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Fast BEM Solvers for 3D Poisson-Type Equations

Xuefei He1, Kian-Meng Lim1,2,3 and Siak-Piang Lim1,2

Abstract: The boundary element method (BEM) is known to have the advantage
of reducing the dimension of problem by discretizing only the boundary of the
domain. But it becomes less attractive for solving Poisson-type equations, due to
the need to evaluate the domain integral which is computationally expensive. In this
paper, we present the extension of a recently developed fast algorithm for Laplace
equation, based on fast Fourier transform on multipoles (FFTM), to solve large
scale 3D Poisson-type equations. We combined the Laplace solver with two fast
methods for handling the domain integral based on fast Fourier transform (FFT).
The first method uses the FFT on multipoles to accelerate the domain integral,
while the second method solves the domain integral as a particular solution using
FFT. The particular solution method is found to be faster and more accurate, and it
is extended to solve non-linear Poisson-type equations. The algorithm is shown to
be efficient when it is used in the inner loop of the iterative solver for the non-linear
equations.

Keyword: Boundary element method (BEM), Poisson-type equation, non-linear
equation, fast Fourier transform on multipoles (FFTM).

1 Introduction

The boundary element method (BEM) [Brebbia and Dominguez (1992); Becker
(1992)] has the advantage of discretizing only the boundary of the computational
domain for homogeneous differential equations, such as the Laplace equation and
Navier equation. Traditional BEM generates a linear system with a fully popu-
lated matrix that is computationally expensive to solve. Therefore, the compu-
tational cost of BEM becomes a significant burden for large-scale problems. In
recent years, the fast multipole method (FMM) [Greengard and Rokhlin (1987);
Nishimura (2002)] has been used to accelerate the computational speed and reduce
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memory storage in large-scale BEM models. These improvements are achieved by
approximating far-field interactions by multipole representations. The FMM has
been successful to solve electromagnetic [Nabors and White (1991); Volakis, Ser-
tel, Jorgensen, and Kindt (2004); Chew, Song, Cui, Velarnparambil, Hastriter, and
Hu (2004)] and elastostatic [Nishimura, Yoshida, and Kobayashi (1999); Wang and
Yao (2005, 2008); Aoki, Amaya, Urago, and Nakayama (2004)] problems. Other
numerical techniques, such as the precorrected-FFT (pFFT) technique [Phillips and
White (1997)] and the adaptive cross-approximation (ACA) technique [Kurz, Rain,
and Rjasanow (2002)], have also been developed, and these algorithms exploit
structures and patterns present in the formulation to improve the speed and memory
requirements of the BEM.

However, for Poisson-type equations, a domain integral typically needs to be evalu-
ated. Traditional BEM [Brebbia and Dominguez (1992)] solves Poisson-type equa-
tions by discretizing the interior domain and evaluating the domain integral directly.
Various approaches have been proposed to avoid or alleviate the burden due to the
domain integral. Meshless methods, such as the dual reciprocity method (DRM)
[Partridge, Brebbia, and Wrobel (1992)], multiple reciprocity method (MRM) [Nowak
and Neves (1994)] and particular solution method (PSM) [Henry and Banerjee
(1988)], are commonly used to maintain the advantage of discretizating only the
boundary. Ingber [Ingber, Mammoli, and Brown (2001)] also proposed a cell-based
direct domain integral scheme that gives better accuracy. In addition, when such
a domain integral scheme is coupled with the FMM, it significantly improves the
computational efficiency over the meshless methods. In order to apply the domain
integral method in a complex domain, Mammoli [Mammoli (2002)] developed the
auxiliary domain method (ADM) to simplify the mesh generation. Various fast
algorithms have been applied to accelerate the solution procedure. The group of
Greengard [McKenney, Greengard, and Mayo (1995); Greengard and Lee (1996);
Ethridge and Greengard (2001)] provided a series of two dimensional fast Poisson
solvers based on the FMM. Ding et al. [Ding, Ye, and Gray (2005)] introduced a
fast cell-based approach, based on the pFFT, that accelerates the surface integral as
well as the domain integral. Ying et al. [Ying, Biros, and Zorin (2006)] handled the
non-homogeneous part with a particular solution, while solving the homogeneous
part with the kernel-independent FMM. They used the FFT to calculate the partic-
ular solution, which is much faster than the global shape function method used in
the PSM.

When the non-homogeneous term in the Poisson-type equation is a non-linear func-
tion of the unknown variable, the solution process becomes more complicated. Typ-
ically, iterative solvers are used, and within each iteration, a linear Poisson equa-
tion is solved. The DRM and MRM have been applied to solve such non-linear
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equations. There are also some modified and improved methods [Xu and Kamiya
(1998); Pollandt (1998)], based on the DRM. Liao [Liao (1998)] applied the gen-
eral boundary element method to solve strongly non-linear problems. With the help
of the homotopy analysis method (HAM), the general boundary element method is
valid even for governing equations and boundary conditions that do not contain any
linear terms. Most of the above algorithms were applied to solve two dimensional
non-linear problems with small number of degrees of freedom, but rarely in three
dimensional problems. Recently, Ding and Ye [Ding and Ye (2006)] had applied
the pFFT to solve three dimensional weakly non-linear problems, where the num-
ber of degrees of freedom reaches 4000.

Table 1: Different BEM methods for solving linear and non-linear Poisson-type
equations

Linear Poisson equation Non-linear Poisson equation

Conventional DRM DRM
method [Partridge, Brebbia, and Wrobel (1992)] [Partridge, Brebbia, and Wrobel (1992)]

MRM [Nowak and Neves (1994)] MRM [Nowak and Neves (1994)]
PSM [Henry and Banerjee (1988)] Liao [Liao (1998)]
Ingber et al. Ding and Ye [Ding and Ye (2006)]
[Ingber, Mammoli, and Brown (2001)]
Group of Greengard

Fast method [McKenney, Greengard, and Mayo (1995),
Greengard and Lee (1996),
and Ethridge and Greengard (2001)]
Ding et al. [Ding, Ye, and Gray (2005)]
Ying et al. [Ying, Biros, and Zorin (2006)]

The methods discussed are summarized in Table 1. The conventional methods have
been applied to many problems, but usually limited to a small number of the de-
grees of freedom. The fast methods are comparatively new and can be used to
solve large-scale problems. Most of the fast algorithms treat the non-homogeneous
term in the Poisson equation or non-linear equation by an accelerated domain inte-
gral. Ingber et al. [Ingber, Mammoli, and Brown (2001)] and some of Greengard’s
work [McKenney, Greengard, and Mayo (1995); Ethridge and Greengard (2001)]
accelerated the domain integral by the FMM, while Ding et al. [Ding, Ye, and
Gray (2005)] and Ding and Ye [Ding and Ye (2006)], by the pFFT technique. The
others [Greengard and Lee (1996); Ying, Biros, and Zorin (2006)] calculated a par-
ticular solution in a fast manner. Greengard and Lee [Greengard and Lee (1996)]
calculated particular solutions with spectral method in a decomposed domain and
patches the solutions together with the FMM. Ying et al. [Ying, Biros, and Zorin
(2006)] obtained a particular solution with the FFT. In [Ingber, Mammoli, and
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Brown (2001)], Ingber et al. calculated the particular solution using radial basis
functions and claimed that multipole accelerated method is both faster and more
accurate than the particular solution method.

In this paper, we extend our recent work on a fast solver for Laplace equation
based on FFT to multipoles (FFTM) [Ong, Lim, Lee, and Lee (2003); Lim, He,
and Lim (2008)] to solve Poisson-type equations. We combine the FFTM with
two fast methods for the domain integral based on the FFT. In the first method
the FFT on multipole algorithm is used to accelerate domain integral directly, and
it is seamlessly integrated with the Laplace solver. The second method uses the
FFT to calculate the particular solution rapidly, and then combines that with the
homogeneous solution obtained by the fast Laplace solver. The FFT accelerated
particular solution method was found to be faster and more accurate after several
benchmark tests using linear Poisson equations. Hence, this method is extended
to solve non-linear Poisson-type equations. A Richardson iterative scheme is used,
with each iteration involving a fast solution of a linear Poisson equation. The nu-
merical examples demonstrate that the method is capable of solving large problems
(with more than 30,000 degrees of freedom) efficiently.

2 Methodology

2.1 Standard methods for Poisson-type equation

The Poisson-type equation,

∇2u(x) = f , x ∈ Ω, (1)

in which f is a function of coordinate x and possibly the unknown variable u, can
be rewritten into a direct boundary integral formulation

c(x)u(x)+
∫

S
H(x,y)u(y)dS(y)+

∫
Ω

G(x,y) f dΩ(y) =
∫

S
G(x,y)

∂u(y)
∂n(y)

dS(y). (2)

Here, c is the free term, n is outward normal direction, and G(x,y) and H(x,y)
correspond to the single layer kernel and double layer kernel, respectively,

G(x,y) =
1

4πr
,

H(x,y) =
∂G(x,y)

∂n(y)
=

1
4πr3 (x−y) ·n(y), (3)

where r = |y−x|. The surface integrals, corresponding to the Laplace equation, can
be calculated rapidly by fast algorithms, such like FMM [Greengard and Rokhlin
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(1987); Nishimura (2002)], pFFT [Phillips and White (1997)] or FFTM [Ong, Lim,
Lee, and Lee (2003); Lim, He, and Lim (2008)]. All of them have comparable O(N)
or O(N logN) efficiency. In this paper, we will use the FFTM to evaluate these sur-
face integrals. The details are given in [Ong, Lim, Lee, and Lee (2003); Lim, He,
and Lim (2008)], and briefly summarized in Appendix. The non-homogeneous
term f gives rise to a domain integral term, which requires discretization of the
interior domain. As this is a computationally expensive step, we will use a newly
developed accelerated domain integral algorithm based on FFT on multipoles (sim-
ilar to the fast Laplace solver). This algorithm will be discussed in details in Sec-
tion 2.2.

An alternative way of solving the Poisson equation is to separate the solution into
the particular solution up and homogeneous solution uh,

u(x) = up(x)+uh(x). (4)

The particular solution up satisfies the Poisson equation, but not necessarily the
boundary conditions.

∇2up(x) = f , x ∈ Ω (5)

The homogeneous solution uh satisfies the corresponding Laplace equation

∇2uh(x) = 0, x ∈ Ω (6)

and combines with the particular solution to enforce the boundary conditions of the
original Poisson equation. For Dirichlet boundary condition u = f1 given on the
boundary S1,

uh(x) = f1(x)−up(x), x ∈ S1, (7)

and for Neumann boundary condition ∂u
∂x = f2 given on the boundary S2,

∂uh(x)
∂n

= f2(x)− ∂up(x)
∂n

, x ∈ S2. (8)

In this paper, the particular solution will be obtained rapidly by performing a FFT
on f (as detailed in Section 2.3), and the homogeneous part is solved using the
FFTM algorithm for the Laplace equation.

2.2 FFT-Multipole accelerated domain integral

To evaluate the domain integral, the solution domain needs to be discretized into
volume elements. In the traditional BEM implementation, the domain integral is
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performed over all the volume elements, and this is added to the right hand side
of the Laplace solver. With the use of FFTM as the fast Laplace solver, the so-
lution domain is already being divided into cells for the formation of multipoles
and local expansions. These cells provide a ready form of volume discretization,
which will be used to evaluate the domain integral using the Gaussian quadrature.
The domain integral is easily evaluated when the cell lies entirely in the domain
of computation. However, when a cell intersects the boundary, as shown in Figure
1, special treatment needs to be taken in evaluating the domain integral over that
cell. For the present method, the values at the Gauss points outside the boundary
are set to zero. This process provides a simple way of handling the intersection of
the boundary and the cells. Accuracy can be improved by sub-dividing the original
cell into smaller cells or increasing the number of Gauss points used.

The domain integral can be treated as evaluation of potential due to volume sources,
and it is accelerated by multipoles just like for the Laplace equation with boundary
sources. The multipoles corresponding to the volume sources are readily com-
bined with the multipoles from boundary sources, and the FFTM algorithm for the
Laplace solver can be used to evaluate the potentials and solve the Poisson equation.
This method accelerates both the surface and domain integrals, and the multipole
representation allows both to be treated together seamlessly.

S

Ω

Gauss points

Figure 1: Identification of Gauss points in the interior of the domain, when a cell
intersects boundary. Values of sources at Gauss points outside the boundary are set
to zero.

For the FFTM Laplace solver, it is desirable to use relatively large cells (encom-
passing a fair number of boundary elements) to ensure a good computational effi-
ciency for the surface integral [Ong, Lim, Lee, and Lee (2003)]. However, for the
domain integral, small volume elements or cells are preferred for good accuracy.
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Figure 2: A cell being sub-divided into smaller cells to improve the accuracy of
domain integral via FFTM. The multipoles M in the smaller cells are transformed
to the initial cell center.

For the present implementation, the large cells used for the FFTM are sub-divided
into smaller cells when the domain integral is being evaluated, as shown in Figure
2. The multipole moments for the domain sources are obtained at the smaller cell
centers, and then translated to the cell centers of the bigger cells,

Mm
Ω,n =

n

∑
n′=0

n′

∑
m′=−n′

Rm′
n′ M

m−m′
n−n′ . (9)

These multipole moments for the domain sources (MΩ) are then combined with
those from the boundary sources.

For the near field (shaded area in Figure 3), the domain integral is performed by
Gaussian quadrature directly. When the evaluation node point is within or close to
a cell that the integral is performed, a weak singularity appears, and it is regularized
by the following coordinate transform

∫
Ω

G(x,y) f (y)dΩ(y) =
∫ y12

y11

∫ y22

y21

∫ y32

y31

f (y1,y2,y3)
4πr(y1,y2,y3)

dy1dy2dy3

=
∫ rb(θ ,φ)

0

∫ π

0

∫ 2π

0

1
4π

f (r,θ ,φ )r sinθdrdθdφ . (10)

2.3 FFT accelerated particular solution

The particular solution provides an alternative method of handling the domain inte-
gral for Poisson-type equations. The solution of the Poisson-type equations can be
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Evaluation node point

Figure 3: Standard domain integral is used for calculating the near field (shaded
area) interaction.

separated into a homogeneous solution and a particular solution. The particular so-
lution is calculated rapidly using FFT, while the homogeneous solution is obtained
by solving the Laplace equation using FFTM.

In the present implementation, the non-homogeneous function f is extended to
the rectangular region that bounds the solution domain, as defined by [a1,b1]×
[a2,b2]× [a3,b3] in the FFTM method. The rectangular domain is discretized by
a regular grid, preferably 2p × 2q × 2r for implementing FFT, where p, q and r
are positive integers. This grid is used to calculate the particular solution via the
FFT. The non-homogeneous term f is represented by its Fourier coefficients f̂lmn,
as given by

f (x1,x2,x3)

=
∞

∑
l=1

∞

∑
m=1

∞

∑
n=1

f̂lmn sin

(
x1 −a1

b1 −a1
lπ

)
sin

(
x2 −a2

b2 −a2
mπ

)
sin

(
x3 −a3

b3−a3
nπ

)
, (11)

where the coefficients are obtained by the fast Fourier sine transform

f̂lmn =
8

(b1−a1)(b2−a2)(b3−a3)

∫ b1

a1

∫ b2

a2

∫ b3

a3

f (x1,x2,x3) sin

(
x1 −a1

b1 −a1
lπ

)
sin

(
x2 −a2

b2 −a2
mπ

)
sin

(
x3 −a3

b3 −a3
nπ

)
dx1dx2dx3.

(12)

Similar to the previous section, the values of f (x) are set to zero when the grid point
x falls outside the domain of the problem Ω. The particular solution can readily be
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obtained by

up(x1,x2,x3)

=
∞

∑
l=1

∞

∑
m=1

∞

∑
n=1

ûp,lmn sin

(
x1 −a1

b1 −a1
lπ

)
sin

(
x2 −a2

b2 −a2
mπ

)
sin

(
x3 −a3

b3−a3
nπ

)
, (13)

where,

ûp,lmn = − f̂lmn/π2

l2

(b1−a1)2 + m2

(b2−a2)2 + n2

(b3−a3)2

. (14)

The particular solution values on the grid points are obtained by inverse fast Fourier
sine transform on û. The particular solution at the the nodes on the boundary are
then obtained from the values at the grid points using a three-dimension 64-point
Lagrange interpolation.

2.4 Iterative solver for non-linear Poisson-type equations

When the non-homogeneous term is a non-linear function of the variable to be
solved, an iterative scheme needs to be used. Here, we have chosen a simple
Richardson iterative scheme to illustrate the incorporation of the fast solvers into
solution method.

At each iteration step (t), the variable and normal derivatives, denoted by ut and
∂ut/∂n, are known from the previous iteration or an initial guess at the first step.
The iteration step involves solving the following equation

∇2ut+1(x) = f (ut), x ∈ Ω
ut+1(x) = f1(x), x ∈ S1

∂ut+1(x)
∂n

= f2(x), x ∈ S2 (15)

for the values ut+1 and ∂ut+1/∂n. The solution at the boundary is first obtained,
followed by the domain solution. The iterative process is repeated until the two suc-
cessive sets of solution, at t and t + 1, are within a preset tolerance. The particular
solution method was found to be more efficient than the FFT-multipole accelerated
domain integral method (see the numerical examples in the next section), so the
particular solution method is implemented in the present solution for non-linear
Poisson-type equations.

The details of each iteration step in fast non-linear algorithm are given as follows.

1. Calculate f (ut) at the interior grid points.
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2. Calculate the particular solution up,t+1 on the grid points from f (ut) through
the FFT and then interpolate on the node points to obtain up,t+1 and ∂up,t+1/∂n.
These are used to obtain the boundary conditions for the Laplace equation.

3. Obtain the homogeneous solution uh,t+1 and ∂uh,t+1/∂n on the boundary
nodes by solving the corresponding Laplace equation with the FFTM (as
outlined in the Appendix).

4. Evaluate the homogeneous solution uh,t+1 at the interior grid points

uh,t+1(x) =
∫

S
G(x,y)

∂uh,t+1(y)
∂n(y)

dS(y)−
∫

S
H(x,y)uh,t+1(y)dS(y). (16)

5. Combine the particular solution and the homogeneous solution to obtain ut+1

and ∂ut+1/∂n on the boundary nodes, and ut+1 on the grid points.

6. Compare the values ut+1 and ∂ut+1/∂n with the previous set of ut and ∂ut/∂n.
If the difference is smaller than a pre-set tolerance, the scheme is deemed to
have converged.

In the step 4, we need to calculate the unknown solution at all the interior grid
points. Since there is no domain integral in Equation (16), the surface integrals
are rapidly evaluated using the FFTM procedure. When the distance between a
evaluation point and a boundary element is very small (smaller than half size of
a typical element), the analytical formula for nearly singular integration [Hayami
(1992)] is used to obtain good accuracy.

3 Numerical examples

In this section, several numerical examples are given to investigate the accuracy
and computational efficiency of the fast Poisson solvers. For all the problems,
the computational domain Ω is a sphere with radius 0.5 with the sphere center
placed at the origin. Dirichlet boundary conditions are prescribed on the sphere as
specified in each problem. The normal derivative of the variable is calculated, and
the measure of the error is defined in the L2 norm as

Error =

√
∑N

i=1 |∂u(xi)/∂n−∂u∗(xi)/∂n|2
∑N

i=1 |∂u∗(xi)/∂n|2 , (17)

where u∗ is the analytical solution.

For surface integral, constant triangular elements (plane panels) with one node at
the element center are used. The numerical integration is performed over these ele-
ments using local intrinsic coordinates. When x and y are on different elements, the
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standard Gaussian quadrature (with 7 Gauss points over each element) is applied to
perform the integration. When x and y are on the same element (x = y), weak (1/r)
or strong (1/r2) singularities appear. The weak singularity is removed by trans-
forming the triangular elements to a quadrilateral domain on which 8× 8 Gauss
points are used for Gauss quadrature. The free term c does not need to be calcu-
lated explicitly in the direct BEM; it is obtained by physical considerations such as
arbitrary shifting of datum in potential problems or arbitrary rigid body motion in
mechanics problems. This technique enables the free term and the strongly singu-
lar integrals in the direct BEM formulation to be calculated together. Four different
surface discretizations are used, with the total number of nodes being 4858, 8566,
19234 and 33884. When implementing the FFTM to accelerate the surface integral,
the rectangular domain is discretized into 16×16×16 cells, and the multipole and
local expansion orders of p = 4 and p = 6 are used for comparison.

To compare the two methods in Sections 2.2 and 2.3, the number of Gauss points
used to perform the domain integral is the same as the number of grid points used
to calculate the particular solution in the rectangular domain. This does not guar-
antee that the number of the Gauss points and the number of grid points inside
the computational domain Ω to be the same, but they only differ slightly. In the
following examples, three different sets of Gauss/grid points are studied, namely
128× 128× 128, 256× 256× 256 and 512× 512× 512. The domain integral is
calculated with 8×8×8 Gauss points in each cell. With 16×16×16 cells used
for accelerating the surface integral, the number of Gauss points used for the accel-
erated domain integral is (16×8)× (16×8)× (16×8) = 128×128×128. When
the 16×16×16 cells are further divided to perform the domain integral, the num-
ber of Gauss points is increased to (32×8)×(32×8)×(32×8)= 256×256×256
and (64×8)× (64×8)× (64×8)= 512×512×512. Also, two multipole and lo-
cal expansion orders, p = 4 and p = 6, are used to study the accuracy of multipole
transform for interior sources.

3.1 Poisson equation with a constant non-homogeneous term

In this example, a Poisson equation with a constant non-homogeneous term is con-
sidered. The differential equation is given as follows

∇2u(x) = 1, x ∈ Ω, (18)

with the prescribed boundary condition

u(x) =
x2

1

2
, x ∈ S, (19)
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on the surface of the sphere. The analytical solution for the normal derivative on
the sphere is given by

∂u∗

∂n
= x1n1, x ∈ S, (20)

where xi and ni (i = 1,2,3) are the components of the position coordinate x and
normal n to the surface, respectively.

Figures 4 and 5 show the scaling of the computational time in handling the non-
homogeneous term (by standard domain integral, multipole accelerated domain
integral, and FFT accelerated particular solution method) against the number of
Gauss/grid points and the number of nodes, respectively.
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Figure 4: Computational time for domain integral using standard method (Stan-
dard), multipole accelerated domain integral method (Multipole accelerated) and
FFT accelerated particular solution method (Particular solution) against the num-
ber of Gauss/grid points for a fixed number of nodes (33884).

Both fast algorithms are found to reduce the computational time significantly com-
pared to the standard method. In addition, the particular solution is faster than the
multipole accelerated domain integral by an order of magnitude. Increasing the
expansion order p from 4 to 6 only increases the computational time of the acceler-
ated domain integral marginally. For all the three methods, using more Gauss/grid
points results in longer computational time, as shown in Figure 4. The time of the
particular solution method scales as O(Ng logNg) with respect of the number of grid
points (Ng), which comes from the complexity of the FFT. For both the standard
and multipole accelerated volume integral methods, the computational time scales
as the number of Gauss points O(Ng) used. The multipole method provides sig-
nificant speed up for far field calculations. The near field interactions need to be
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evaluated directly, and some of these involved weakly singular integral that needs
to be regularized. When a small number of Gauss points are used, the propor-
tion of these near field calculations is larger; hence, the computational time for the
multipole accelerated method is slightly above the linear trend (in Figure 4) when
128×128×128 Gauss points are used.
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Figure 5: Computational time for domain integral using standard method (Stan-
dard), multipole accelerated domain integral method (Multipole accelerated) and
FFT accelerated particular solution method (Particular solution) with a fixed num-
ber of Gauss/grid points (256×256×256).

Figure 5 shows the time needed to calculate the non-homogeneous term against
the number of nodes in the BEM. This non-homogeneous term is evaluated at each
boundary node, and it forms the “source” term in each boundary integral equation
written at each node. For the particular solution method, the computational time is
virtually unaffected by the number of nodes, since this method depends only on the
number of grid points used in the FFT. The non-homogeneous term is evaluated at
all the grid points together, and then the values at the boundary nodes are interpo-
lated from those at the grid points. The computational time needed for interpolation
of values at the nodes is insignificant compared to the FFT process, hence there ap-
pears to be no dependence of the computational time on the number of boundary
nodes.

For the standard and multipole accelerated domain integral methods, the computa-
tional time scales almost linearly with the number of boundary nodes present. This
is expected for the standard method, since the non-homogeneous term is evaluated
directly at each node on the boundary. For the multipole accelerated domain inte-
gral, the computational time is reduced significantly be separating the calculation
into the near- and far field sources. The far field calculation is accelerated using
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Figure 6: Comparison of computational time for near field and far field calculation
with the multipole accelerated domain integral method (256× 256× 256 Gauss
points)

multipoles, which depends mainly on the number of cells or Gauss points used.
The near field calculation involves direct computation between the nodes and the
sources, and hence scales linearly with the number of nodes. The near field calcu-
lation takes up a more significant amount of computational time than the far field
calculations, resulting in an overall computational time that scales linearly with the
number of nodes. This situation is illustrated in Figure 6, which shows the split
of computational time taken for the near and far field calculations. The near field
computation time scales linearly with the number of nodes, while far field compu-
tation time is practically constant, similar to the FFT accelerated particular solution
method. Hence, for a problem with a large number of nodes, the near field com-
putation time becomes dominant, and the multipole accelerated domain integral
method becomes less efficient. It also is noted that using a higher order of multi-
pole expansion (from p = 4 to p = 6) increases the far field computational time,
but this is still insignificant compared to the near field computational time. Hence,
the overall computational times for both orders of multipole expansion differ only
slightly in Figure 5.

Figure 7(a) shows the total time taken to solve the Poisson equation using both
the accelerated solvers: (i) FFT accelerated particular solution method with FFTM
Laplace solver for the homogeneous solution, and (ii) multipole accelerated domain
integral merged with the original FFTM Laplace solver. The computational time
for the largest problem (with 33884 nodes) is reported, and its scaling with different
number of Gauss/grid points is shown. The computational time for the multipole
accelerated domain integral with FFTM solver increases when more Gauss points
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Figure 7: Comparison of multipole accelerated domain integral method (Multipole
accelerated) and FFT accelerated particular solution method (Particular solution).
(a) Total computational time for solving the Poisson equation. (b) Error of numer-
ical solution as compared with analytical solution. (constant non-homogeneous
term, 33884 nodes)

are used, which is consistent with Figure 4. The computational time for the particu-
lar solution method with FFTM Laplace solver is now closer to that of the multipole
accelerated domain integral with FFTM, in contrast with the vast difference in com-
putational time for just calculating the non-homogeneous part (in Figure 4). This
shows that the FFTM Laplace solver constitutes a dominant part of the computa-
tional time in the entire solution process of the Poisson equation using the particular
and homogeneous solutions method. Also, a higher order of multipole expansion
p increases the total time taken, as expected for the FFTM Laplace solver. Never-
theless, the particular solution method is still faster than the multipole accelerated
domain integral method when they are combined with the FFTM Laplace solver.

Figure 7(b) shows the accuracy of the two accelerated methods with respect to the
order of multipole expansion and number of Gauss/grid points used. When more
Gauss/grid points are used, the error in both methods decreases, since the non-
homogeneous part is evaluated more accurately. Similarly, the accuracy improves
when a higher order of multipole expansion is used in the FFTM Laplace solver
and multipole accelerated domain integral. This improvement in accuracy, when p
is increased from 4 to 6, is more significant for the particular solution method, with
the error decreasing by about 5 times. This shows that the FFTM Laplace solver
contributes to a significant part of the total error in the entire solution process, and
particular solution method used in calculating the non-homogeneous part incurs
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only a small portion of the overall error. Lastly, for the same number of Gauss/grid
points used, the particular solution method is always more accurate than the multi-
pole accelerated domain integral method.

3.2 Poisson equation with a non-constant non-homogeneous term

This example is similar to the first example, except that the non-homogeneous term
is no longer constant, but given as a function of spatial coordinate

∇2u(x) = (2x3
2 +6x2)ex1+x3, x ∈ Ω. (21)

The prescibed boundary condition on the sphere is

u(x) = x3
2ex1+x3, x ∈ S, (22)

and the analytical solution for the normal derivative on the sphere is

∂u∗

∂n
= x2

2ex1+x3(x2n1 +3n2 +x2n3), x ∈ S. (23)

Since the change of the non-homogeneous term does not influence the computa-
tional time, the timings should be the same with the previous example. So only
the accuracy of the solution procedures is discussed to confirm the findings in the
previous example. Figure 8 shows the error of the solution against the number of
Gauss/grid points used. A similar behavior in convergence of the solution is ob-
served. In this example, the non-homogeneous term being non-constant results in
slightly higher errors, especially when lesser Gauss/grid points are used. With suf-
ficient Gauss/grid points, the good accuracy is achieved as the previous example.
The results obtained using the particular solution method are consistently more
accurate than those from the accelerated domain integral method, and they show
faster convergence with more grid points used.

The above two examples illustrate the efficiency of the FFT accelerated particular
solution method over the FFT-multipole accelerated domain integral method. The
particular solution method is not only faster; it is also more accurate for the same
number of Gauss/grid points used. Moreover, it is computationally less expensive
to improve the accuracy of the solution by using more grid points, since it has a
better rate of convergence. Hence, the FFT-accelerated particular solution method
will be used for solving the non-linear Poisson equations. This method also has
the advantage of not evaluating the domain integral explicitly, which tends to be
computationally expensive. In the following examples, 256×256×256 grid points
are utilized, after balancing the needs for computational speed and accuracy.
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Figure 8: Comparison of the accuracy of the multipole accelerated domain integral
method (Multipole accelerated) and FFT accelerated particular solution method
(Particular solution). (non-constant non-homogeneous term, 33884 nodes)

3.3 Non-homogeneous modified Helmholtz equation

The equation in this example is a non-homogeneous modified Helmholtz equation

∇2u(x)−k2u(x) = h(x), (24)

with k2 = 1. This linear equation can be solved by the same method for linear
Poisson equation, by using the appropriate kernels for this Helmholtz equation.
However, we are hereby using it as a preliminary test problem for our iterative
Richardson scheme for non-linear Poisson-type equations. The equation is re-cast
as a Poisson-type equation

∇2u(x) = u+h(x), x ∈ Ω. (25)

For the function h given by

h(x) = 4x2
1 +4x2

2 +12x1x2 −3x3
1x2 −2x2

1x2
2 +x1x3

2 −x3 (26)

and boundary condition of

u(x) = 3x3
1x2 +2x2

1x2
2 −x1x3

2 +x3, x ∈ S, (27)

on the surface of the sphere, the analytical solution for the normal derivative is
given by

∂u∗

∂n
= (9x2

1 +4x1x2
2 −x3

2)n1 +(3x3
1 +4x2

1x2 −3x1x2
2)n2 +n3, x ∈ S. (28)
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In contrast with the previous examples, the interior source term in this example
needs to be calculated at each iteration. This involves an additional step of evalua-
tion of the sources at the interior grid points in the solution process.
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Figure 9: Computational timings for the main steps (Section 2.4) in each time iter-
ation. Step 2: calculating a particular solution accelerated by FFT (Particular so-
lution); Step 3: solving a Laplace equation with FFTM, p = 4,6, (Laplace solver);
Step 4: updating the interior values with standard integral method (Interior sources
(standard)) and FFTM, p = 4,6, (Interior sources (FFTM)).

The FFT accelerated particular solution method together with the FFTM Laplace
solver will be used in this example since it was shown to be computationally more
efficient and accurate. Figure 9 shows the time taken for the various steps of com-
putation in each iteration.

The interior source values depend on the solution of u from the previous iteration.
This value of u at the grid point is obtained from the particular solution (which
is readily available), and the homogeneous solution using the boundary integral
given by Equation (16). The computational times taken to evaluate this boundary
integral using the standard method and FFTM are shown in Figure 9. The standard
method is shown to be computationally expensive, requiring more than 43 hours for
largest problem with 33,884 nodes. The FFTM reduces the computational time to
evaluate these interior sources significantly. The FFTM Laplace solver for solving
the homogeneous part of the solution is included for comparison. It can be seen
that the interior source calculation using FFTM takes slightly more time than the
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FFTM Laplace solver. Also, the interior source calculation does not scale linearly
with the number of nodes as this calculation is dominated by the number of grid
points (256×256×256 in this case), which is much larger than the largest number
of nodes present (N = 33,884). In comparison, the evaluation of the particular
solution takes the least time in the entire solution process. Hence, the evaluation
of interior sources and the Laplace solver for homogeneous solution are the time-
determining steps in the entire solution process.
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Figure 10: Convergence behavior for solving ∇2u = u + h(x). Dahed line: Error;
Solid line: Residue; �: 4858 nodes; �: 8566 nodes; ©: 19234 nodes; +: 33884
nodes.

Figure 10 shows the convergence behavior of the solution process. The residue,
summed over all nodes, between two successive iterations (as shown by the solid
lines) is defined as

Residue =

√
∑N

i=1 |∂ut+1(xi)/∂n−∂ut(xi)/∂n|2
∑N

i=1 |∂ut(xi)/∂n|2 . (29)

The problem takes four iterations to reach a residue of less than 1×10−5. The con-
vergence for this problem is very fast and not dependent on the number of nodes
or expansion order p. After three iterations, when the residues become less than
1× 10−3, the errors of the numerical results compared to the analytical solution
converge to values in the region of 10−2. More iterations reduce the residue, but
do not improve the accuracy of the results further. This is because the error of
the problem is limited by the discretization error of the BEM and the truncation
error of multipole translations. Table 2 gives the computational timings and errors
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after three iterations. With higher p, the computational time becomes longer and
the accuracy becomes better. However, the timings increase by a little, while the
accuracy improves considerably, especially for large problems. Since the number
of cells is fixed, increasing the number of nodes results in accumulating more trun-
cation error of multipole expansion in each cell. Consequently, more nodes do not
always mean better accuracy. Yet, higher expansion order reduces the truncation
error, which gives better accuracy convergence.

Table 2: Numerical results of the FFTM with different number of nodes after three
iterations

Number of nodes Computational time (Second) Error
p = 4 p = 6 p = 4 p = 6

4858 2158 3007 0.69% 0.30%
8566 2582 3440 0.65% 0.25%
19234 4990 5834 0.84% 0.22%
33884 10291 11549 0.97% 0.22%

3.4 Non-linear Poisson-type equation

In this example, a truly non-linear Poisson-type equation (Equation (30)) is consid-
ered,

∇2u(x) = u+u3, x ∈ Ω. (30)

For the boundary condition

u(x) = tan(
x1 +x2 +x3√

6
), x ∈ S, (31)

prescribed on the surface of the sphere, the analytical solution is given by

∂u∗

∂n
=

1+u2
√

6
(n1 +n2 +n3), x ∈ S. (32)

For this non-linear problem, the convergence (Figure 11) is slower than that in the
previous example. Now, six iterations are needed to reduce the residues to less than
1×10−5. After four iteration, the residues are less than 1×10−3 and the errors can
not be decreased further. The convergence is neither dependent on the number of
nodes, nor the expansion order p. Table 3 shows the results after four iterations.
The results are similar with Table 2, and again p = 6 is preferred for large problems.
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Figure 11: Convergence behavior for solving ∇2u = u + u3. Dahed line: Error;
Solid line: Residue; �: 4858 nodes; �: 8566 nodes; ©: 19234 nodes; +: 33884
nodes.

Table 3: Numerical results of the FFTM with different number of nodes after four
iterations

Number of nodes Computational time (Second) Error
p = 4 p = 6 p = 4 p = 6

4858 3953 4851 0.70% 0.30%
8566 3989 4914 0.71% 0.24%
19234 7557 8035 0.90% 0.21%
33884 14188 15661 1.0% 0.21%
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3.5 Burger’s equation

In this example, the static Burger’s equation, which is used in the study of fluid
mechanics, is solved.

∇2u(x) = αu
∂u
∂x3

, x ∈ Ω (33)

The equation is solved for the following prescribed boundary condition

u(x) = n1(x)+n2(x)+n3(x), x ∈ S. (34)

The parameter α is used to adjust the degree of non-linearity in the problem, with
a larger value of α denoting a stronger non-linearity. Within the boundary, the
solution for ∂u/∂x3 is calculated. This is obtained using a 4th order finite difference
on the values of u at the interior grid points. From the previous examples, it is noted
that the results converge when the residue is less than 1×10−3. So, in this example,
the tolerance of the iterative scheme is set 1×10−3. Figure 12 shows the number of
iterations that is needed to reduce the residue to less than the tolerance. With higher
α , more iterations are needed for the solution to reach convergence due to the higher
degree of non-linearity. Although the current simple Richardson iterative method
appears acceptable, better iteration scheme, like the Newton’s method, should be
used to obtain better convergence performance. Figure 13 gives the solution u of the
Burger’s equation on the x1x2 plane. The solution is observed to change gradually,
as the parameter α is increased.
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Figure 12: Number of iterations needed to achieve a residue of less than 1×10−3

for increasing non-linearity (α) in the problem ∇2u(x) = αu ∂u
∂x3

.
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Figure 13: The contour of solution u on the x1x2 plane (x3 = 0)
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4 Conclusion

In this paper, we have combined the fast Laplace solver using FFT on multipoles
with two fast methods for domain integrals to implement a fast solver for 3D
Poisson-type equations. The FFT accelerated particular solution method is found to
be superior to the FFT-multipole accelerated domain integral method. The former
is extended and successfully applied to non-linear equations where each iterative
solve involves a linear Poisson-type equation. In comparing of the Laplace FFTM
solver and the domain integral, the Laplace solver is found to be the bottle-neck of
the entire fast algorithm. The computational time needed for the domain integral in
both methods is less than that taken by the Laplace solver. For non-linear equations,
the current implementation uses the Richardson iteration. In future developments,
better iterative schemes, like the Newton’s method, should be used. Nevertheless,
the current fast method is shown to be capable of handling large scale non-linear
problems (more than 30,000 degrees of freedom) with good computational effi-
ciency.

Appendix — FFTM for solving Laplace equation

By discretizing the boundary of the solution domain into elements, the BEM con-
verts the boundary integral equations into a system of algebraic equations. This
system of algebraic equations can be solved efficiently by iterative methods, such
as GMRES. For the Laplace equation, a fast algorithm FFTM [Ong, Lim, Lee, and
Lee (2003); Lim, He, and Lim (2008)], is used to accelerated the matrix-vector
product within each iteration of the GMRES solver.

The FFTM algorithm uses the FFT on the multipole and local expansions to ap-
proximate the far-field potential calculations. The multipole and local expansions
can be obtained from the expression for 1/r(x,y) in terms of the solid harmonics
Rm

n and Sm
n ,

1
r(x,y)

=
∞

∑
n=0

n

∑
m=−n

Sm
n (
−→
Ox)Rm

n (
−→
Oy). (A-1)

where

Rm
n (
−→
Oy) =

1
(n+m)!

Pm
n (cosα)eimβ ρn, (A-2)

Sm
n (
−→
Oy) = (n−m)!Pm

n (cosα)eimβ 1
ρn+1 , (A-3)

and O is the cell center, with (ρ ,α ,β )being the relative spherical coordinates of the
point y from O. Pm

n is the associated Legendre function of the first kind. The FFTM
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performs three translations, namely source to multipole moment (S2M), multipole
moment to local expansion (M2L) and local expansion to destination (L2D). The
single layer source (∂u(y)/∂n(y)) and double layer source (u(y)) are translated
into multipole moment(S2M) by

Mm
n (O) =

∫
S

∂Rm
n (
−→
Oy)

∂n(y)
u(y)dSy−

∫
S

Rm
n (
−→
Oy)

∂u(y)
∂n(y)

dSy. (A-4)

This multipole moment is translated to local expansion defined at a point O′ (M2L)
by

Lm′
n′ (O′) =

∞

∑
n=0

n

∑
m=−n

(−1)n′Sm+m′
n+n′ (

−−→
OO′)Mm

n (O). (A-5)

This process can be written as a series of three dimensional discrete convolutions

Lm′
n′ (x1,x2,x3)

=
∞

∑
n=0

n

∑
m=−n

[∑
x′1

∑
x′2

∑
x′3

(−1)n′Sm+m′
n+n′ (x1 −x′1,x2 −x′2,x3 −x′3)Mm

n (x′1,x′2,x′3), (A-6)

where the indexes (x1,x2,x3) and (x′1,x′2,x′3) denote the locations of the local ex-
pansion and the multipole moment, respectively. The calculation of the convolution
is accelerated by the FFT. The free software FFTW (Fastest Fourier Transform in
the West), provided by Frigo and Johnson [Frigo and Johnson (2005)] is used.

Lastly, the field value at the destination point is obtained from the local expansion
coefficients Lm

n by (L2D):
∫

S
H(x,y)u(y)dS(y)−

∫
S

G(x,y)
∂u(y)
∂n(y)

dS(y) =
∞

∑
n=0

n

∑
m=−n

Rm
n (
−→
O′x)Lm

n (O′). (A-7)
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