Example 5. First consider the Sturm–Liouville problem defined in the semi-infinite
interval [0,∞) studied by Titchmarsh (1962):

d2w
dx2 +(λ −x)w = 0, w(0) = w(∞) = 0. (37)

The eigenvalues are known to be zeros of

J1/3

(
2
3

λ 3/2
)

+J−1/3

(
2
3

λ 3/2
)

= 0.

Using the transformation

y =
x

1+x
(38)

one gets the problem in [0,1]:

(1−y)4 d2w
dy2 −2(1−y)3 dw

dy
+

(
λ − y

1−y

)
w = 0,

w(0) = w(1) = 0.
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Note that the third term in the equation has the singularity at y = 1. Applying
the method presented with the λ− procedure described in the previous section, we
consider the following BVPs

(1−y)4 d2wr

dy2 −2(1−y)3 dwr

dy
+

(
λ − y

1−y

)
wr

= −(1−y)4 d2we

dy2 +2(1−y)3 dwe

dy
−

(
λ +Δλ − y

1−y

)
we (39)

wr (0) = −we (0) , wr (1) = −we (1) . (40)

Here we is any smooth enough function. To solve the sequence of BVPs we apply
the asymmetric RBF collocation method described above. Note that the singular
point y = 1 is not included in the set of the collocation points ξi = Δx(i−0.5) ,
i = 1, ...,N, ξN+1 = −0.5/N, ξN+2 = 1+0.5/N.

Then we calculate the sum w = we +wr and varying k, get the response curve F(k)
(11). We get the eigenvalues as the positions of its maxima.

Table 6: The Sturm-Liouville problem in the infinite interval [0,∞) (37). RBF
solution with we = 1 + x2. Convergence with the growth of the number of free
parameters N. The value of λ is shown. The λ− regularizing procedure with
Δλ = 10−6 is applied.

i λex N = 100 N = 200
1 2.3381074105 2.3381074 2.338107403
2 4.0879494441 4.0879494 4.087949437
3 5.5205598281 5.5205598 5.520559821
4 6.7867080901 6.7867081 6.786708083
5 7.9441335871 7.9441356 7.944133580
6 9.0226508533 9.0226563 9.022650845
7 10.0401743416 10.040173 10.04017433
8 11.0085243037 11.008497 11.00852424
9 11.9360155632 11.935301 11.93601528
10 12.8287767529 12.833094 12.82877603

We take c = 0.15 and c = 0.1 for N = 50 and N = 100. For N = 150 and N = 200
the parameter c = 0.05. The results of the calculations are placed in Table 6.

Example 6. Many calculations of the Schrödinger equation were performed with
the use of the non-polynomial oscillator (NPO) potential of the form [Chen and
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Shizgal (1998); Shizgal and Chen (1996); Chen and Shizgal (2001)]

V1 (x) = x2 +
px2

1+gx2 , p,g ≥ 0. (41)

We have also considered the potential given by

V2 (x) = x6 −3x2 (42)

considered in Sinha, Roychoudhury, and Varshni (1996). The potentials V1 (x) ,

V2 (x) are symmetric V (−x) = V (x). Under this condition all the eigenmodes can
be divided into two groups: the symmetric modes with the boundary condition at
x = 0

dwr (0)
dx

= 0

and the anti-symmetric modes with the boundary condition

wr (0) = 0.

Using the same transformation (38) and applying the λ− procedure , one gets the
BVPs

(1−y)4 d2wr

dy2 −2(1−y)3 dwr

dy
+

(
λ −V

(
y

1−y

))
wr

= −(1−y)4 d2we

dy2 +2(1−y)3 dwe

dy
−

(
λ +Δλ −V

(
y

1−y

))
we,

dwr (0)
dx

= −dwe (0)
dx

(symmetric) or wr (0) = −we (0) (anti-symmetric),

wr (1) = −we (1) ,

which should be solved with different λ . We use Kansa’s method described above.

The data placed in Tables 7, 8 are compared with the calculations presented in
[Chen and Shizgal (1998), Fack and den Berghe (1985)].

3.3 Periodic problems.

Consider the periodic problem on the interval [0,T ]

d2w
dx2 +[λ − p(x)]w = 0, w(0) = w(T ),

dw(0)
dx

=
dw(T )

dx
(43)
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Table 7: The Schrödinger equation in the infinite interval (−∞,∞) (36) with the
potential V1 (x) = x2 + 100x2/

(
1+100x2

)
. The λ− regularizing procedure with

Δλ = 10−6 is applied.

V1 (x) = x2 +100x2/
(
1+100x2

)
i N = 50 [CS] [FB]
1 1.836567 1.836336 1.836334
2 3.983098 3.983099 3.983098
3 5.928499 5.928332 5.928328
4 7.984443 7.984498 7.903154
5 9.949297 9.949607 9.882298
6 11.98536 - -
7 13.95955 - -
8 15.98606 - -
9 17.96661 - -
10 19.98658 - -

Here p(x+T ) = p(x) is a periodic function. Using the transform x = Ty one gets

d2w
dy2 +T 2 [λ − p(x(y))]w = 0, w(0) = w(1),

dw(0)
dy

=
dw(1)

dy

Applying the method presented with the smoothing λ− procedure, we consider the
sequence of the BVPs

d2wr

dy2 +T 2 [λ − p(x(y))]wr = −d2we

dy2 −T 2 [λ +Δλ − p(x(y))]we,

wr(0)−wr(1) = we(1)−we(0),
dwr(0)

dy
− dwr(1)

dy
=

dwe(1)
dy

− dwe(0)
dy

with some arbitrary smooth function we. To solve this BVP we use the Kansa’s
method described above.

Example 7. Consider the particular case T = π , p(x) = 10cos(2πx) Yücel (2007).
The data placed in Table 9 are obtained with we = 1+y2 and Δλ = 10−6.



244 Copyright © 2008 Tech Science Press CMES, vol.34, no.3, pp.227-252, 2008

Table 8: The Schrödinger equation in the infinite interval (−∞,∞) (36) with the
potential V2 (x) = x6 − 3x2. The λ− regularizing procedure with Δλ = 10−6 is
applied.

V2 (x) = x6 −3x2

i N = 50 [CS]
1 1.935484 1.935482
2 6.301338 -
3 11.68098 11.68097
4 18.04670 -
5 25.25460 25.25460
6 33.23177 -
7 41.89099 -
8 51.20523 -
9 61.10533 -
10 71.58820 71.57904

3.4 Others BVP solvers

The method presented in the paper leads to a sequence of the BVPs depending on
λ as a parameter. To solve the BVPs we apply Kansa’s method through the paper.
However, this technique can be combined with any appropriate BVP solver. For
example, the following four-order accurate finite-difference (FD) scheme:

δ 2 [wn]
Δx2 +qnwn +

1
12

δ 2 [qnwn] = fn +
1
12

δ 2 [ fn] , (44)

can be used to approximate (19). Here we denote

δ 2 [wn] = wn+1 −2wn +wn−1,

δ 2 [qnwn] = qn+1wn+1−2qnwn +qn−1wn−1,

wn = w(xn) , xn = Δx(n−1) , Δx = 1/(N −1)

For the boundary condition of the type

α
dw(0)

dx
+β w(0)+ γ = 0

we use following FD approximation

α
Δx

(w2 −w1)+β w1 +
αΔx

2
[q(λ ,0)− f (λ ,0)]+ γ = 0,
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Table 9: Periodic problem (43). Kansa’s method with the smoothing λ− procedure
Δλ = 10−6 is applied.

i λex N = 20 N = 50 N = 100
1 2.09946 2.09938 2.09946 2.09946
2 7.44911 7.44814 7.44903 7.44910
3 16.64822 16.64831 16.64821 16.64822
4 17.09658 17.11382 17.09810 17.09673
5 36.35887 36.36549 36.36362 36.35886

which has the error ∼ Δx2. The similar approximation is used at the right endpoint
x = 1. As a result one gets the linear system

a1w2 +b1w1 =g1,

anwn+1 +bnwn +cnwn−1 =gn, n = 2, ...,N−1,

bNwN +cNwN−1 =gN ,

which can be effectively solved by the double-sweep method.

Example 8 Consider a Sturm–Liouville eigenvalues problem with Liu (2008a);
Pryce (1993)

d2w
dy2 +(λ −exp y)w = 0, w(0) = w(π) = 0 (45)

Using the transform y = πx, one gets the eigenvalue problem on [0,1]

d2w
dx2 +π2 (λ −expπx)w = 0, w(0) = w(1) = 0.

Applying the method presented with the smoothing λ−procedure, we get the se-
quence of BVPs

d2wr

dx2 +π2 (λ −expπx)wr = −d2we

dx2 −π2 (λ +Δλ −expπx)we,

wr (0) = −we(0), wr (1) = −we(1).

The data placed in the first column of Table 10 are obtained using FD solver with
Δx = 2×10−4. The exciting solution we = 1+x2. We compare the eigenvalues with
those obtained in Liu (2008a); Pryce (1993). Another example of applying the FD
solver is shown in the last column of Table 5. Here we place the data obtained by
FD method solving the non-linear eigenvalue problem (34), (35).



246 Copyright © 2008 Tech Science Press CMES, vol.34, no.3, pp.227-252, 2008

Table 10: Sturm-Liouville problem (45). FD solution with Δx = 2× 10−4 . The
smoothing λ− procedure with Δλ = 10−6 is applied.

i present Liu (2008a) Pryce (1993)
1 4.8966696497 4.89666937998 4.8966693800
5 32.26370706 32.26370704581 32.263707046

10 107.11667611 107.116676138 107.11667614
15 232.07881195 232.078811987 232.07881198
20 407.06523523 407.065235278 407.06523527
25 632.05890781 632.058907930 632.05890789
30 907.05546070 907.055460697 907.05546058

4 Eigenmodes

The algorithm described above is focused on the problem of finding eigenvalues.
Let us dwell in brief on the problem of calculation of the corresponding eigen-
modes. The method of finding eigenmodes proposed here is based on the simple
physical fact that when a system approaches resonance, then, just the resonance
(or eigen) mode is excited in the system. So, when the spectral parameter λ in the
BVP (4), (5), (6) is closed to an eigenvalue of the initial eigenvalue problem (1),
(2), then the sum w = we +wr is closed to the corresponding eigenmode.

Algorithm is as follows. Using the procedure described above we calculate the
approximate value λap. Then we calculate the function w(x,λap) = we (x,λap)+
wr (x,λap) at the representative points xi ∈ [0,1] , i = 1, ...,M and the normed values.

ŵi (λap) = w(xi,λap)/wmax, wmax = max
i=1,...,M

|w(xi,λap)| . (46)

In Fig. 4 we present the eigenmodes of Example 2 (29).

The exact solution (30), (31) was normed in the same way as (46). The data are
compared in Table 11. It demonstrates that we obtain the approximate eigenmodes
with a high precision.

5 Conclusion

We present a numerical method for solving generalized Sturm-Liouville problems
and the problems with parameter dependent boundary conditions. It is convenient
for determining some first eigenvalues of the system which are often of the most
interest for engineering applications. It leads to the solution of a sequence of bound-
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Figure 4: The 1st , 3rd and 5th eigenmodes of Sturm-Liouville problem (29).

ary value problems which depend on the spectral parameter. Varying this param-
eter, one gets the eigenvalues as positions of maxima of the norm function F(λ ).
The growth of the amplitude of response near the eigenvalue is a sequence of the
degeneracy of the matrix approximating the BVP under consideration. From this
point of view the presented approach is similar to the one described in Li (2008),
where the degeneracy is measured by the infinitesimal values of the minimal eigen-
value of the stiffness matrix of the problem.
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Table 11: Eigenmodes from Example 2. Comparison between the exact and com-
puted data.

1th eigenmode 2th eigenmode
x w̃ex w̃ap w̃ex w̃ap

0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.831375 0.831374 -0.180994 -0.180999
0.4 0.986162 0.986162 -0.987911 -0.987912
0.6 0.749069 0.749069 -0.835626 -0.835624
0.8 0.388873 0.388872 -0.441099 -0.441095
1.0 0.000000 0.000000 0.000000 0.000000

Approximating the original eigenvalue problem by a linear system

A(λ )x = b, x,b ∈RN , A(λ ) ∈ RN×N ,

one gets the eigenvalue λi i = 1, ...,N as roots of the equation

detA(λ ) = 0. (47)

On the other hand, according to Cramer’s rule we can write the solution in the form

x(λ ) =
1

detA(λ )
[detA1 (λ ) , ...,detAN (λ )]T ,

where Ai (λ ) is the matrix found by replacing the ith column of A(λ ) with b. So,
when λ approaches a root of (47), one observes the growth of the norm F (λ ) of
the solution x(λ ). And from the physical point of view this is well-known that
the amplitude of oscillations increases when an electrical or mechanical system
approaches resonance.

The key moment of the algorithm is the use of the special regularizing procedures
which provides a smooth curve F (λ ) and, as a sequence, provides a high precision
in determining eigenvalues. We would like to attract readers attention to the fact
that the same technique can be applied to a very wide class of eigenvalue prob-
lems: the Sturm–Liouville problems, the Schrödinger equation, the non-classical
generalized Sturm–Liouville problems, periodic problems. In the paper we mainly
use the asymmetric radial basis functions (RBF) collocation method as the BVPs
solver. However, this technique can be combined with any appropriate BVP solver.
It seems possible to extend the same approach to eigenvalue problems with other
differential equations, e.g. to problems of fourth order and to the case of multi-
dimensional systems. This will be the subject of further investigations.
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