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Application of Meshless Local Petrov-Galerkin (MLPG)
Method in Cloth Simulation

Weiran Yuan1,2, Yujun Chen2,3, André Gagalowicz2 and Kaixin Liu1

Abstract: In this paper we present an approach to cloth simulation which mod-
els the deformation based on continuum mechanics and discretized with Meshless
Local Petrov-Galerkin (MLPG) Method. MLPG method, which involves not only
a meshless interpolation for trial functions, but also a meshless integration of the
local weak form, has been considered as a general basis for the other meshless
methods. By this way, the mechanical behavior of cloth is consistent and united,
which is independent of the resolutions. At the same time, point sampled models,
which neither have to store nor to maintain globally consistent topological infor-
mation, are available for MLPG method. We use Kirchhoff-Love (KL) thin shell
theory as the basis of the cloth model. Compared to finite element methods, MLPG
method provides higher continuity in the displacement field which meets the re-
quirement of the KL model. When large deformation is involved, the nonlinear
equations make the simulations become costly. We use corotational formulation
to attach the parameterized local coordinate system of nodes. In addition, the ro-
tation fields are computed by an efficient iteration scheme. This allows us to use
stable corotated linear strains. As for the collision solution, since the conventional
mesh-based collision detection methods fail to work in meshless methods. We de-
veloped a novel shape function based collision detection method for the meshless
parametric surface. The experimental results show that our cloth simulator based
on MLPG method can produce vivid results and can be applied especially in the
computer cloth animation.
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1 Introduction

Physically-based cloth simulation has been widely used in virtual reality, computer
animation and textile industry CAD. Till now, mass-spring method is widely used
in cloth simulation for its low computational cost and easy implementation [Nealen,
Müller, Keiser, Boserman, and Carlson (2005)]. But this method has some natu-
ral drawbacks due to the non-continuum configuration, for instance, the material
can not be simulated consistently, the results depend on the mesh of springs; the
spring parameters lack the basis of physics [Thomaszewski, Wacker, and Straβ er
(2006)]. While in the textile industry the realistic and authentic cloth behavior
is required, one have to resort to the continuum mechanics such as finite element
methods [Etzmuβ , Keckeisen, and Straβ er (2003)] or meshless methods, to solve
the problem. By continuum methods, material behavior can be reproduced accu-
rately, independently of discretization.

Meshless methods have been introduced to computer graphics in recent years and
gained increasing attentions as alternative computational methods to the traditional
mesh-based methods, such as FEM [Pauly, Keiser, Adams, Dutré, Gross, and Guibas
(2005); Guo, Li, Bao, Gu, and Qin (2006); Chang and Zhang (2004)]. Meshless
methods have attracted more and more attentions due to their flexibility in solv-
ing engineering problems. Among these methods, Meshless Local Petrov-Galerkin
method (MLPG) [Atluri and Zhu (1998)] has been considered as a general frame-
work or a general basis for the other meshless methods [Atluri and Shen (2005)].
MLPG involves not only a meshless interpolation for trial functions, but also a
meshless integration of the local weak form, i.e., it does not need any background
element or mesh. MLPG provides the flexibility in choosing the trial and test func-
tions, as well as the sizes and shapes of local sub-domains, and has been proved to
be a truly meshless method [Atluri (2004)]. Therefore MLPG is more flexible and
easier to handle the problems from which the conventional Finite Elements (FE) or
the other meshless methods suffer.

At the same time, point sampled models, which neither have to store nor to maintain
globally consistent topological information, are used in meshless methods. It be-
comes an ongoing research topic in the field of computer graphics. Although great
achievements have been made [Müller, Keiser, Nealen, Pauly, Gross, and Alexa
(2004); Guo, Li, Bao, Gu, and Qin (2006)], the full potential of the alternative
modeling primitives and the possible areas of application have not yet been fully
explored. The application of meshless methods on cloth simulation is an interesting
issue.
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1.1 Contributions

In this paper, we present a new meshless cloth simulator with Kirchhoff-Love (KL)
thin shell theory. The special feathers of cloth as a thin shell bring several problems
to traditional meshless methods, for instance, the cloth has different stiffness on
the membrane and bending direction. In most of the cloth simulation approaches,
the treatments of bending models is done by an angular expression which is not
accurate [Thomaszewski, Wacker, and Straβ er (2006)]. This means that realistic
material parameters and resolution independence can not be expected. However,
our method can provide the both the accuracy and the continuum representation.
The discretization is based on a MLPG method, which means that the discretization
is independent of the geometric subdivision into finite elements. The requirements
of consistency are met by the use of a polynomial basis of quadratic or higher order.

When large deformation is involved, the nonlinear equations make the simulations
become costly. The finite strain, known as geometrical nonlinearity, is closely
linked to the invariance of the measure under rotations. We use corotational formu-
lation to attach the parameterized local coordinate system of nodes. In addition, we
compute the rotation field by an efficient iteration scheme. This allows us to use a
stable corotated strains.

The collision problem is a difficult problem for the meshless method, since the
model does not have the explicit connections and triangles. It makes the traditional
collision detection invalid. We propose a detection method based on the moment
matrix from shape functions. The shape functions construct the meshless approxi-
mation and provide a natural indicator to track the surface. The detection method
presented in this paper can detect the contact region by simple criteria.

With the continuum KL thin shell model, the meshless computation, the corota-
tional formulation, the collision detection method, the meshless cloth model can
provide realistic and authentic cloth behavior.

1.2 Related Work

In recent years, the meshless methods have been successfully adopted to the com-
puter graphics [Pauly, Keiser, Adams, Dutré, Gross, and Guibas (2005); Chang and
Zhang (2004); Guo, Li, Bao, Gu, and Qin (2006)]. Desbrun [Desbrun and Gascuel
(1995)] was the first to introduce meshless ideas to the computer graphics area,
then the mesh free method was also introduced to the deformable objects. Nealen,
Müller, Keiser, Boserman, and Carlson (2005) presented a very nice survey for the
deformable objects. Pauly, Keiser, Adams, Dutré, Gross, and Guibas (2005) pre-
sented a meshless framework for elastic and plastic materials for fracture. Chang
and Zhang (2004) presented the meshless method for animating elastic solids. Guo
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and Qin (2005); Guo, Li, Bao, Gu, and Qin (2006) presented a meshless simulation
method for volumetric objects and extended to the parametric domain with global
parameterization for the thin-shell elastic deformation. Atluri and Zhu (2000) sur-
veyed the up-to-date classification and overview of the meshless methods.

MLPG methods have a bright future to apply in the simulation work of computer
graphics. After Atluri’s pioneer work [Atluri and Zhu (1998)], it has found a wide
range of applications of MLPG methods in analyzing elasto-statics [Atluri and
Zhu (2000); Han and Atluri (2004b)], elasto-dynamics [Han and Atluri (2004a)],
convection-diffusion problem [Lin and Atluri (2000)], thermoelasticity [Sladek,
Sladek, and Atluri (2001); Sladek, Sladek, Zhang, and Tan (2006)], beam prob-
lems [Raju and Phillips (2003)], plate problems [Gu and Liu (2001); Long and
Atluri (2002); Qian, Batra, and Chen (2003); Sladek, Sladek, Solek, and Wen
(2008)], static and dynamic fracture mechanics [Ching and Batra (2001); Gao, Liu,
and Liu (2006); Sladek, Sladek, Zhang, Solek, and Starek (2007); Long, Liu, and
Li (2008)], thermal analysis [Sladek, Sladek, Zhang, and Solek (2007); Sladek,
abd P. Solek, Wen, and Atluri (2008)], magnetic diffusion [Johnson and Owen
(2007)], fluid flows [Mohammadi (2008); Arefmanesh, Najafi, and Abdi (2008)].
Vavourakis, Sellountos, and Polyzos (2006) compared the accuracy and stability
of five different elasto-static MLPG type formulations. MLPG mixed finite vol-
ume method (MFVM) was proposed by Atluri, Han, and Rajendran (2004) to sim-
plify and speed up the meshless implementation for elastostatic problems [Han
and Atluri (2004b)], elasto-dynamic problems [Han and Atluri (2004a)], nonlinear
problems [Han, Rajendran, and Atluri (2005)], and dynamic problems with large
deformation and rotation [Han, Liu, Rajendran, and Atluri (2006); Liu, Han, Ra-
jendran, and Atluri (2006)]. Liu, Han, and Atluri (2006) proposed a MLPG mixed
collocation method, which results in a stable convergence rate, while being much
more efficient than the MLPG finite volume method. Li and Atluri (2008a) and Li
and Atluri (2008b) presented examples of using MLPG mixed collocation method
on orthotropic solids and topology-optimization of structures. An MLPG mixed
finite difference method was presented by Atluri, Liu, and Han (2006a,b). And Ma
(2008) presented a meshless interpolation scheme for MLPG_R Method (Meshless
Local Petrove-Galerkin based on Rankine source solution). The three MLPG mixed
methods use the mixed approach to interpolate the variables of different orders in-
dependently, through the MLS approximation. They demonstrate the flexibility
of the MLPG approach, as a general framework, in developing various meshless
methods.

Other new meshless methods are also researched on topics of structural dynamic
analysis [Liu, Chen, J.Li, and Cen (2008)], quasi-brittle materials [Le, Mai-Duy,
Tran-Cong, and Baker (2008)], moving interface problems [Mai-Cao and Tran-
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Figure 1: Thin shell model and discretization

Cong (2008)], cracks problems [Rabczuk and Areias (2006), Zhang and Chen
(2008), Sageresan and Drathi (2008), Wen, Aliabadi, and Liu (2008)], interior and
exterior Dirichlet problems for the two-dimensional Laplace equation [Liu (2007)],
fluid-structure-interaction problems [Ahrem, Beckert, and Wendland (2006)] and
heat conduction problems [Wu, Shen, and Tao (2007)].

Etzmuβ , Keckeisen, and Straβ er (2003) proposed a fast finite element solution
for cloth modeling and extracted the rotational part from the displacement field.
Thomaszewski, Wacker, and Straβ er (2006) presented a method based on a coro-
tational formulation of subdivision finite elements from the simpler 2D problem.
They defined C1 continuous displacement field.

As for the thin shell method, Grinspun [Grinspun (2004)] presented a discrete shells
which can be used to model the aluminum cans and light bulb fracturing. They
formulated the dynamics by a discrete model, derived geometrically for triangle
meshes. Choi, Woo, and Ko (2007) proposed a real-time simulation technique for
thin shell using the energy functions presented by Grinspun. Wicke, Steinemann,
and Gross (2005) used the Kirchoff-Love constitutive equations, whose energy cap-
tured curvature effects in curved coordinate frames. They combined the thin-shell
model with the point model and presented a fibre structure. Sladek, Sladek, Wen,
and Aliabadi (2006) applied MLPG methods to solve bending problems of shear de-
formable shallow shells described by the Reissner theory. Jarak, Soric, and Hoster
(2007) analyze shell deformation responses by MLPG methods.
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2 Kinematic description

The Kirchhoff-Love (KL) theory assumes the shell to be thin which suits for the
cloth. The shell in the 3D space is described in a global cartesian coordinate system
EI . The pair (ϕϕϕ,a3) defines the position of an arbitrary point of the shell, ϕϕϕ gives
the position of a point on the shell mid-surface, and a3 is an unit vector (normal
to the shell surface). Figure 1 illustrates the model of KL thin shell theory. The
configuration Ω can be put down as

Ω =
{

x ∈ R3|x = ϕϕϕ(ξ 1,ξ 2)+ξa3(ξ 1,ξ 2)
}

, (1)

with ξ 1,ξ 2 ∈ Λ and ξ ∈< h−,h+ >. Here Λ denotes the parametric space, <

h−,h+ > are the distances of the "lower" and "upper" surfaces of the shell from the
reference surface.

We define the convective basis vectors gI by the tangent map

∇x(ξ 1,ξ 2) =
∂x(ξ 1,ξ 2)

∂ξ I ⊗EI = gI ⊗EI

=
∂ϕϕϕ(ξ 1,ξ 2)

∂ξ I ⊗EI +ξ
∂a3(ξ 1,ξ 2)

∂ξ I ⊗EI ,

where the upper Latin subscript I denotes 1 to 3.

In the parametric surface Λ, we define

aα =
∂ϕϕϕ(ξ 1,ξ 2)

∂ξ α , a3 =
a1 ×a2

|a1×a2| , (2)

where the Greek indices α range from 1 to 2. The shell director a3 coincides with
the normal to the middle surface of the shell and has the properties:

aα ·a3 = 0, |a3| = 1

.

In the configuration Ω, we have the covariant base vectors simply as

gα =
∂x(ξ 1,ξ 2)

∂ξ I = aα +ξa3,α ,

g3 =
∂x(ξ 1,ξ 2)

∂ξ
= a3. (3)

The following contents will use upper-script to denote variables in the reference
configuration. For instance ϕ̄ is a point on the reference surface; and in the current
configuration, variables are without upper-scripts.
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The Green-Lagrange strain tensor of the shell is defined as follows,

EIJ =
1
2
(gIJ − ḡIJ)

= αIJ −ξβIJ , (4)

the non-zero components of the tensors αIJ and βIJ are in turn related to the defor-
mation of the shell.

We developed corotational formulation for meshless strain, which will discuss at
section 4, so we only need to derive the linearized kinematics. By

x(ξ 1,ξ 2) = x̄(ξ 1,ξ 2)+u(ξ 1,ξ 2),

where u(ξ 1,ξ 2) is the displacement field of the middle surface of the shell, we can
write the membrance and bending strains as:

ααβ =
1
2
(āα ·u,β +u,α · āβ ), (5)

βαβ = −u,αβ · ā3

+
1

|ā1 × ā2| [u,1 · (āα ,β × ā2)+u,2 · (ā1 × āα ,β )]

+
ā3 · āα ,β

|ā1 × ā2| [u,1 · (ā2 × ā3)+u,2 · (ā3× ā1)]. (6)

We can conclude from these expressions that the displacement field u of the middle
surface furnishes a complete description of the deformation of the shell. So we
regard u as the primary unknown of the analysis. It follows from these relations
that, by virtue of the assumed Kirchhoff-Love kinematics, all the strain measures
of interest may be deduced from the deformation of the middle surface of the shell.

3 Meshless numerical discretization

3.1 Interpolation approximation

For a so-called meshless implementation, a meshless interpolation scheme is re-
quired, in order to approximate the trial function over the solution domain. Actu-
ally, meshless methods can be classified according to the meshless approximation
method used.

In our work, the augmented radial basis functions (RBF) approximations are used to
construct shape functions. They have some distinct advantages over the widely used
moving least squares(MLS) approximation, including the shape functions possess
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the delta function property and the second derivatives of the shape function are
smoother, and are computationally less costly. Its delta function property makes it
possible to directly enforce the essential boundary conditions.

Figure 1 illustrates the KL thin shell representation and the meshless sub-domains.
Consider a sub-domain Ωs of a point x, which is local in the solution domain. To
approximate the distribution of function u in Ωs, over a number of scatterd points
{xi} , (i = 1,2, ...,n),the local augmented interpolation of both RBF and MLS can
be expressed as standard form

u(x) = ΦT (x)u, ∀x ∈ Ωs, (7)

with Φ(x) being the shape functions. We take RBF interpolation for example:

ΦT (x) =
[
RT (x),PT (x)

]
G, (8)

where RT (x) = [R1(x),R2(x), ...,Rn(x)] is a set of radial basis functions centered
around the n scattered points, PT (x) = [p1(x), p2(x), ..., pm(x)] is a monomial basis
of order m. G is a matrix composited by R and P at the scattered points:

G =
[

R0 P0

PT
0 0

]−1

,

R0 =
[
RT (xi)

]
, P0 =

[
PT (xi)

]
, i = 1,2, ...,n

The derivatives of u(x) can be simply expressed using the derivatives of the shape
function ΦI(x),

u, j(x) =
{

ΦI, j(x)
}T {uI} . (9)

As at least C1 continuity is required for shape functions ΦI(x) in shells, special
techniques must be adopted to model surfaces with discontinuities in geometry
such as crease, such surfaces might have to be split with appropriate boundary
conditions imposed at the seam line.

3.2 Surface and displacement approximation

In point based graphics, object as cloth can be rendered only use the coordinates
of scattered points on surface. The present approach is targeted at cloth as general
shells. It means that we have to deal with the issue of surface shape approxima-
tion. Naturally, the method of computing shape function can be applied to fit the
approximate surface to a collection of scattered data points.

The RBF or MLS technique can be applied immediately to obtain the surface ap-
proximation. Let us assume that a set of m scattered points in space is given. These
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points lie directly on the surface to be approximated at locations xI. The approxi-
mate surface and displacement then may be described by

ϕϕϕ(ξ 1,ξ 2) =
m

∑
I=1

ΦI(ξ 1,ξ 2)xI, (10)

u(ξ 1,ξ 2) =
m

∑
I=1

ΦI(ξ 1,ξ 2)uI . (11)

where ξ 1,ξ 2 is the parameterization of the surface. Note that to evaluate the deriva-
tives of the displacement vector u(ξ 1,ξ 2) one needs only to differentiate the shape
function ΦI(ξ 1,ξ 2). This means that the smoothness of the displacement approx-
imation depends on the smoothness of the shape function. To compute the strains
one needs only second order derivatives with respect to the parameters ξ 1,ξ 2.

3.3 Dynamics system equations

We can relate a pair of energy conjugated strain and stress E and S with a material
law as

S = C(E)

In stable elastic equilibrium situations the total energy must be at a minimum.
Mathematically, the weak form of the equilibrium equation can be formulated by
setting the first varitation of energy to zero
∫

Ω
δE : SdΩ−

∫
Ω

δu ·qdΩ+
∫

Ω
νδu · u̇dΩ+

∫
Ω

ρδu · üdΩ = 0 (12)

where the three terms account for elastic strain energy, potential energy due to ap-
plied force, viscosity force and inertial force. With the definition of the membrane
and bending strains and stress, the elastic strain energy can be rewritten as
∫

Ω
δE : SdΩ =

∫
Ω
(δαT Hmα +δβ T Hbβ )dΩ, (13)

where Hm and Hb are matrices corresponding to the membrane and bending part
of the material law, which are the same with the FEM, refer to Cirak, Ortiz, and
Schroder (2000) for more details of H.

Owning to the linear relationship between α ,β and u from equation (5) to (6), and
the approximation of displacement u by the nodal displacement uI in equation (7),
we obtain:

α(ξ 1,ξ 2) =
m

∑
I=1

RI
m(ξ 1,ξ 2)uI, (14)
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β (ξ 1,ξ 2) =
m

∑
I=1

RI
b(ξ 1,ξ 2)uI , (15)

where RI
m and RI

b are matrices relating nodal displacement to membrane and bend-
ing strain.

The dynamics equation in form of the second order ordinary differential equation
in time is

Mü+Du̇ +Ku = f, (16)

where M is the diagonal nodal mass matrix, D is the viscosity matrix and K is the
stiffness matrix, with the nodal displacement vector u and forces vector f.

In MLPG approaches, one may write a weak form over a local sub-domain Ωs of a
point xk, which may have an arbitrary shape. Application equation (12) to (15) , a
generalized local weak form corresponding to the stiffness matrix and nodal force
vector of equation (16) will be

KIJ
k =

∫
Ωs

[
(RI

m)T HmRJ
m +(RI

b)
T HbRJ

b

]
dΩ, (17)

fI
k =

∫
Ωs

ΦIqdΩ. (18)

The stiffness matrix is evaluated by numerical integration in the local domain Ωs.
Usually, Gaussian integration will be applied. Owe to the arbitrary shape of the
local domain, it does not need any mesh or background mesh for the integration of
the weak forms.

For numerical solution, equation (16) is translated into the first order ODEs and
any time integration scheme can be applied. The arising linear system of equations
with nodal velocities as primary unknowns is a large and usually sparse system,
which can be solved by direct factorization methods [Yuan, Chen, and Liu (2007)]
or iteration factorization methods.

4 Meshless corotational formulation for large deformation

Green-Lagrange strain tensor leads to a nonlinear ODE. The corotational formu-
lation aims at the elimination of the geometrical nonlinearity. The idea is to keep
track of a rotated local coordinate system of every nodes of the body.

We linearized the strain in equation 5 and 6, so the strain in the former kinematic
description is linear in displacement but not rotationally invariant anymore. How-
ever, if the rotation field R is known, the corotational strain formulation can be used
and we obtain the rotated linear strain tensor on the rotated current configuration.
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With equation (1) and (2), the deformation gradient can be written as

F =
∂x
∂ x̄

=
∂x
∂ξ I ⊗ ḡI = [aα +ξa3,α ]⊗ ḡα +a3 ⊗ ḡ3 (19)

Via polar decomposition the deformation gradient tensor F can be split into a rota-
tional tensor R and a pure deformation U as

F = RU

Higham and Schreiber (1990) proposed an efficient, quadratically convergent iter-
ation scheme to extract rotation field from deformation gradient

R0 : = F (20)

Rn+1 : =
1
2

(
Rn +(Rn)−T

)
. (21)

This abtains a very fast and accuracy controlled method of computing R. The it-
eration is defined for square, nonsingular matrices only, but Higham also present a
preliminary QR decomposition enables the treatment of singular matrix.

With the rotated field R, the stiffness matrix Ku becomes RKuR. In the nodal view
of node I , the displacement influence nodes J is uR

J = RT
I (x̄J +uJ −xI)+(xI − x̄J).

Therefore, the dynamics system equation (16) can be rewritten as

Mü+Du̇ +RKRT u = f+RK(RT − I)(xnode−x). (22)

Now the system to be solved in each time step remain linear. Compared to clas-
sical linear meshless methods, the linear system change over time, whenever the
reference configurations are updated.

5 Collision detection of Meshless surface

For the collision detection, as the meshless methods don’t maintain the mesh of the
surface, therefore the conventional mesh-based collision detection methods, e.g.
vertex-to-face and face-to-face detection, fail to work. We present a new collision
detection method based on the shape function for the meshless point surface . It
aims to decide whether a node is in collision with the other parts of the meshless
cloth surface. Take the node positioned at P as example, in the next timestep the
position will be Q. If P will have a collision with the cloth, then PQ will intersect
with the parametric surface in this time step. We assume the intersection point as
M.
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Then the problem can be separated into two steps. At first we determine whether the
intersection point M exists and compute the parametric coordinates of M; Secondly,
on the parametric surface, determine whether M is inside the domain of cloth. It’s
quite easy to get M via project P to the surface (note the projection point as P′)
and express the parametric coordinates of M by the parametric coordinates of P′.
Then the second step is simplified to a collision problem of meshless domain in
two dimensional space.

In our meshless interpolation methods, the construction of shape function (equation
8) requires computing of matrix

N =
[

R0 P0

PT
0 0

]
. (23)

It has been found that this matrix provides a natrual indicator to track the surface
of the continuum object. Based on the matrix N from shape function, the collision
detection in two dimensional parametric space can be done simply and accurately.
Li, Qian, Liu, and Belytschko (2001) proved that the internal position of a contin-
uum domain and the external can be distinguished by checking the determinant of
the matrix N. Inside the continuum domain of any shape, det {N(x)} has a positive
value, and outside the domain det {N(x)} → 0. The usefulness of above property
is that one can accurately track the position of any continuum without knowing the
exact shape of its boundary, which is almost impossible to know in general mesh-
less models. Therefore we can track if the intersection point M is in the internal
cloth domain or in the external (or holes on cloth).

The collision response is available through different approaches. Physically, it can
be done by adding a penalty force or constraints between the contacting nodes.
All these response methods are same as the mesh-based methods. The a3 of the
intersection point M (choose between a3 and −a3 according to the position of P)
can be used as an indication of the direction to eliminate collision and τ = |PQ|

|PM| ,
the ratio of crossed part of PQ, as an indication of the amount of penalty force or
position of constraints.

6 Implementation

The implementation of the numerical part of the proposed method can be carried
out according to the following outline in Figure 3.

Because the shape functions are computed from the parametric surface Λ, storage of
the computed R(x) and P(x) for computing points and G for nodes may accelerates
the whole procedure. The neighbor nodes in a subdomain Ωs of a computing point
x can also be searched for only one times. These are all benefit from the constant
coordinates in the parametric surface Λ.
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Figure 2: Computing nodes and sampling points

For the matiral parameters, we use the same idea with Thomaszewski, Wacker, and
Straβ er (2006) and take the Kawabata measurements [Kawabata (1980)] of real
fabric samples, which makes the parameter more realistic. Kawabata measurements
are standard equipments that can measure the cloth behaviour in weft and warf
directions. They can reflect the textile parameters that controls the bending and
draping. The elastic parameters can be obtained from Kawabata measurements
and be assumed a purely elastic stress. The poisson coeficient cannot be estimated
from Kawabata experiments and we set a values about 0.3 which are close to the
Poisson numbers used by Thomaszewski, Wacker, and Straβ er (2006). For the
viscous material parameters, we choose a constant fraction of the corresponding
elastic parameter. We used implicit time integration [Baraff and Witkin (1998)]
and this implicit method has already been applied in our another cloth simulator
emillion which is based on the mass spring model [Gagalowicz (2006)].

7 Results

In this section we present our experimental results on our meshless cloth simulator.
The elasticity coefficient (Young’s modulus) E= 10000N/m and Poisson’s ratio ν =
0.3. Through the experimental results we can see that the meshless method can treat
the cloth with large deformation.
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Figure 3: Implementation outline

1. Parameterize the given cloth model Ω to the mid-surface Λ. Determine the
undeformed configuration and the beginning configuration.

2. Choose a finite number of nodes on the parametrized mid-surface Λ.

3. Determine the local sub-domain Ωs for each node.

4. Compute G of each node; compute the shape functions ΦI in the definition
domain of each node; and compute the derivatives of node coordinates.

5. Loop over all nodes located inside the global domain

(a) Determine Gaussian quadrature points xQ in the subdomain
Ωs.

(b) Loop over quadrature points xQ

i. calculate the shape function and the derivatives;

ii. evaluate numerical integrals;

iii. assemble contributions to the system equation for all
nodes in K.

6. End node loop.

7. Assemble M, D for the dynamics equations.

8. Loop over all time steps, the interval is δ t

• Compute rotated K;

• Filter K, M and D if using constraints.

• Composite the linear system depending on the type of time integra-
tion;

• Solve the arising linear system and obtain the velocity u̇;

• Update the unknown variables and their derivatives at the sample
points;

• Collision detection;

• Extract the new rotation field;

• Resample if needs to generate a rendering frame.

9. End time step loop.
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Figure 4: Results of the cylindrical sleeves with the twisting force

Figure 5: Results of buckling effects

Figure 6: Results of a cloth dropping on a truncheon

Figure 7: Results of a cylindrical cloth draping on its middle line
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The first example, We simulate the cylindrical sleeves with the twisting force. The
cylindrical sleeves are the most frequently used examples in the cloth simulation
research and can well judge the validity for buckling and folds for the simulator.
The cylindrical sleeves are also the basic elements of the virtual garment and it can
prove the potential capability for the virtual dressing. In this example, only 20×20
nodes are modeled for the simulation. The time for computing the deformation is
nearly realtime for the small amount of nodes. The reason for the low computation
is that the most time consuming parts of the simulator is at the assembling the
stiffness matrix. Figure 2 shows the original computational nodes with the local
coordinates drawn in each nodes, and the thicker sampling points for the rendering.
After obtaining the stiffness matrix, in each time step there is no time consuming
computation. At the same time, it can obtain accurate results to any precision as
it uses the continuum formulation with the RBF function. In figure 4, the folds
are clearly reproduced and the process of the twisting act the similar behaviors as
observed with the real fabrics. The realistic shapes of the meshless cloth simulation
results are undoubtedly because of we use the continuum and consistent way to
model the cloth and the sampling and rending of the meshless surface can take
advantage of the research achievements from the point based graphics.

This approach can also produce the buckling effects which is also one of the most
complicated problems in cloth simulation. In figure 5, the flat cloth undergoes the
boundary force. In the system without buckling treating, it will result to a insta-
bility status. From the example, the small bucks and folds are produced. Another
experiment is the cloth dropping on a truncheon. Figure 6 shows the dynamic pro-
cedure of the results. Figure 7 shows a cylindrical cloth without sewing draping on
its middle line. The examples below show the small buckles and wrinkles produced
by the simulator. These experiments testify the cloth simulator.

8 Conclusion and Future work

We have shown that the MLPG method with KL theory can be used for modeling
cloth more accurately. A novel achievement of the presented work is the combi-
nation of this new approach with corotational formulation resulting a linear sys-
tem, which leads to an efficient implementation. We also present the collision
detection method for the meshless simulator. The computation of meshless method
mainly comes from the numerical integration, smaller number of quadratic points
will speed up the simulation but reduce the precision. Now there is sufficient com-
putational power available, which allows to use physically accurate modeling on
nearly real-time simulations.

The future work may include integration of the garment design system as the pre-
process of the simulator in order to get the results of composite model of the gar-
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ment. The application of the meshless cloth simulator is appealing.
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