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Solutions for Incompressible Viscous Flow in a Triangular
Cavity using Cartesian Grid Method

B. M. Pasquim1 and V. C. Mariani2

Abstract: This study presents a Cartesian grid method and its application to
solve a steady flow in a lid-driven triangular two-dimensional cavity. The evolu-
tion of stream function and vorticity inside a triangular lid-driven cavity, when the
Reynolds number changes from 1 to 6000, is presented. For space discretization
on the interior of triangular cavity orthogonal Cartesian grid is used. Then, using
this grid, trapezoidal volumes appear in the interface between solid and fluid. For a
suitable treatment of these volumes the Eulerian-Lagrangian methodology is used.
The Navier-Stokes equations are solved numerically using finite-volume method.
On the basis of the numerical studies reported here it seems that the method under
investigation has no difficulty at capturing the formation of primary, secondary and
tertiary vortices as Reynolds number increases. It is observed also that the interior
of the primary vortex has almost constant stream function and vorticity for rea-
sonably large Reynolds number. Highly accurate benchmark results are provided
including new global quantities as the kinetic energy and the enstrophy.

Keyword: Triangular cavity, Cartesian grid, Eulerian-Lagrangian methodology,
finite-volume method

1 Introduction

The flow of a fluid in lid-driven cavities is a problem of primary importance in com-
putational fluid dynamics. The development of improved methods to solve these
problems has also been a subject of concern to computational physicists for many
years. The representation of cavities of square section with infinite axial length,
bidimensional cavities, has been widely studied and is now a standard case test
for new computational schemes. Benjamin and Denny (1979), Ghia et al. (1982),
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Botella and Peyret (1998), and Bruneau and Saad (2006), are some of the many
existing works. They employed finite-difference method with stream function-
vorticity formulation, except the last author, that used uniform Cartesian meshes.

Some recent studies solving flows in lid-driven cavities have used meshless meth-
ods. One popular method is the meshless local Petrov-Galerkin (MLPG) success-
fully used by Lin and Atluri (2001), and Ahrem et al. (2006). Arefmanesh et al.
(2008) applied a MLPG for the solution of the Navier-Stokes equations for the non-
isothermal lid-driven cavity flow and other problems. Tsai et al. (2002) developed
a meshless boundary elements method to solve 3D Stokes flows. The iterative pro-
cess used in that study is similar to the process employed in Nicolás and Bermúdez
(2007), the only difference is that these use a truly fixed point one, with a different
discretization time, while Nicolás and Bermúdez (2004) studied the 2D flows.

Radial basis functions (RBFs) are a powerful tool for function interpolation. Due
to their mesh-free nature RBFs have received an increasing attention for solving
partial differential equations. The trial of such exploration was made by Atluri et
al. (2006a, 2006b), Han et al. (2006), Wen and Hon (2007), Mai-Duy et al. (2007).

Another method is Multiquadric Collocation Method (MCM) using radial basis
function that has been used in a variety of works between them the lid-driven cavity
flows. For example, Ding et al. (2006) used MCM to solve the three-dimensional
lid-driven cavity flow problem. Young et al. (2004) solved the Stokes flow problem
in cavity by MCM. Chantasiriwan (2006) reports driven cavity results for the low
Reynolds numbers Re = 0, which turns out to be a Stokes flow because of its infin-
ity viscosity, and Re = 100 using a MCM. Mai-Duy and Tran-Cong (2004) with the
primitive variables formulation, report also the lid-driven cavity flow for Re = 100
and Re = 0, where Re is the Reynolds number. Grimaldi et al. (2006) using a paral-
lel multi-block method reported results for 2D and 3D lid-driven cavity problem. In
Orsini et al. (2008) was presented a modified control volume method using a radial
basis function interpolation to improve the prediction of the flux accuracy at the
faces of the control volumes. The proposed approach validated a series de 1D and
3D test cases. Shan et al. (2008) numerically study the performance of the 3D lo-
cal multiquadric-based differential quadrature (MQ-DQ) method and demonstrate
its capability and flexibility for simulation of 3D incompressible fluid flows with
curved boundary. A new meshless approach was proposed by Mai-Cao and Tran-
Cong (2008) to solving a special class of moving interface problems. Sellountos
and Sequeira (2008) proposed a hybrid velocity-vorticity scheme for the solution
of the 2D Navier-Stokes equations. Mariani et al. (2008) investigated unstructured
meshes of Voronoi to solve flow in square lid-driven cavities.

In fact, a variety of numerical methods are used to solve the flow in square cav-
ity with one side translating with uniform velocity – finite difference, false tran-



Solutions for Incompressible Viscous Flow in a Triangular Cavity 115

sients, finite elements, finite volume, spectral, multigrid, meshless methods, etc.
It is generally agreed that there is a dominant recirculation whose center is closer
to the moving wall. As the Reynolds number is increasing, this center first moves
downstream, then moves towards the middle of the enclosure. There are two small
counter recirculating vortices at the stagnant corners. The vorticity is most intense
near of moving boundary. For high Reynolds number the vorticity is confined to a
boundary layer and the interior vorticity is approximately constant (Ribbens et al.,
1994).

In irregular cavities, such as trapezoidal, semi-circular or triangular cavities, special
attention has been give to boundaries, i.e., for example, the classic finite-volume
method, using structured meshes, should be changed to solve the flow in these
geometries. These differences promote the development of the searches and of new
numerical methods each time more fast and accurate for the solution of flows in
irregular geometries.

In literature there are some studies of flow in curved and nonrectangular cavities.
The triangular cavity exhibits flow features that have been analytically studied by
Moffat (1963) in the Stokes regime and by Batchelor (1956) in the inviscid or infi-
nite Reynolds number regime. The flow in a trapezoidal cavity was studied by Darr
and Vanka (1991). Ribbens et al. (1991) described the flow in an elliptic region
with a moving boundary. McQuain et al. (1994) and Ribbens et al. (1994) studied
the steady flow in an equilateral triangular cavity for Re ≤ 500. The fourth-order
Navier-Stokes equations in terms of stream function were solved numerically using
finite differences together with a Newton-like iteration on a transformed geometry.
Vynnycky and Kimura (1994) reported the results of their study about steady flow
in a driven quarter circular cavity.

Jyotsna and Vanka (1995) studied the steady viscous flow in a triangular cavity,
where was used triangular grids and a multigrid method. The solution for Re ≤
800 was obtained without encountering any of the difficulties reported for struc-
tured grid-based methods in Ribbens et al. (1994). Li and Tang (1996) presented
an accurate and efficient numerical method to solve the flow in equilateral and sca-
lene triangular cavities for Re ≤ 1500, such method using finite difference on a
transformed geometry. Recently, Glowinski et al. (2006) reported the results of
their study of incompressible viscous flow in a semi-circular cavity. The operator-
splitting/finite elements and a triangulation of the two-dimensional domain were
used to obtain numerical results. The Lattice Boltzmann method was investigated
by Duan and Liu (2007) to solve triangular cavity flow for Re ≤ 500.

In fact, the flow in curved geometries can be represented using curvilinear and non
orthogonal grids or orthogonal (Cartesian) grids. In this context, the our primary
goal here is to investigate the ability of the finite volume/Eulerian-Lagrangian tech-
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nique using Cartesian grids as discussed in Ye et al. (1999), and Mariani and Prata
(2008) at handling flow regions with corners and curved boundaries. To achieve
the goal above, we selected a wall-driven triangular cavity flow. This problem is
important and interesting because triangular shape is at least as common in practice
as the square shape, also to see what aspects the results of this problem will dif-
fer from those of the previous one. A secondary goal is to determine the structure
of the recirculating flow for Reynolds number in the range between 1 and 6000,
corresponding to Reynolds number much upper than those considered in previous
studies.

The paper is organized as follows. Section 2 introduces the formulation of the
problem and shows the space discretization of governing equations in Cartesian
grid. Numerical results are presented in Section 3, including a comparison with
some results presented in Li and Tang (1996) and McQuain et al. (1994). Stream-
lines and contours of vorticity are presented to Re ≤ 6000 in the same section. In
the last section the main conclusions are described.

2 Problem Formulation

Figure 1 shows the geometry of the triangular cavity, with the coordinate system
used here. Thus, a steady, incompressible viscous fluid fills a triangular cavity, see
Fig. 1. The domain occupied by the fluid is then a two-dimensional region, and its
flow is governed by the Navier-Stokes equations,

∂u
∂x

+
∂v
∂y

= 0, (1)

∂ (uu)
∂x

+
∂ (vu)

∂y
= −∂ p

∂x
+ν

[
∂ 2u
∂x2 +

∂ 2u
∂y2

]
(2)

∂ (uv)
∂x

+
∂ (vv)

∂y
= −∂ p

∂y
+ν

[
∂ 2v
∂x2 +

∂ 2v
∂y2

]
(3)

where u (m/s) and v (m/s) are velocity components in the x and y directions, respec-
tively, ν (m2/s) e ρ (kg/m3) are the dynamics viscosity and density, respectively,
and p (Pa) is the pressure.

The boundary conditions for triangular cavity, illustrated in Fig. 1, are given by:

(i) u = 1, v = 0 for y = H and 0 ≤ x ≤ L;

(ii) u = 0, v = 0 for y = f (x) = −√
3x+3 and 0≤ x ≤ L/2.

(iii) u = 0, v = 0 for y = f (x) =
√

3x−3 and L/2 < x ≤ L.
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Figure 1: Triangular cavity.

The lid-driven triangular cavity ilustrated in Fig. 1 has the dimensions L = 2
√

3 m
and H = 3 m, generating an equilateral cavity with length of each side 2

√
3 m.

As a common practice Eqs. (1) to (3) can be expressed by a single equation for the
generic variable φ as

∂ (ρuφ )
∂x

+
∂ (ρvφ )

∂y
= Γφ ∂

∂x

(
∂φ
∂x

)
+Γφ ∂

∂y

(
∂φ
∂y

)
+Sφ , (4)

where φ is equal to u and v for Eqs. (2) and (3), respectively, and equal to unity
for Eq. (1), and Γφ and Sφ are, respectively, the diffusion coefficient and term
source. The governing equation, Eq. (4), will be discretized first in the full cells,
cells located inside of domain, and to follow the discretization will be presented for
trapezoidal cells, located in domain boundaries.

2.1 Discretization for full cells

The Eq. (4) with their respective boundary conditions is solved here using the finite-
volume method described by Patankar (1980). The triangular cavity is divided into
small no overlapping rectangular control volumes, i.e., the equation is discretized
on a Cartesian grid using a collocated (non-staggered) arrangement of the primitive
variables which are collocated at the cell-center. Integrating the Eq. (4) over a
typical control volume in the fluid domain, such as presented in Fig. 2, yields,

n∫
s

e∫
I
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I
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I
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Γφ ∂ 2φ
∂y2 dydx + S

φ
(5)



118 Copyright © 2008 Tech Science Press CMES, vol.35, no.2, pp.113-132, 2008

where the lower subscripts e, w, n and s indicate the values at the cell faces east,
west, north, and south of the control volume, respectively, as shown in Fig. 2.

x, u 

y, v 

dlw

dln

dls

W

δxw δxe
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n
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Δx

Δy

Figure 2: Full cell.

The Eq. (5) can be rewritten as,

(ρuφdl)e− (ρuφdl)w +(ρvφdl)n − (ρvφdl)s

= S
φ ++ Γφ

e
∂φ
∂x

)
e
dle −Γφ

w
∂φ
∂x

)
w

dlw +Γφ
n

∂φ
∂y

)
n

dln −Γφ
s

∂φ
∂y

)
s
dls. (6)

Substituting convective and total fluxes represented by F = (ρudl) and J = [ρuφ −
Γφ (∂φ/∂n)]dl, respectively, and now multiplying the discrete continuity equation
by the value φP and subtracting from Eq. (6) gives

(Je −FeφP)− (Jw −FwφP)+(Jn −FnφP)− (Js −FsφP) = S
φ

(7)
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Thus, the algebraic equation for the control volume P can be expressed as

aPφP = aEφE +aW φW +aNφN +aSφS + S̄φ

aE = DeA |Pe|+ 〈−Fe,0〉
aW = DwA |Pw|+ 〈Fw,0〉
aN = DnA |Pn|+ 〈−Fn,0〉
aS = DsA |Ps|+ 〈Fs,0〉
aP = aE +aW +aN +aS

S̄φ =

{
−pedle + pwdlw, if φ = u,

−pndln + psdls, if φ = v,

(8)

in which 〈a,b〉 is a function that stands for the largest of the quantities a or b,
A|P| = 〈0, (1−0,1|P|)5〉 is the Power-Law scheme employed to discretize spatial
derivatives (Patankar, 1980), and P = F/D is the cell Peclet number.

2.2 Discretization for trapezoidal cells

This work uses marker particles to identify the intersection of the interfacial func-
tion, f (x), which defines the solid boundary, with the Cartesian fix grid. Marker
particles have been used for more than four decades (Peskin, 1977), and are attrac-
tive due to their ability to model interfaces with complex topologies. A detailed
presentation of an Eulerian method (fixed grid) used in combination with a La-
grangian method (interface tracking) as employed here, can be found elsewhere
Udaykumar et al. (1996), Shyy et al. (1996), Ye et al. (1999) and Mariani and
Prata (2008).

The cut cells on the vicinity of a solid boundary passing through the Cartesian
grid are irregularly shaped. In this study there are six possibilities for interfacial
volumes, see Fig. 3. However, only the discretization of a typical interfacial control
volume will be presented in details. An interpolation function developed for the
cells cut by irregular boundaries, which preserves the second-order spatial accuracy
and conservation properties of the solver, was taken from (Ye et al., 1999). The
typical interfacial volume to be explored in discretizing of the general governing
equation is illustrated in Fig. 3a.

Integration of Eq. (4) over an interfacial control volume in fluid domain, such as
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Figure 3: Trapezoidal cells (a) first, (b) second, (c) third, (d) fourth, (e) fifth, and
(f) sixth types..

the one presented in Fig. 3a, yields,
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s

e∫
I
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dxdy+
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φ
(9)

After of integration of the Eq. (9) yields,
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Replacing the convective fluxes and multiplying the discrete continuity equation by
the value φP and subtracting from Eq. (10) gives

Fe(φe−φP)−FI(φI −φP)+Fn(φn −φP)+Fnw(φnw −φP)−Fs(φs −φP)

= S
φ +Γφ

e
∂φ
∂x

)
e
dle −Γφ

I
∂φ
∂n

)
I
dlI +Γφ

n
∂φ
∂y

)
n

dln +Γφ
nw

∂φ
∂y

)
nw

dlnw

−Γφ
s

∂φ
∂y

)
s
dls. (11)

Here the F’s stand for the mass fluxes through the faces of the control volume.
Subscript I indicates the values at the interface. The manner in which these fluxes
are evaluated determines the order of accuracy of the scheme employed. In this
study φI and FI are nulls. Substituting the total flux the Eq. (11) can be written as

(Je−FeφP)+(Jn−FnφP) = S
φ − (Jnw−FnwφP)+(JS−FSφP)−Γφ

I
∂φ
∂n

)
I
dlI , (12)

or

aPφP = aEφE +aNφN +bφ

aE = DeA(|Pe|)+ 〈−Fe,0〉
aN = DnA(|Pn|)+ 〈−Fn,0〉
aP = aE +aN

bφ = S
φ − (Jnw −FnwφP)+(Js −FsφP)−Γφ

I
∂φ
∂n

)
I
dlI

S
φ =

{
−pedle + pI dlInx, if φ = u

−pndln − pnwdlnw + psdlsny, if φ = u

(13)

The variables φnw and ∂φ/∂y)nw are computed using a two-dimensional polyno-
mial interpolating function that is quadratic in x and linear in y, in conformity with
Ye et al. (1999), and Mariani and Prata (2008). An similar interpolation procedure
is also used to estimate the values of φs and ∂φ/∂y)s. For example, in order to
approximate φnw, φ is express in the trapezoidal region shown in Fig. 4a in terms
of a function that is linear in y and quadratic in x

φnw = c1x2
nwynw +c2x2

nw +c3xnwynw +c4xnw +c5ynw +c6, (14)

where each of the unknown coefficients, c1 to c6, are expressed in terms of the
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values of φ at the six grid points shown in Fig. 4a, expressed in the form of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φI,1 = c1yI,1x2
I,1 +c2x2

I,1 +c3yI,1xI,1 +c4xI,1 +c5yI,1 +c6

φP = c1yPx2
P +c2x2

P +c3yPxP +c4xP +c5yP +c6

φE = c1yEx2
E +c2x2

E +c3yExE +c4xE +c5yE +c6

φN = c1yNx2
N +c2x2

N +c3yNxN +c4xN +c5yN +c6

φNW = c1yNW x2
NW +c2x2

NW +c3yNW xNW +c4xNW +c5yNW +c6

φI,2 = c1yI,2x2
I,2 +c2x2

I,2 +c3yI,2xI,2 +c4xI,2 +c5yI,2 +c6

(15)

The equation system shown in Eq. (15) is solved through of a direct method with
partial pivoting.

The value of ∂φ/∂y)nw is expressed as

(∂φ/∂y)nw = c1x2
nw +c3xnw +c5, (16)

The diffusive flux in the solid-fluid interface can be decomposed as (∂φ/∂n)I =
(∂φ/∂x)I n̂x + (∂φ/∂y)I n̂y, where n̂x and n̂y are the two components of the unit
vector normal to interface. Therefore computation of the normal flux requires es-
timation of ∂φ/∂x) and ∂φ/∂y) at the center of the interface. For the cell being
considered here, ∂φ/∂x) is computed to second-order accuracy with relative ease
by expressing the φ variation along the horizontal line in terms of a quadratic func-
tion in x as follows,

φ = c1x2 +c2x+c3, (17)

(a)                   (b)
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Figure 4: Points used in computation of (a) fnw e (b) (∂φ/∂x)I .

The coefficients in the quadratic function can be expressed in terms of the values of
φ at the three points indicated in Fig. 4b. Thus, the normal derivative at the center
of the interface is evaluated as,
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∂φ/∂x)I = 2c1xI +c2, (18)

The calculation of ∂φ/∂y)I for this cell is obtained with similar interpolation used
for ∂φ/∂y)nw and ∂φ/∂y)s, in this context consider the six points illustrated in
trapezoid shown in Fig. 5, φ is express in terms of a function that is linear in y and
quadratic in x

φ = c1x2y+c2x2 +c3xy+c4x+c5y+c6, (19)

The value of ∂φ/∂y)I is expressed deriving the Eq. (19)

∂φ/∂y)I = c1x2
I +c3xI +c5 (20)

The fluxes fn and fe, in the first cell, do no need of special treatment because
its faces were not intercepted by interfacial function. In general, there are also
interfacial volumes which have an east and west face-cut cell. To evaluate the
face flux of those volumes, the interpolation function employed is linear in x and
quadratic in y.

Points to compute ( )Iy∂∂φ
x, u 

y, v 

W

N

S

E

solid

fluid

N

Figure 5: Points to compute (∂φ/∂y)I .

Similar to Eq. (8) can be obtained

aPφP = aEφE +aW φW +aNφN +aSφS +bφ (21)

= for all control volumes described in Fig. 3. The coefficients, aP, aE , aW , aN , aS

and bφ are organized in Tabs. 1 to 3, including the first volume, which discretization
already was described in this section.

For the coupling between pressure and velocity, the SIMPLEC algorithm (Semi
Implicit Method for Pressure Linked Equations Consistent) was employed. The
discretized equations are solved iteratively using the line-by-line method presented
in Patankar (1980). Under-relaxation was employed to obtain a stable convergence
for the solution of momentum and pressure equations.
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Table 1: Coefficients for Eq. (21).
Cell aP aE aW aN aS

First aE +aN DeA(|Pe|)+ 〈−Fe,0〉 0 0
Second aE DeA(|Pe|)+ 〈−Fe,0〉 0 0 0
Third aE +aN +aS DeA(|Pe|)+ 〈−Fe,0〉 0 DnA(|Pn|)+ 〈−Fn,0〉 DsA(|Ps|)+ 〈Fs,0〉
Fourth aW +aN 0 DwA(|Pw|)+ 〈Fw,0〉 DnA(|Pn|)+ 〈−Fn,0〉 0
Fifth aW 0 DwA(|Pw|)+ 〈Fw,0〉 0 0
Sixth aW +aN +aS 0 DwA(|Pw|)+ 〈Fw,0〉 DnA(|Pn|)+ 〈−Fn,0〉 DsA(|Ps|)+ 〈Fs,0〉

Table 2: Source term, total and convective fluxes used in Tab. 1.
Cell bφ J F

First S
φ − (Jnw −FnwφP)+(Js −FsφP)−Γφ

I
∂φ
∂n

)
I
dlI Fnφn −Γφ

n
∂φ
∂y

)
n

dln ρvdl)n

Second S
φ −Γφ

I
∂φ
∂n

)
I
dlI − (Jn −FnφP)+(Js −FsφP), Fneφne−Γφ

ne
∂φ
∂y

)
ne

dlne ρvdl)ne

Third S
φ − (Jnw −FnwφP)+(Jsw −FswφP)−Γφ

I
∂φ
∂n

)
I
dlI Fnwφnw −Γφ

nw
∂φ
∂y

)
nw

dlnw ρvdl)nw

Fourth S
φ − (Jne −FneφP)+(Js −FsφP)+Γφ

I
∂φ
∂n

)
I
dlI , −Fsφs +Γφ

s
∂φ
∂y

)
s
dls ρvdl)s

Fifth S
φ +Γφ

I
∂φ
∂n

)
I
dlI − (Jn −FnφP)+(Js −FsφP), −Fseφse +Γφ

se
∂φ
∂y

)
se

dlse ρvdl)se

Sixth S
φ − (Jne −FneφP)+(Jse −FseφP)−Γφ

I
∂φ
∂n

)
I
dlI −Fswφsw +Γφ

sw
∂φ
∂y

)
sw

dlsw ρvdl)sw

Table 3: Variable φ and (∂φ/∂y).

Faces φ (∂φ/∂y)
n c1x2

nyn +c2x2
n +c3xnyn +c4xn +c5yn +c6 c1x2

n +c3xn +c5

ne c1x2
neyne +c2x2

ne +c3xneyne +c4xne +c5yne +c6 c1x2
ne +c3xne +c5

nw c1x2
nwynw +c2x2

nw +c3xnwynw +c4xnw +c5ynw +c6 c1x2
nw +c3xnw +c5

s c1x2
s ys +c2x2

s +c3xsys +c4xs +c5ys +c6 c1x2
s +c3xs +c5

se c1x2
seyse +c2x2

se +c3xseyse +c4xse +c5yse +c6 c1x2
se +c3xse +c5

sw c1x2
swysw +c2x2

sw +c3xswysw +c4xsw +c5ysw +c6 c1x2
sw +c3xsw +c5

3 Numerical Results

In this section is presented flow patterns and characteristic parameters for a tri-
angular cavity flow with different Reynolds numbers. Numerical tests for a vari-
ety of triangular geometries have been investigated, but for brevity, only give here
the description for the equilateral cavity. Using Cartesian grids 30×60, 60×120,
120×240, and 240×480, we obtain numerical results for Reynolds number up to 1.
The comparison between the coarse and fine grids in terms of accuracy of numeri-
cal results and computational time show the reliability using a coarse grid, formed
by 120×240 control volumes. Detailed characteristics parameters are given in Tab.
4. It can be seen from Tab. 4 that our results are in good agreement with those
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obtained by Li e Tang (1996) and McQuain et al. (1994). In Tab. 4 the stream
function (maximum), ψ , and vorticity, ζ , values are presented at the center of the
primary vortex.

To verify the accuracy of the results presented in Tab. 4 it was computed the ab-
solute error, |φp − φo|, where the subscript p denotes the present work and the
subscript o denotes the study made by other authors. Comparing the values of the
stream function, the biggest error was obtained to Re = 200, with the value of 3.3%
compared to Li and Tang (1996) and the smallest error was obtained to Re = 1 with
the value of 0.4% compared to McQuain et al. (1994). Comparing the values of
vorticity the biggest error was obtained to Re = 200 with the value of 2.69% com-
pared to Li and Tang (1996) and smallest error was obtained to Re = 1 with the
value of 0.5% compared to Li and Tang (1996). The order of the errors obtained
shown that the method employed in the present study is suitable to solve triangular
cavity flow with reasonable accuracy.

Table 4: Stream function and vorticity values at the center of the primary vortex,
for Re ≤ 1500.

Re Fontes ψ ζ x y Error ψ Error ζ

1
Present work 0.229 1.373 1.732 2.475

Li and Tang (1996) 0.235 1.368 1.767 2.460 0.006 0.005
McQuain et al. (1994) 0.233 1.363 1.749 2.460 0.004 0.010

50
Present work 0.230 1.399 1.876 2.475

Li and Tang (1996) 0.240 1.527 2.113 2.460 0.010 0.128
McQuain et al. (1994) 0.237 1.464 2.078 2.445 0.007 0.065

100
Present work 0.231 1.409 1.963 2.463

Li and Tang (1996) 0.253 1.349 2.044 2.340 0.022 0.060
McQuain et al. (1994) 0.247 1.373 2.061 2.355 0.016 0.036

200
Present work 0.236 1.481 2.107 2.438

Li and Tang (1996) 0.269 1.212 1.940 2.280 0.033 0.269
McQuain et al. (1994) 0.260 1.272 1.940 2.280 0.024 0.209

350
Present work 0.241 1.405 2.107 2.375

Li and Tang (1996) 0.277 1.124 1.905 2.220 0.036 0.281
McQuain et al. (1994) 0.268 1.232 1.905 2.265 0.027 0.173

500
Present work 0.247 1.321 2.021 2.325

Li and Tang (1996) 0.279 1.066 1.871 2.160 0.032 0.255
McQuain et al. (1994) 0.269 1.250 1.905 2.265 0.022 0.071

1000
Present work 0.252 1.200 1.934 2.275

Li and Tang (1996) 0.280 1.110 1.862 2.175 0.028 0.090
McQuain et al. (1994) - - - -
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Properties of the center of the primary vortex, i.e., stream function and vorticity val-
ues are presented for Reynolds numbers 2000 to 6000 in Tab. 5, such results there
are not in literature. Analytical study performed by Batchelor (1956) shows that
the theoretical value of vorticiy at the primary vortex center is 1.054 for equilateral
cavity with length of side 2

√
3. Our numerical results (see Tabs. 4 and 5) suggest

that the stream function value at the center of the primary vortex, ψ , converges to
a constant value, and its vorticity, ζ , is quite close to 1.054 as 500 ≤ Re ≤ 2000.
Table 5 shows values to vorticity and stream function. Note that when Re is greater
than 2000, the location of the center of the primary vortex seems to be independent
of the Reynolds number.

Table 5: Stream function and vorticity values at the center of the primary vortex,
for 2000 ≤ Re ≤ 6000.

Re ψ ζ x y
2000 0.239 1.070 1.905 2.238
3000 0.180 1.395 2.252 2.438
4000 0.160 1.436 2.338 2.475
5000 0.147 1.444 2.396 2.500
6000 0.138 1.435 2.425 2.512

In addition to local quantities, stream function and vorticity, it is interesting to
compare global quantities as the total kinetic energy, E, and enstrophy, Z, defined
by

E =
1
2

∫
Ω

||U ||2dx, (22)

Z =
1
2

∫
Ω

||ζ ||2dx, (23)

where Ui, j = (ui, j,vi, j). In cavity flow the kinetic energy represents the total energy
gained by system with the fluid displacement.

Table 6 presents the flow properties with the increasing Reynolds number from
1000 to 6000. Note that the location of the maximum stream function is the same
location of the center of the primary vortex. As verified by Li and Tang (1996) it
is observed that the interior of the primary vortex has almost constant vorticity for
Reynolds number larger than 3000 (see Tab. 6). We can see that the total kinetic
energy gives converged values and decreases with the Reynolds number while the
enstrophy increases.
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Table 6: Proprieties of flow in triangular cavity, for 1000 ≤ Re ≤ 6000.

Re Proprieties Value
Location

x y

1000

ψmax 0.252 1.934 2.275
ψmin -0.007 1.674 1.025

ζ 1.200 1.934 2.275
E 0.235 - -
Z 15.139 - -

2000

ψmax 0.239 1.905 2.238
ψmin -0.008 1.588 1.038

ζ 1.070 1.905 2.238
E 0.211 - -
Z 16.568 - -

3000

ψmax 0.180 2.252 2.438
ψmin -0.018 0.924 2.288

ζ 1.395 2.252 2.438
E 0.136 - -
Z 18.250 - -

4000

ψmax 0.160 2.338 2.475
ψmin -0.020 0.982 2.288

ζ 1.436 2.338 2.475
E 0.113 - -
Z 19.197 - -

5000

ψmax 0.147 2.396 2.5
ψmin -0.021 1.010 2.288

ζ 1.444 2.396 2.5
E 0.099 - -
Z 19.989 - -

6000

ψmax 0.138 2.429 2.512
ψmin -0.022 1.037 2.273

ζ 1.435 2.429 2.512
E 0.089 - -
Z 20.676 - -

Streamlines and vorticity contours are reported in Figs. 6 and 7, respectively, for
Re = 1, 500, 1000, 2000, 3000, 4000, 5000 and 6000. The values used to plot
the contours are described in Tab. 5. When the Reynolds number is small, the
streamlines contour consists of one vortex only (see Fig. 6 to Re = 1).
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As the Reynolds number increases, first a secondary vortex and then a tertiary vor-
tex arises, as we can see in Fig. 6. The size of the vortices depends on the Reynolds
number too. In the triangular cavity, a major vortex is occupying the central part
of the domain, while minor vortices appear at the lower corner, however when
Reynolds number increases the lower vortices grow pushing the main vortex to the
right part of the cavity.

The topmost vortex deviates from the center with increase in Reynolds number,
since inertial effects near the top wall become more important as Re increases. For
all Reynolds numbers, the lower vortices have their centers along the centerline of
the cavity. The topmost vortex, where inertial effects are dominant, first moves
to the right as Re increases and later moves back towards the center of the cavity,
while the second vortex moves to the left and increases with the Reynolds number.

Plots of the contours of constant vorticity are shown in Fig. 7. It is seen that for
small Re, the vorticity field is symmetrical about the centerline. However, as Re
increases, the vorticity variation moves to the boundary regions of the cavity, while
the interior or the topmost vortex tends to attain constant vorticity.
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Figure 6: Streamlines for different Reynolds numbers.

4 Conclusions

In this paper was presented the results of a steady viscous flow in a triangular cavity.
With the use of Cartesian grids and an Eulerian-Lagrangian method, the solution
was obtained without encountering any difficulties. The present approach proved to
be quite successful and yielded accurate solutions for high Reynolds numbers, form
1 to 6,000. The numerical results obtained in this study were compared with results
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Figure 7: Vorticity contours for different Reynolds numbers.

reported in literature (Li and Tang, 1996; McQuain et al., 1994) and the agreement
is good. The total kinetic energy gives converged values and decreases with the
Reynolds number while the enstrophy increases. The triangular cavity flow can be
a benchmark test case to study the performance of different numerical methods in
irregular geometries.
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