
Copyright © 2008 Tech Science Press CMES, vol.35, no.1, pp.73-90, 2008

Continuation Schemes for Shape Detection
in Inverse Acoustic Scattering Problems

S.-W. Na1 and L.F. Kallivokas2

Abstract: We discuss simple numerical schemes, termed continuation schemes,
for detecting the location and shape of a scatterer embedded in a host acoustic
medium, when considering scant measurements of the scattered acoustic pressure
in the vicinity (near- or far-field) of the obstacle. The detection is based on incom-
plete information, i.e., the measurement stations are distributed in the backscatter
region and do not circumscribe the sought scatterer. We consider sound-hard scat-
terers, and use boundary integral equations for the underlying numerical scheme.
We favor amplitude-based misfit functionals, and use frequency- and directionality-
continuation schemes to resolve the scatterer’s location and shape. We report on
numerical experiments that attest to the promise of the schemes.

Keyword: Inverse scattering; shape detection; boundary elements; continuation
schemes

1 Introduction

Inverse scattering problems are of considerable practical interest in various areas of
science and engineering due, in part, to the ever broadening spectrum of important
applications that range from medical (Marin, Power, Bowtell, Sanchez, Becker,
Glover, and Jones (2008)), to infrastructure (Wu, Al-Khoury, Kasbergen, Liu, and
Scarpas (2007); Tabrez, Mitra, and Gopalakrishnan (2007)), to geophysical, to ma-
terial (Harris, Mustata, Elliott, Ingham, and Lesnic (2008)) and target identification
investigations. In particular, inverse problems arising in acoustics are of relevance
in, amongst others, ultrasound imaging (for medical or other non-destructive as-
sessments), seismic imaging, underwater surveillance and target acquisition, and in
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the detection of objects in the ocean, either fully submerged or partially buried in
the seafloor.

Invariably, in all of the aforementioned areas the common goal is to arrive at a
description of unknown characteristics of an interrogated object, whether the char-
acteristics refer to material properties, boundary conditions, geometric measures,
etc, by, usually, knowledge of input parameters (e.g. interrogating frequencies),
and output measurements (e.g. response at coarsely distributed sensor locations).
Due to the incomplete data set such problems are inherently ill-posed (and numer-
ically ill-conditioned), with the ill-posedness originating from any or all of three
possible sources, namely, non-existence, non-uniqueness, and/or (numerical) insta-
bility (see Colton and Kress (1983, 1998); Kirsch (1996)). To alleviate or overcome
the considerable algorithmic challenges imposed by the ill-posedness, specialized
schemes, often without sufficient generality, need be devised. In this article, we
provide a description of a simple numerical scheme that has, thus far, produced
promising results.

Of interest here is the problem of recovering the location and shape of an insonified
scatterer from scant measurements of its response when excited by impinging plane
waves. In this article, the case of a sound-hard scatterer embedded in full-space is
considered. The problem has received considerable attention in the literature, e.g.,
in Pike and Sabatier (2002); Colton, J., and Monk (2000); and Maponi, Recchioni,
and Zirilli (1997).

One may roughly classify the approaches that have been followed, into methods
that rely on optimization-based schemes (e.g., Angell, Jiang, and Kleinman (1997);
Hass, Rieger, and Lehner (1997); Kress and Zinn (1992); Maponi, Misici, and
Zirilli (1991); Misici and Zirilli (1994); Zinn (1989); Kress and Rundell (1994);
Kress (1995)), and methods that do not explicitly seek to minimize a misfit func-
tional (e.g., Colton and Kirsch (1996); Colton, Piana, and Potthast (1997); Colton,
Giebermann, and Monk (2000); Potthast (1996, 1998)). The latter category is
based on the linear sampling method which is originally proposed by Colton and
Kirsch Colton and Kirsch (1996). The advantage of the latter category methods is
that the shape reconstruction can be carried out without need for a priori informa-
tion, whereas, when optimization methods are used, the feasibility space may be
considerably narrowed due to a priori knowledge –almost a necessity for robust
solution schemes. Typically, in optimization-based schemes the point of departure
is the misfit between the measured field response and the field response computed
based on assumed shape/location. A considerable body of work exists where so-
lutions are sought based on complete or nearly-complete information: complete
information refers to, for example, scattered field data that circumscribe the scat-
terer, whether in the near- or the far-field.
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In this work we favor classical optimization methods for the generality they offer,
and focus on a case where information is available only in the backscattered re-
gion. Moreover, to deal with the ill-posedness, we combine an amplitude-based
misfit functional with a frequency- and (optionally) directionality-continuation al-
gorithm. The continuation scheme implies that a series of inverse problems are
solved by iterating over distinct frequencies (and/or directions) of the interrogating
waves, while either directly or indirectly taking into account the cumulative effect
all frequencies (and/or directions) have on the detection process. The motivation for
relying on several frequencies and/or wave incidences for detection (as opposed to,
for example, multiple station records circumscribing a scatterer) stems from the fact
that, typically, interrogating devices are characterized by frequency/directionality
agility, while sensor availability/locations are rather constrained.

2 The forward problem

The typical setup consists of a sound-hard object fully embedded within a homo-
geneous acoustic host and insonified by traveling plane waves. The associated
boundary-value problem, in the frequency domain, is governed by the Helmholtz
equation. Let Γ be a closed surface with exterior Ω ⊂ ℜ2 (Fig. 1). Ω is occupied by
a linear, inviscid, and compressible (acoustic) fluid, characterized by wave velocity
c. Γ is the bounding surface of a rigid (sound-hard) obstacle S. When S is insonified
by an incident wave field uinc, the scattered field can be recovered as the solution to
the following problem:

Δus(xxx)+k2us(xxx) = 0, xxx ∈ Ω, (1)

us
ν(xxx) = −uinc

ν (xxx), xxx ∈ Γ, (2)

lim
r→∞

√
r(us

r − ikus) = 0. (3)

In these equations us denotes scattered pressure; xxx is the position vector; ννν is the
outward unit normal on Γ (pointing to the interior of S); Δ is the Laplace operator;
us

ν denotes the normal derivative of the pressure us; k denotes wavenumber (k = ω
c ,

with ω denoting circular frequency). Condition (3), in which r is radial distance
and us

r the derivative of the pressure along the radial direction, is the Sommerfeld
radiation condition. The incident field uinc describes incoming plane waves, i.e.:

uinc = e−ik(x cosα+y sinα), (4)

in which α is the angle formed between the normal to the traveling wave front
and the x-coordinate axis. With these definitions, and for a smooth boundary Γ,
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Figure 1: Scattering from a sound-hard object and sampling stations

solutions to Eq. 1-Eq. 3 can be obtained by the following standard integral repre-
sentations:

us = S[us
ν]−D[us], in Ω, (5)

where S and D are the single- and double-layers defined for any smooth function
q, as1:

S[q](xxx) =
∫

Γ
q(yyy)G(xxx,yyy)dΓ(yyy), xxx ∈ Ω, yyy ∈ Γ, (6)

D[q](xxx) =
∫

Γ
q(yyy)

∂G(xxx,yyy)
∂νyyy

dΓ(yyy), xxx ∈ Ω, yyy ∈ Γ, (7)

and G(z) in Eq. 6-Eq. 7 is the fundamental solution, i.e.,

G(z) =
i
4

H(2)
0 (kz), (8)

where z = |xxx−yyy| is the distance between a point xxx within Ω and a point yyy on Γ;

H(2)
0 denotes the zeroth order Hankel function of the second kind, and i =

√−1 is
the imaginary unit. Equation (5) provides the scattered field in Ω; by taking into
account the following jump relations,

lim
Ω�xxx→xxx∈Γ

S[q](xxx) = S[q](xxx), or S[q] = S[q], (9)

lim
Ω�xxx→xxx∈Γ

D[q](xxx) = −1
2

q(xxx)+D[q](xxx), or D[q] = −1
2

q+D[q], (10)

1 Euler script letters (e.g. S) are used for domain representations of the layers, (i.e., when xxx ∈ Ω)
and roman letters (e.g. S) for their boundary counterparts (i.e., when xxx ∈ Γ).
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in which

S[q](xxx) =
∫

Γ
q(yyy)G(xxx,yyy)dΓ(yyy), x,yx,yx,y ∈ Γ, (11)

D[q](xxx) =
∫

Γ
q(yyy)

∂G(xxx,yyy)
∂νyyy

dΓ(yyy), x,yx,yx,y ∈ Γ, (12)

it follows that:

1
2

us −S[us
ν ]+D[us] = 0, on Γ. (13)

Boundary integral equation (13) provides the basis for the numerical solution of the
forward problem, for any given instantiation of Γ. As it is well-known, for exte-
rior Helmholtz problems there exists a set of characteristic frequencies for which
the integral operators become singular and lead to non-unique solutions. Though
mindful of the difficulty, any particular scheme to alleviate this non-uniqueness is
not implemented, primarily due to the extremely narrow support of the singular
frequencies in the spectrum2. In the literature, one can find several remedies for
overcoming the singular-frequencies difficulty via specialized schemes, e.g., Bur-
ton and Miller (1971), Brakhage and Werner (1965), Bielak, MacCamy, and Zeng
(1995). Alternatively, one can resort to a domain decomposition method that au-
tomatically alleviates the problem, as was shown in Zeng, Kallivokas, and Bielak
(1992).

3 The inverse problem

Next, at a discrete set of M stations (Fig. 1) located in Ω, the scattered pressure
field, generated when waves impinge upon the scatterer S, is being sampled. In
order to resolve the unknown location and shape of the interrogated scatterer, we
seek to minimize, subject to Eq. 1-Eq. 3, appropriately constructed misfit function-
als. Natural choices include the misfit defined either by:

L1(Γ) =
1
2

M

∑
m=1

|us(xxxm)−us
m(xxxm)|2

|us
m(xxxm)|2 , (14)

or by,

L2(Γ) =
1
2

M

∑
m=1

(|us(xxxm)|− |us
m(xxxm)|)2

|us
m(xxxm)|2 . (15)

2 For the singularities to manifest in a numerical scheme the frequencies must be prescribed with
very fine accuracy (several decimals).
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In Eq. 14-Eq. 15, xxxm denotes the location of the stations, us
m denotes the measured

scattered field at the same points, and us denotes the forward solution (computed),
also at the M locations. Notice, that L1 defines the misfit in the least-squares sense
of the complex-valued scattered field, whereas L2 defines the misfit between the
amplitudes of the same field; both functionals are normalized with respect to the
measured field and both are real-valued. We experimented numerically with both of
Eq. 14-Eq. 15: whereas Eq. 14 is highly oscillatory for higher frequencies, Eq. 15
presents fewer local minima, and may be preferable, even though it is missing, in an
explicit sense, the phase-angle information. Notice that the choice of either Eq. 14
or Eq. 15 is not unique, nor necessarily optimal from a numerical point of view. To
implement the minimization of either misfit, irrespective of the optimizer choice,
there is need to compute the first- (and possibly higher also) variations of L1 or
L2 to perturbations of the (unknown) boundary Γ. Numerical differentiation via a
finite difference scheme is the simplest choice, and it is what was followed herein.
However, finite difference schemes may contribute to, or exacerbate the numerical
instability inherent in the inverse problem: a way to elegantly overcome the numer-
ical differentiation associated with the sequence of scatterer boundaries is to adopt
a PDE-constrained optimization approach. Accordingly, the misfit functionals are
augmented by a weak imposition of the governing PDE, via Lagrange multipliers
(e.g. Na and Kallivokas (2008)). Taking the first variations of the augmented func-
tional with respect to the Lagrange multipliers and the primary variable gives rise
to state and adjoint problems, respectively. It can then be shown (Bonnet (1995);
Na and Kallivokas (2008)) that variations of the functional with respect to bound-
ary perturbations are readily computable, without resorting to a finite difference
scheme. Such an approach stands to benefit and be enhanced, numerically, by the
simple continuation scheme reported herein. Lastly, as it can be seen from either
Eq. 14 or Eq. 15, no term encompassing a priori information has been added to
the functional. If such information is available, a regularization term can be easily
added.

4 Numerics

4.1 Implementation

For the applications considered here, the location and shape of the boundary Γ
depends on a small set of parameters. For example, for the case of a circular
scatterer, the coordinates of its center and the radius were considered as the un-
known parameters (in this case, a priori information is implicitly taken into ac-
count). Similar assumptions were made for other shapes with which we experi-
mented herein; arbitrary geometries were not considered (i.e. nodal coordinates as
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parameters), since a non-self-intersecting algorithm was not implemented. To seek
a minimum for the misfit functionals (14) or (15), we used a conjugate-gradient
approach (Polak-Ribière); for the computation of the gradient functionals we used
finite differences. For each update of the unknown parameters the forward problem
needs to be solved: to this end, we implemented boundary integral equation (13)
using quadratic isoparametric elements.

Throughout all numerical experiments the stations are located along a fixed y-
coordinate (Fig. 1); the motivation stems from practical considerations, for it is
rare that sensor distributions circumscribe a scatterer. Furthermore, for all numeri-
cal experiments “inverse crimes” are avoided when generating the synthetic data at
the measurement stations by either resorting to exact solutions whenever available
(e.g. circular scatterer), or to fine boundary parameterizations different than those
used for the detection process.

4.2 Numerical Results

To illustrate our preference to L2 over L1, we consider first the simple case of
a circular scatterer of unit radius (a = 1) insonified by a plane wave forming a
(−45o) angle with the x-axis (Fig. 2), where the measurements are taken at the
three stations shown in figure 2 (schematic is in scale). We consider the coordinates
of the center as the unknown parameters. The forward problem Eq. 13 is solved for
the true values (0,0), and for positions of the assumed scatterer anywhere within the
dotted square region (Fig. 2). Based on these solutions, we then construct the misfit
functionals L1 and L2 for all possible positions of the scatterer within, again, the
dotted region. Figure 3 depicts the distribution of the misfit functionals for three
different interrogating frequencies (ka = 0.1,1.0,5.0) over the space of feasible
values for the scatterer’s center’s coordinates between −6 and 6 (for both x and
y). We remark that the actual inverse problem has one more parameter, the radius;
however, we have observed that convergence to the true radius is achieved within
the first couple iterations, and thus the graphs shown in Fig. 3 represent cross-
sections, for constant radius, of the misfits in four-dimensional space.

Notice the oscillatory nature of L1 for the higher frequencies that effectively re-
sults in multiple minima that are difficult to distinguish from the global minimum
(at (0,0)). In fact, it is observed that, as the frequency increases, the basin of attrac-
tion of the global minimum narrows considerably when compared with the lower
frequencies. As a result, with local optimization schemes, it would be difficult for
an optimizer to escape the neighborhood of a local minimum in order to converge
to the global one. Mindful of these observations, we favor the use of L2, and a
frequency-continuation scheme for resolving the global minimum. We remark that
the behavior depicted in Fig. 3 is similarly encountered in problems characterized
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Figure 2: Model problem with a circular scatterer
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Figure 3: Distribution of misfit functionals L1L1L1 and L2L2L2 for the problem shown in
Fig. 2
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by a higher dimensionality of the parameter space.

Given a frequency and a set of initial guesses for the unknown parameters, our
scheme for a single frequency is encapsulated in the simple algorithm shown below
(Algorithm 1).

Algorithm 1 Single-frequency scheme
1: Set ModelParameters
2: Set Tolerances Tol and MaxIterations
3: MisfitNorm=1
4: Iterations = 1
5: Compute Misfit
6: while (MisfitNorm < Tol) and (Iterations < MaxIterations) do
7: OldMisfit = Misfit
8: Compute Gradients
9: Compute CG-SearchDirection

10: Perform linesearch
11: Update ModelParameters
12: Compute Misfit
13: NewMisfit = Misfit
14: MisfitNorm = 2|OldMisfit−Misfit|

|OldMisfit|+|Misfit|+ε
15: Iterations = Iterations + 1
16: end while
17: if Iterations == MaxIterations then
18: Failed
19: else
20: Converged
21: end if

However, even if convergence is achieved, there is no guarantee that the converged
parameters are the true ones. To improve, we iterate on the frequency (or wavenum-
ber) space, and the converged parameters of the last frequency are used as initial
guesses for the next frequency. We typically use two to four frequencies for the
problems considered here. Once the highest frequency has resulted in converged
parameters, we revisit the misfit for each one of the frequencies we considered
earlier, and re-compute the individual frequency misfits using the final parameter
values. If the computed values of the new misfits are less than the ones obtained
at the ends of the previous convergence cycles, we consider the scheme to have
converged. Schematically, this frequency-continuation approach is depicted in Al-
gorithm 2 below.

Note that the misfit functional L2 defined in Eq. 15 and depicted in Algorithms 1
and 2 can be, if desired, augmented to account for multiple wave incidences for
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Algorithm 2 Frequency-continuation scheme
1: Set ModelParameters
2: for all Frequencies do
3: Set ith-Frequency
4: Use ModelParameters
5: Single-frequency scheme (Algorithm 1)

(Save ith-Misfit)
(Save ConvergedModelParameters)

6: Set ModelParameters = ConvergedModelParameters
7: end for
8: Set FinalModelParameters = ConvergedModelParameters
9: for all Frequencies do

10: Compute Misfit (Use FinalModelParameters)
11: if Misfit > ith-Misfit then
12: Failed
13: end if
14: end for
15: Converged

each frequency; accordingly, let (for each frequency):

L2(Γ) =
i=A

∑
i=1

[
1
2

M

∑
m=1

(|us(xxxm,αi)|− |us
m(xxxm,αi)|)2

|us
m(xxxm,αi)|2

]
, (16)

where αi denotes the i-th wave incidence and A is the total number of considered
wave directions.

Clearly, Algorithm 2, as sketched, is concerned with a series of decoupled inverse
problems, that is, one distinct problem for each frequency (even at multiple wave
incidence angles), even though the scatterer is the same. The coupling of all these
problems, as sketched, is a loose one: it is achieved through the revisiting of the
misfit functional values for all frequencies for those values that correspond to the
converged set of parameters for the last considered frequency. Alternatively, one
could redefine the L2 functional to allow simultaneous optimization over all of the
considered frequencies, as in:

L2(Γ) =
N

∑
n=1

i=A

∑
i=1

[
1
2

M

∑
m=1

(|us(xxxm,αi,kn)|− |us
m(xxxm,αi,kn)|)2

|us
m(xxxm,αi,kn)|2

]
, (17)

where n denotes the n-th interrogating frequency, N is the total number of con-
sidered frequencies, and k denotes wavenumber. The process implied by Eq. 17
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is considerably more costly: we experimented with Eq. 17 and have found no ap-
preciable difference to the detection process, and thus still favor the simplicity of
Eq. 15 or Eq. 16.

We used the continuation scheme to resolve the location and shape of various
scatterers and report here on a subset of our results. Figures 4, 5, and 6 de-
pict the obtained results for a circular, an elliptical, and a“potato”-shaped scat-
terer (with a small portion of its boundary being non-convex). The shape for
the latter scatterer was constructed using 7 parameters and truncated trigonomet-
ric series in polar coordinates; specifically, the shape is given for θ = 0 . . .2π as
r(θ ) = a0 + a1 cosθ + a2 sinθ + a3 cos2θ + a4 sin2θ + a5 cos3θ + a6 sin3θ . Ta-
bles 1 and 2 summarize the characteristics of the three problems, including the
initial guesses, number of stations, station locations, and wave incidence angles.
In all cases, convergence to the true parameters was attained. Figure 4 depicts the
convergence pattern to the target using the frequency continuation scheme with
three probing frequencies. Notice that the circular scatterer’s center coordinates
have converged to specific, yet wrong, values at the end of each frequency probing
(Fig. 4a), and that without the aid of the continuation scheme, convergence to the
target would not have been attained.

Similarly, Fig. 5 depicts the convergence pattern for an elliptical scatterer, when the
initial guess is a circular obstacle. Two probing frequencies are used, but, in this
case, we also use two probing directions for each frequency, effectively making
use of Eq. 16. Notice that, as shown in Fig. 5b, despite the use of two incidence
directions, a single frequency would not have been sufficient in recovering the semi-
axes. Probing at a higher frequency, using again both incidences, recovers nicely
the target. Similar conclusions can be drawn from the more severe test shown in
Fig. 6.

Though we have observed sensitivity of the number of iterations to the initial guess,
we have not been able to construct a (reasonable) problem for which the continua-
tion scheme would fail. By contrast, if L1 were to be chosen, the sensitivity of the
algorithm to the initial guess increases, even under the continuation scheme, and we
have observed failures. In general, we have observed that probing at low frequen-
cies leads the initial shape closer to the target, with probing at higher frequencies
being necessary for refining the shape characteristics.

Lastly, all computations were performed on an Intel Xenon workstation: the total
CPU time for each problem was 15.5 minutes, 18.5 minutes, and 70 minutes, re-
spectively. Since the finite difference scheme is used to compute the gradient of the
misfit functional, the computational time increases proportionally with the num-
ber of unknown parameters. However, as mentioned earlier, if an adjoint approach
based on a PDE-constrained optimization is employed (e.g., Na and Kallivokas
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(2008)), significant computational cost savings can be expected.
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Figure 4: Inverse problem for a circular scatterer using frequency-continuation

5 Conclusions

We discussed a frequency- and directionality-continuation scheme for resolving the
unknown shapes of insonified scatterers, and have applied it to prototype problems
involving canonical and arbitrarily-shaped scatterers. The idea is based on feed-
ing the converged estimates of location and shape due to lower frequency prob-
ing as initial estimates to the higher probing frequencies. The same approach was
used when iterating over wave incidences. We provided an algorithm for ensuring
that the final estimates are also checked against all probing frequencies/incidences.
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Table 1: Inverse problems characteristics (scatterer shape, parameter definitions,
station locations, and incident wave directions)

Scatterer Parameters Station Waves
shape locations
Circle Center and radius (-5,20), (0,20) α = −45o

(x0, y0, a) (5,20)
Ellipse Center and semi-axes (-10,20), (0,20) α = −45o,

(x0, y0, sM, sm) (10,20) 225o

Coefficients (-5,20), (0,20) α = −90o,
Potato (a0,a1, . . . ,a6) (5,20), (-10,20) 0o,

(10,20) 180o

Table 2: Inverse problems parameter values

Scatterer shape Initial guess True values Final values
(3,3,2) x0 = 0 −0.0058

Circle (3,3,2) y0 = 0 −0.0026
(3,3,2) a = 1 1.0001

x0 = 0 0.0013
Ellipse (50,-50,2,2) y0 = 0 -0.0011

sM = 1.5 1.5001
sm = 1 1.0000)

(2,0,0,0, a0 = 1 1.0002
(2,0,0,0, a1 = 0.2 0.1977
(2,0,0,0, a2 = −0.3 -0.2998

Potato 0,0,0) a3 = 0.125 0.1246
0,0,0) a4 = 0.125 0.1252
0,0,0) a5 = −0.05 -0.0504
0,0,0) a6 = −0.05 -0.0504
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Figure 5: Inverse problem for an elliptical scatterer using frequency-continuation

Clearly, adding probing frequencies and/or incidences increases the data set (sen-
sor data) used to guide the detection process, and in this sense, solution multiplicity
is, somewhat, alleviated. However, augmentation of the data set alone is not nec-
essarily capable of offering algorithmic robustness, since numerical evidence we
discussed earlier suggests that reversing the order of the probing, from high to low
frequencies, can lead to failure. To date, the combination of amplitude-based mis-
fit functionals, embedded within a frequency-continuation scheme with ascending
frequency probing, appears to be robustly recovering scatterer shape and location.

As noted, the underlying numerical scheme is expensive, since it is based on finite
differences for the computation of the gradients (derivatives are computed with
respect to each shape parameter, requiring, in turn, the solution of Eq. 13 every
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Figure 6: Inverse problem for an arbitrarily-shaped (potato) scatterer using
frequency-continuation

single time). However, adjoint formulations can lessen the computational cost,
while still retaining the benefits of the proposed continuation schemes.
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