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A Lie-Group Shooting Method Estimating Nonlinear
Restoring Forces in Mechanical Systems

Chein-Shan Liu1

Abstract: For an inverse vibration problem of nonlinear mechanical system to
estimate displacement- and velocity-dependent restoring force, we transform the
equation of motion into a parabolic type partial differential equation (PDE). Then
by a semi-discretization of the PDE, the inverse vibration problem is formulated
as a multi-dimensional two-point boundary value problem with unknown sources,
allowing a closed-form estimation through a Lie-group shooting method to con-
struct the restoring force surface over phase plane. Only one set of displacements
measured at sampling time points is used in the estimation. The new method does
not require to assume a priori the functional form of unknown restoring force, and
more importantly, it is free of iteration. The estimated results are very accurate for
stably identifying the restoring force under noise, which can be well used in the
engineering of vibrational mechanics.

Keyword: Inverse vibration problem, Nonlinear mechanical system, Restoring
force, Lie-group shooting method

1 Introduction

Structural dynamics is to analyze and determine the responses of a given structure
subject to various external loading conditions. Based on the results analyzed, struc-
tural engineers are able to check whether a proposed structural design meets the
requirements of adequate resistance to a combination of loading conditions and, if
necessary, to revise a proposed design until all such requirements are satisfied. Ex-
perimental testing and system identification play a key role in structural dynamics,
because they help us to reconcile numerical predicitions with experimental inves-
tigations. System identification is referred to as a mathematical procedure for a
direct extraction of information about structures from experimental data; see, e.g.,
Chao, Chen and Lin (2001), and Hunag and Shih (2007).

1 Department of Mechanical and Mechatronic Engineering, Department of Harbor and River Engi-
neering, Taiwan Ocean University, Keelung, Taiwan. E-mail: csliu@mail.ntou.edu.tw



158 Copyright © 2008 Tech Science Press CMES, vol.35, no.2, pp.157-180, 2008

The dissipation of energy in a mechanical structure is often described by a vis-
cous damping term, while the conservative part is described by a nonlinear spring
element. The resulting equation of vibration is attractive because it can be math-
ematically treated. However, sometimes we may encounter the problem that the
viscoelastic properties of structure or the external force are not yet known, and then
the resulting problem is an inverse vibration problem. It is concerned with the es-
timations of those properties such as damping coefficient [Adhikari and Woodhouse
(2001a); Adhikari and Woodhouse (2001b); Ingman and Suzdalnitsky (2001); Liang
and Feeny (2006)], stiffness [Huang (2001); Shiguemori, Chiwiacowsky and de
Campos Velho (2005)], as well as external force [Huang (2005); Feldman (2007)].
With the aid of measurable vibration data, such as frequency, mode shape, displace-
ment or velocity at different time, the researchers are interesting to estimate those
properties [Kerschen, Worden, Vakakis and Golinval (2006)].

For the inverse vibration problems of linear structures by estimating constant damp-
ing or stiffness coefficients there were many papers, for example, Gladwell (1986),
Gladwell and Movahhedy (1995), Lancaster and Maroulas (1987), Starek and In-
man (1991, 1995, 1997), and Starek, Inman and Kress (1992). However, when
the coefficients are time-dpendent the inverse vibration problems are nonlinear and
they are more difficult to solve. Huang (2001) has employed a conjugate gradi-
ent method to solve the nonlinear inverse vibration problem for the estimation of
time-dependent stiffness coefficient. Recently, Liu (2008a, 2008b) has developed
a Lie-group method to study the inverse vibration problem for estimating both the
time-dependent damping and stiffness coefficients.

In the realm of nonlinear system identification of structural dynamics, Kerschen,
Worden, Vakakis and Golinval (2006) have given a very comprehensive review
of the developments of some useful methods. Parameter identification is a major
step towards the establishment of a structural model with good predictive accuracy.
Among many existent methods, the restoring force surface method (or force state
mapping method) is a simple procedure allowing a direct identification of restoring
force for nonlinear mechanical systems. The basic procedures were introduced
by Masri and Caughey (1979), and then extended by Crawley and Aubert (1986),
Crawley and O’Donnel (1986), and Duym, Schoukens and Guillaume (1996).

Recently, Namdeo and Manohar (2008) have developed new methods of identifi-
cation of nonlinear system parameters from measured time histories of response
under known excitations. Solutions are obtained by using the force state mapping
technique with two alternative functional representation schemes: reproducing ker-
nel particle method and kriging technique. They showed that their method has the
capability to reproduce exactly polynomials of specified order at any point in a
given domain.
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The purpose of this paper is to identify the restoring force H in the following equa-
tion of motion as governed by the Newton’s second law:

φ̈ +H(φ , φ̇ ) = F(t). (1)

Here, H can be a quite general function of displacement φ and velocity φ̇ . Because
H is assumed to be dependent only on φ and φ̇ it can be represented by a surface
over the phase plane of (φ , φ̇). A trivial rearrangement of Eq. (1) gives

H(φ , φ̇) = F(t)− φ̈ . (2)

If the time-varying excitation F(t) and acceleration φ̈(t) are measurable, all the
quantities on the right-hand side are known, and so is H. Usually the acceleration
signal is rather irregular in time contaminated by noise, and it is a big challenge to
use the above equation to reconstruct H as a function of the measured displacement
and velocity. Indeed, there are a couple of issues of signal processing to treat the
above problem [Worden (1990a, 1990b)]. In general, the measurement of displace-
ments at some discretized sampling times is more easy than that to directly measure
velocities and accelerations.

Denoting the measured displacement by x1 = g(t), in order to get velocity and
acceleration we may face an index-three differential algebraic equations (DAEs):

x1(t) = g(t),
ẋ1(t) = x2(t),
ẋ2(t) = x3(t). (3)

How to give an effective numerical method to solve the DAEs is still an important
issue requiring more study [Brenan, Campbell and Petzold (1996)].

With the above situation in mind, we will develop a new Lie-group shooting method
by using only the displacement data to estimate the restoring force H, and delegate
other numerical computation of Eq. (3) by a new fictitious time integration method
[Liu and Atluri (2008)] into other place.

Recently, Liu (2006a, 2006b, 2006c) has made a breakthrough to extend the group
preserving scheme (GPS) developed by Liu (2001) for initial value problems of
ODEs to solve the boundary value problems (BVPs), namely the Lie-group shoot-
ing method (LGSM), and the numerical results revealed that the LGSM is a rather
promising method to effectively solve the two-point BVPs.

In the construction of Lie-group method for the calculations of BVPs, Liu (2006a)
has introduced the idea of one-step GPS by utilizing the closure property of Lie
group. It needs to stress that this one-step Lie-group property cannot be shared by
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other numerical methods, because those methods do not belong to the Lie-group
types. This important property as first pointed out by Liu (2006d) was employed
to solve the backward in time Burgers equation. After that, Liu (2006e) has used
this concept to establish a one-step estimation method to estimate the temperature-
dependent heat conductivity, and then extended to estimate the thermophysical
properties of heat conductivity and heat capacity by Liu (2006f, 2007), and Liu,
Liu and Hong (2007). Moreover, Liu (2008c) used the LGSM to estimate unknown
boundary condition for thermal stress problem through an aid of an internal tem-
perature measurement; and Liu (2008d) used the LGSM to identify time-dependent
heat conductivity function by an extra measurement of temperature gradient. In ad-
dition to the above inverse problems, Chang, Chang and Liu (2008), and Liu, Chang
and Chang (2008) also used the LGSM to solve the boundary layer equations in
fluid mechanics. Liu (2008e) used the technique of LGSM to compute eigenval-
ues and eigenfunctions of Sturm-Liouville problems, and Liu (2008f) proposed an
LGSM for post buckling calculations of elastica.

The Lie-group method possesses a great advantage than other numerical methods
due to its group structure, and it is a powerful technique to solve direct problems
and also the inverse problems of parameters identification.

This paper is arranged as follows. We introduce a novel approach of inverse vi-
bration problem in Section 2 by transforming it into an identification problem of
parabolic type PDE, and then by discretizing the PDE into a system of ODEs at
the discretized times. Here we explain why a multi-dimensional two-point BVP
appears naturally. In Section 3 we give a brief sketch of the GPS for ODEs for a
self-content reason. Due to a good property of Lie-group, we will propose an in-
tegration technique, such that the one-step GPS can be used to identify the param-
eters appeared in the resulted PDE. The algebraic equations are derived in Section
4 when we apply the one-step GPS to identify displacement-dependent restoring
force and velocity-dependent damping force. In Section 5 numerical examples are
examined to test the Lie-group shooting method (LGSM). In Section 6 we extend
the LGSM to identify nonlinear restoring force, which is displacement-velocity-
dependent, and numerical examples are also given. Finally, we draw the conclu-
sions in Section 7.

2 Two transformations

From this section we start to develop a new method to identify the nonlinear restor-
ing force. However, we first deal with two special cases of Eq. (1) for an easier
explanation of our approach. Consider a second-order ordinary differential equa-
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tion (ODE) describing the forced vibration of a nonlinear structure with

φ̈ + γφ̇ +H(φ ) = F(t), 0 ≤ t ≤ t f , (4)

φ (0) = A0, (5)

φ̇ (0) = B0. (6)

The direct problem is for the given initial conditions in Eqs. (5) and (6) and the
given constant γ and functions H(φ ) and F(t) in Eq. (4) to find the displacement
φ (t) in a time interval of t ∈ [0, t f ]; conversely, our present inverse vibration prob-
lem is to estimate H(φ ) by using some measured data of φ (t) in a time interval of
t ∈ [0, t f ].
On the other hand, we also consider

ψ̈ +Q(ψ̇)+αψ = F(t), 0 ≤ t ≤ t f , (7)

ψ(0) = C0, (8)

ψ̇(0) = D0. (9)

Here the inverse problem is to estimate Q(ψ̇).

Basically these two sets of Eqs. (4)-(6) and Eqs. (7)-(9) have the similar form. So
we only consider the mathematical derivations for the set of Eqs. (4)-(6), and after
deriving the required equations, we can similarly apply them to Eqs. (7)-(9).

2.1 Transformation into a PDE

In the solutions of linear PDEs, a popular technique is the seperation of variables,
from which the PDEs are transformed into some ODEs. In this study we reverse
this process by considering

u(x, t) = (1+x)φ (t), (10)

such that Eqs. (4)-(6) can be transformed into a parabolic type PDE:

∂u(x, t)
∂x

=
∂ 2u(x, t)

∂ t2 + γ
∂u(x, t)

∂ t
+h(x, t)+φ (t)− (1+x)F(t), (11)

u(0, t) = φ (t), (12)

u(x,0) = A0(1+x), (13)

u(x, t f ) = φ (t f )(1+x), (14)

where φ (t f ) is a measured displacement at a final time t f , and more precisely
h(x, t)= (1+x)H(φ (t)). In order to identify H, we suppose that the data of φ (t) are



162 Copyright © 2008 Tech Science Press CMES, vol.35, no.2, pp.157-180, 2008

provided in a time interval t ∈ [0, t f ] through measurements by a sensor mounted
on the structure.

The above transformation technique was first proposed by Liu (2008g) to treat an
inverse Sturm-Liouville problem by transforming an ODE into a PDE. Then, Liu
(2008a, 2008b) and Liu, Chang, Chang and Chen (2008) extended this idea to de-
velop new methods for estimating parameters in the inverse vibration problems.
Liu (2008h) also employed a similar technique by transforming the obstacle prob-
lem of elliptic type into a dynamical system and then a time-marching algorithm
was used to find solution.

2.2 Transformation into a set of ODEs

Applying a semi-discrete procedure on the PDE in Eq. (11) yields a coupled system
of ODEs, where we adopt

∂u(x, t)
∂ t

∣∣∣∣
t=iΔt

=
ui+1(x)−ui−1(x)

2Δt
, (15)

∂ 2u(x, t)
∂ t2

∣∣∣∣
t=iΔt

=
ui+1(x)−2ui(x)+ui−1(x)

(Δt)2 , (16)

and Δt = t f /(n+1) is a uniform time increment with ui(x) = u(x, iΔt) for a simple
notation. So, Eq. (11) can be approximated by

u′i(x) =
1

(Δt)2 [ui+1(x)−2ui(x)+ui−1(x)]+
γ

2Δt
[ui+1(x)−ui−1(x)]+hi(x)

+ φi − (1 + x)Fi, (17)

where hi(x) = (1+x)H(φi) with φi = φ (ti) and Fi = F(ti), i = 1, . . .,n.

When i = 1 the term u0(x) is replaced by the boundary condition (13) with u0(x) =
A0(1 + x). Similarly, when i = n the term un+1(x) is replaced by the boundary
condition (14) with un+1(x) = φn+1(1 + x) = φ (t f )(1 + x). Eq. (17) has totally n
coupled ODEs for the n variables ui(x), i = 1, . . .,n.

Now the problem becomes a two-point BVP with Eq. (17) not only subject to an
initial condition ui(0) = φi and also subject to a final condition ui(x f ) = (1+x f )φi

obtained from Eq. (10) by inserting x = x f , where x f is a new constant chosen by
the user. Therefore, we have overspecified conditions for the n-dimensional ODEs
system (17); because the source terms hi are unknown, we attempt to use this two-
point BVP formulation to find hi. Below, we will develop a Lie-group shooting
method to solve this problem.
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3 GPS for differential equations system

3.1 Group-preserving scheme

Upon letting u = (u1, . . . ,un)T and denoting by f the right-hand side of Eq. (17) we
can write it as a vector form:

u′ = f(u,x), u ∈ R
n, x ∈ R. (18)

Liu (2001) has embedded Eq. (18) into an augmented differential equations system:

d
dx

[
u

‖u‖
]

=

⎡
⎣ 0n×n

f(u,x)
‖u‖

fT(u,x)
‖u‖ 0

⎤
⎦[ u

‖u‖
]
. (19)

It is obvious that the first row in Eq. (19) is the same as the original equation (18),
but the inclusion of the second row in Eq. (19) gives us a Minkowskian structure
of the augmented state variables of X := (uT,‖u‖)T, which satisfies the cone con-
dition:

XTgX = 0, (20)

where

g :=
[

In 0n×1

01×n −1

]
(21)

is a Minkowski metric, In is the identity matrix of order n, and the superscript T

stands for the transpose. In terms of (u,‖u‖), Eq. (20) becomes

XTgX = u ·u−‖u‖2 = ‖u‖2 −‖u‖2 = 0, (22)

where the dot between two vectors denotes the inner product.

Consequently, we have an n+1-dimensional augmented system:

X′ = AX (23)

with a constraint (20), where

A :=

⎡
⎣ 0n×n

f(u,x)
‖u‖

fT(u,x)
‖u‖ 0

⎤
⎦ (24)

is a Lie algebra so(n,1) of the proper orthochronous Lorentz group SOo(n,1), be-
cause of A satisfying

ATg+gA = 0. (25)
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This fact prompts us to devise the group-preserving scheme (GPS), whose dis-
cretized mapping G must exactly preserve the following properties:

GTgG = g, (26)

det G = 1, (27)

G0
0 > 0, (28)

where G0
0 is the 00th component of G.

Although the dimension of the new system is raising by one, it has been shown that
the new system permits a GPS given as follows [Liu (2001)]:

X�+1 = G(�)X�, (29)

where X� denotes the numerical value of X at x�, and G(�) ∈ SOo(n,1) is the group
value of G at x�. If G(�) satisfies the properties in Eqs. (26)-(28), then X� satisfies
the cone condition in Eq. (20).

The Lie group can be generated from A ∈ so(n,1) by an exponential mapping,

G(�) = exp[ΔxA(�)] =

⎡
⎢⎣ In + (a�−1)

‖f�‖2 f�fT
�

b�f�
‖f�‖

b�fT�
‖f�‖ a�

⎤
⎥⎦ , (30)

where

a� := cosh

(
Δx‖f�‖
‖u�‖

)
, (31)

b� := sinh

(
Δx‖f�‖
‖u�‖

)
. (32)

Substituting Eq. (30) for G(�) into Eq. (29), we obtain

u�+1 = u� +η�f�, (33)

‖u�+1‖ = a�‖u�‖+
b�

‖f�‖ f� ·u�, (34)

where

η� :=
b�‖u�‖‖f�‖+(a� −1)f� ·u�

‖f�‖2
. (35)
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3.2 One-step GPS

Throughout this paper the superscript f denotes the value at x = x f , while the su-
perscript 0 denotes the value at x = 0. Assume that the total length x f is divided by
K steps, that is, the stepsize we use in the GPS is Δx = x f /K.

Starting from X0 = X(0) we want to calculate the value X f at x = x f . By Eq. (29)
we can obtain

X f = GK(Δx) · · ·G1(Δx)X0. (36)

However, let us recall that each Gi, i = 1, . . .,K, is an element of the Lie group
SOo(n,1), and by the closure property of Lie group, GK · · ·G1 is also a Lie group
element of SOo(n,1) denoted by G. Hence, we have

X f = GX0. (37)

This is a one-step Lie-group transformation from X0 to X f .

3.2.1 A generalized mid-point rule

We can calculate G by a generalized mid-point rule, which is obtained from an
exponential mapping of A by taking the values of the argument variables of A
at a generalized mid-point. The Lie group generated from such an A ∈ so(n,1)
is known as a proper orthochronous Lorentz group, which admits a closed-form
representation:

G =

⎡
⎢⎣ In + (a−1)

‖f̂‖2 f̂f̂T bf̂
‖f̂‖

bf̂T

‖f̂‖ a

⎤
⎥⎦ , (38)

where

û = ru0 +(1− r)u f , (39)

f̂ = f(û, x̂), (40)

a = cosh

(
x f‖f̂‖
‖û‖

)
, (41)

b = sinh

(
x f‖f̂‖
‖û‖

)
. (42)

Here, we use the initial u0 and the final u f through a suitable weighting factor r to
calculate G, where 0 < r < 1 is a parameter and x̂ = (1− r)x f . The above method
applied a generalized mid-point rule on the calculation of G, and the resultant is
a single-parameter Lie group element G(r). After developing the LGSM, we can
determine the best r by matching the given final condition.
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3.2.2 A Lie group mapping between two points on the cone

Let us define a new vector

F :=
f̂

‖û‖ , (43)

such that Eqs. (38), (41) and (42) can also be expressed as

G =

⎡
⎣ In + a−1

‖F‖2 FFT bF
‖F‖

bFT
‖F‖ a

⎤
⎦ , (44)

a = cosh(x f‖F‖), (45)

b = sinh(x f‖F‖). (46)

From Eqs. (37) and (44) it follows that

u f = u0 +ηF, (47)

‖u f‖ = a‖u0‖+b
F ·u0

‖F‖ , (48)

where

η :=
(a−1)F ·u0 +b‖u0‖‖F‖

‖F‖2
. (49)

Substituting Eq. (47), written as

F =
1
η

(u f −u0), (50)

into Eq. (48) and dividing both the sides by ‖u0‖ we can obtain

‖u f‖
‖u0‖ = a+b

(u f −u0) ·u0

‖u f −u0‖‖u0‖ , (51)

where

a = cosh

(
x f‖u f −u0‖

η

)
, (52)

b = sinh

(
x f‖u f −u0‖

η

)
(53)
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are obtained from Eqs. (45) and (46) by inserting Eq. (50) for F.

Let

cosθ :=
[u f −u0] ·u0

‖u f −u0‖‖u0‖ , (54)

S := x f ‖u f −u0‖, (55)

and from Eqs. (51)-(53) it follows that

‖u f‖
‖u0‖ = cosh

(
S
η

)
+cosθ sinh

(
S
η

)
. (56)

Defining

Z := exp

(
S
η

)
, (57)

and from Eq. (56) we obtain a quadratic equation for Z:

(1+cosθ )Z2 − 2‖u f‖
‖u0‖ Z +1−cos θ = 0. (58)

The solution is found to be

Z =

‖u f ‖
‖u0‖ +

√( ‖u f ‖
‖u0‖

)2
−1+cos2 θ

1+cosθ
, (59)

and then from Eqs. (57) and (55) we can obtain

η =
x f‖u f −u0‖

lnZ
. (60)

Therefore, between any two points (u0,‖u0‖) and (u f ,‖u f‖) on the cone, there ex-
ists a Lie group element G ∈ SOo(n,1) mapping (u0,‖u0‖) onto (u f ,‖u f‖), which
is given by

[
u f

‖u f‖
]

= G
[

u0

‖u0‖
]
, (61)
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where G is uniquely determined by u0 and u f through the following equations:

G =

⎡
⎣ In + a−1

‖F‖2 FFT bF
‖F‖

bFT
‖F‖ a

⎤
⎦ , (62)

a = cosh(x f‖F‖), (63)

b = sinh(x f‖F‖), (64)

F =
1
η

(u f −u0). (65)

4 Identifying H(φ ) and Q(ψ̇) by the LGSM

In this section we begin to estimate nonlinear spring force H(φ ) and nonlinear
damping force Q(ψ̇). From Eqs. (43) and (47) follow a very useful equation:

u f = u0 +η
f̂

‖û‖ , (66)

where by using Eq. (10) we have

u f
i = (1+x f )u0

i = (1+x f )φi. (67)

Thus the vector u f with components u f
i is proportional to u0 with components u0

i
by a multiplier 1 + x f larger than 1. Under this condition we have cosθ = 1 by
Eq. (54), and from Eqs. (58) and (67) it follows that

Z = 1+x f . (68)

Moreover, by Eqs. (60) and (67) we have

η =
x2

f‖u0‖
ln(1+x f )

, (69)

and by Eqs. (39) and (67) we have

‖û‖ = xr‖u0‖, (70)

where

xr := 1+ x̂ = r +(1− r)(1+x f ). (71)

Substituting Eqs. (69) and (70) into Eq. (66) we have

u f = u0 +η0 f̂, (72)
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where

η0 =
x2

f

xr ln(1+x f )
. (73)

By applying Eq. (72) to Eq. (17) we obtain

u f
i = u0

i +
η0

(Δt)2 (ûi+1−2ûi + ûi−1)+
η0γ
2Δt

(ûi+1 − ûi−1)+η0xrHi +η0φi −η0xrFi,

(74)

where

ûi = xrφi, i = 1, . . .,n. (75)

After inserting Eq. (75) for ûi, Eq. (73) for η0, and Eq. (67) for u f
i with u0

i = φi, it
is not difficult to rewrite Eq. (74) as

Hi =
φi ln(1+x f )

x f
− 1

(Δt)2 (φi+1 −2φi +φi−1)− φi

xr
− γ

2Δt
(φi+1−φi−1)+Fi. (76)

Because of Eq. (71), the above estimating equation depends on r. Now, the problem
is how to choose a suitable r. The numerical procedures for determining r are
described as follows. In the range of r ∈ (0,1) we insert each r into the above
equation to obtain Hi, and we can exactly integrate Eq. (17) from x = 0 to x = x f

by noting Eq. (10). Then, u f
i is given by

u f
i = (1+x f )φi

+
1
2

x f (2+x f )
[

1
(Δt)2 (φi+1−2φi +φi−1)+

γ
2Δt

(φi+1−φi−1)+Hi −Fi

]
. (77)

By comparing the above u f
i with the target given exactly by Eq. (67), we can pick

up the best r by satisfying

min
r∈(0,1)

√
n

∑
i=1

[u f
i − (1+x f )φi]2. (78)

When r is selected we can insert it into Eq. (76) to calculate Hi.

Similarly, for Eq. (7) we can derive

Qi =
ψi ln(1+x f )

x f
− 1

(Δt)2 (ψi+1 −2ψi +ψi−1)− ψi

xr
−αψi +Fi, (79)

where ψi = ψ(ti). We can select the best r by a similar process , such that the above
equation can be used to calculate Qi.
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5 Numerical examples

5.1 Example 1

Let us consider

γ = 0.3,

H(φ ) = φ 3−φ . (80)

In order to identify the restoring force H as a function of φ we require φ to be a
monotonic function of t. Here we suppose that φ is given by φ (t) = t2 − 8. To
obtain this φ the external force is given by

F(t) = 10+2γt +(t2 −8)3 − t2. (81)

We use the vibration data of displacement φi = φ (ti) as the inputs in Eq. (76) to
estimate Hi. In this calculation we have fixed Δt = 4/500 and x f = 1.2× 10−5,
and found that r = 1/2 is the best one. The computed profile of H(φ ) is plotted in
Fig. 1(a) by the dashed line, which is compared with the exact one plotted by the
solid line. The maximum estimation error of H as shown in Fig. 1(b) is smaller
than 10−10.

In order to test the stability of the present method we also consider

φ̂i = φi[1+ sR(i)] (82)

as inputs in the estimation equations, where Ri are random numbers in [−1,1], and
s is a level of noise. Under a noise with s = 0.01 the computed profile of H(φ ) is
plotted in Fig. 1(a) by the dashed-dotted line, which is compared with the exact one
plotted by the solid line. In this calculation we have fixed Δt = 4/40 and x f = 0.001.
It can be seen that our estimation method is well against the noisy disturbances.

5.2 Example 2

Next we consider a Rayleigh damping oscillator given by

α = 1,

Q(ψ̇) = ψ̇3 − ψ̇ . (83)

In order to identify the damping force Q as a function of ψ̇ we require ψ̇ to be a
monotonic function of t. Here we suppose that ψ̇ is given by ψ̇(t) = t2 −8, and ψ
is given by ψ(t) = t3/3−8t. To obtain this ψ the external force is given by

F(t) = 8+(t2 −8)3 − t2 + t3/3−6t. (84)
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Figure 1: For Example 1: (a) comparing estimated and exact restoring forces, and
(b) displaying the error of estimation.

We use the vibration data of displacement ψi as the inputs in Eq. (79) to estimate
Qi. In this calculation we have fixed Δt = 4/300 and x f = 9× 10−6, and found
that r = 1/2. The computed profile of Q(ψ̇) is plotted in Fig. 2(a) by the dashed
line, which is compared with the exact one plotted by the solid line. The maximum
estimation error of Q as shown in Fig. 2(b) is smaller than 10−10.

Under a noise with s = 0.01 the computed profile of Q(φ̇ ) is plotted in Fig. 2(a) by
the dashed-dotted line, which is compared with the exact one plotted by the solid
line. In this calculation we have fixed Δt = 4/40 and x f = 0.001. It can be seen
that the estimated result is acceptable, and is well against the noisy disturbances.

6 Identifying H(φ , φ̇) by the LGSM

In this section we directly estimate the nonlinear restoring force function. For this
purpose, let us consider a second-order ODE describing the forced vibration of a
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Figure 2: For Example 2: (a) comparing estimated and exact damping forces, and
(b) displaying the error of estimation.

nonlinear structure by

φ̈ +H(φ , φ̇ ) = F(t), 0 ≤ t ≤ t f , (85)

φ (0) = A0, (86)

φ̇ (0) = B0. (87)

6.1 Estimation of H(φ , φ̇)

By considering Eq. (10), Eqs. (85)-(87) can be changed to a parabolic type PDE:

∂u(x, t)
∂x

=
∂ 2u(x, t)

∂ t2 +h(x, t)+φ (t)− (1+x)F(t), (88)

u(0, t) = φ (t), (89)

u(x,0) = A0(1+x), (90)

u(x, t f ) = φ (t f )(1+x), (91)
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where h(x, t) = (1+x)H(φ (t), φ̇(t)). By utilizing a finite difference on Eq. (88) we
obtain

u′i(x) =
1

(Δt)2 [ui+1(x)−2ui(x)+ui−1(x)]+hi(x)+φi − (1+x)Fi, (92)

where hi(x) = (1+x)H(φi, φ̇i)= (1+x)Hi with φi = φ (ti), φ̇i = φ̇ (ti) and Fi = F(ti),
i = 1, . . .,n.

By applying Eq. (72) to Eq. (92) we obtain

u f
i = u0

i +
η0

(Δt)2 (ûi+1−2ûi + ûi−1)+η0xrHi +η0φi −η0xrFi. (93)

After inserting Eq. (75) for ûi, Eq. (73) for η0, and Eq. (67) for u f
i with u0

i = φi, it
is not difficult to rewrite Eq. (93) as

Hi =
φi ln(1+x f )

x f
− 1

(Δt)2 (φi+1 −2φi +φi−1)− φi

xr
+Fi. (94)

Eq. (94) can be written as

Hi =
[

ln(1+x f )
x f

− 1
1+(1− r)x f

]
φi − 1

(Δt)2 (φi+1−2φi +φi−1)+Fi, (95)

which can be viewed as a modification of a standard central finite difference of
Eq. (85), because the above equation reduces to a central finite difference equation
when x f = 0. The best r seems r = 1/2 because the target u f

i is proportional to
u0

i (numerical examples in Section 5 also support this assertion). Thus, by fixing
r = 1/2 we get

Hi =
[

ln(1+x f )
x f

− 2
2+x f

]
φi − 1

(Δt)2 (φi+1 −2φi +φi−1)+Fi. (96)

Now the problem is how to determine x f , of which the numerical procedures are
described as follows. In the range of x f ∈ (0,xu), where xu is a maximum distance
of the target determined by the user, we insert each x f into the above equation to
obtain Hi, and we can exactly integrate Eq. (92) from x = 0 to x = x f by noting
Eq. (10). Then, u f

i is given by

u f
i = (1+x f )φi +

1
2

x f (2+x f )
[

1
(Δt)2 (φi+1 −2φi +φi−1)+Hi −Fi

]
. (97)
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By comparing the above u f
i with the target given exactly by Eq. (67), we can pick

up the best x f by satisfying

min
x f∈(0,xu)

√
n

∑
i=1

[u f
i − (1+x f )φi]2. (98)

When x f is selected we can insert it into Eq. (96) to calculate Hi.

6.2 Example 3

We consider a complex one with

H(φ , φ̇) = φ +(1− φ̇ 2 +0.01φ̇ 3)φ̇ . (99)

In order to identify the nonlinear restoring force H as a function of φ and φ̇ we
require φ and φ̇ both to be monotonic functions of t. Here we suppose that φ is
given by φ (t) = A0 + t3/3−8t, and φ̇ is given by φ̇ (t) = t2 −8.

To obtain this φ the external force is

F(t) = 2t +H(φ (t), φ̇(t)) (100)

by inserting φ (t) = A0 + t3/3−8t and φ̇ (t) = t2 −8 into the above equation.

We use the vibration data of displacement at discretized time by inserting ti into the
given function φi = φ (ti) = A0 + t3

i /3−8ti as the inputs in Eq. (96) to estimate Hi.
We can obtain the surface of the function H(φ , φ̇) by selecting different A0. In this
calculation we have fixed Δt = 4/500 and xu = 10−6. The maximum estimation
error of H as shown in Fig. 3 is smaller than 10−8.

6.3 Example 4

Let us estimate H(φ , φ̇) of the Van der Pol oscillator given by

H(φ , φ̇) = φ +(φ 2 −1)φ̇ . (101)

Here we also suppose that φ is given by φ (t) = A0 + t3/3−8t, and φ̇ is given by
φ̇ (t) = t2 −8.

In this calculation we have fixed Δt = 4/500 and xu = 10−6. The maximum esti-
mation error of H as shown in Fig. 4 is smaller than 10−8.

6.4 Example 5

As a last example to estimate H(φ , φ̇) we consider a combination of the nonlinear
restoring forces of Duffing and Rayleigh, that is,

H(φ , φ̇) = φ 3 −φ 2 + φ̇ 3 − φ̇ . (102)

The maximum estimation error of H as shown in Fig. 5 is smaller than 10−8.
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Figure 3: For Example 3 showing the error of estimation.

Figure 4: For Example 4 showing the error of estimation.
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Figure 5: For Example 5 showing the error of estimation.

7 Conclusions

The inverse vibration problem of estimating nonlinear restoring force for nonlinear
mechanical system is rather difficult. However, the present paper could offer very
accurate and simple method without any iteration to estimate restoring force, which
is represented as a surface on the phase plane of displacement and velocity. Data of
velocity and acceleration are derivative quantities, which are hard directly inserting
into the equation of motion to obtain accurate restoring force values. To overcome
this difficulty we have only used the displacement data as our formulation variables
in the estimation equation. A two-point BVP formulation basing on a fictitious
time concept as well as an establishment of the Lie-group shooting method led us a
closed-form estimating equation, which is highly effective and time saving even in
the estimation of restoring forces under noised displacement data. The estimation
accuracy assessed by using the absolute error can be controlled within the eighth
decimal point.
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