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Accurate MLPG Solution of 3D Potential Problems

Giorgio Pini1, Annamaria Mazzia1 and Flavio Sartoretto2

Abstract: Meshless methods have been explored in many 2D problems and they
have been shown to be as accurate as Finite Element Methods (FEM). Compared
to the extensive literature on 2D applications, papers on solving 3D problems by
meshless methods are surprisingly few. Indeed, a main drawback of these methods
is the requirement for accurate cubature rules. This paper focuses on the so called
Meshless Local Petrov Galerkin (MLPG) methods. We show that accurate solu-
tions of 3D potential problems can be attained, provided suitable cubature rules
are identified, sparse data structures are efficiently stored, and strategies are de-
vised in order to speed up the computation flow, by avoiding unnecessary integral
evaluations. The ensuing MLPG linear systems result to be well conditioned, pos-
itive definite ones. Their conditioning does not increase much when the mesh size
decreases. We show that cubature errors can lower MLPG convergence speed.

Keyword: Meshless Methods, Poisson Problem, Moving Least Squares, Radial
Basis Functions

1 Introduction

Among the methods for solving Partial Differential Equations (PDE), nowadays
meshless methods attract increasing interest. From an abstract point of view, a
meshless method is a Petrov–Galerkin method where, unlike for FEM methods,
non–polynomial trial and test basis functions with arbitrarily, i.e. not mesh–guided,
overlapping supports, are engaged [Atluri (2004); Babuska, Banerjee, and Osborn
(2004); Belytschko, Krongauz, Organ, Fleming, and Krysl (1996)].

When cataloging the huge number of meshless methods proposed, a first dichotomy
appears between true meshless methods and the other ones. The latter methods in
principle do not exploit any mesh for discretizing the problem domain, but either for
the interpolation of the solution variables or for the integration of the weak forms,
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they exploit local and global meshes, hence requiring time consuming geometric
structures to be managed. As a byproduct, true meshless methods are more apt to
implement adaptivity.

Most research in meshless methods was restricted to solving 2D problems. It
is more challenging to solve 3D problems, mainly due to the difficulty in accu-
rately evaluating integrals. Representative 3D works, mainly exploring many dis-
tinguished peculiarities of mechanical problems, are [Belytschko, Krysl, and Kro-
ngauz (1997); Xiong, Rodrigues, and Martins (2003); Schembri, Crane, and Reddy
(2004); Han and Atluri (2004); Li, Shen, Han, and Atluri (2003); Atluri, Liu, and
Han (2006a,b)]. ,

The truly meshless local Petrov-Galerkin (MLPG) approach has been developed
by S. N. Atluri and co–workers, as a general framework for solving partial differ-
ential problems [Atluri and Zhu (1998)]. Under MLPG framework, the PDEs can
be solved in their various local symmetric or unsymmetric weak forms, by using
a variety of interpolation methods, test functions, integration schemes, and their
flexible combinations [Atluri (2004); Atluri, Han, and Rajendran (2004)].

Quoting only recent literature, we point out the noteworthy applications below.
MLPG was successfully exploited for the solution of thermo-mechanical, thermoe-
lastic and thermo-piezoelectric problems [Ching and Chen (2006); Sladek, Sladek,
Zhang, and Tan (2006); Sladek, Sladek, Zhang, and Solek (2007); Sladek, Sladek,
Solek, and Wen (2008)]. In [Gao, Liu, and Liu (2006); Long, Liu, and Li (2008);
Sladek, Sladek, Zhang, Solek, and Starek (2007)] the solution of fracture prob-
lems is documented, and shell analysis is performed in [Sladek, Sladek, Wen,
and Aliabadi (2006); Jarac, Sorić, and Hoster (2007)]. Papers were published
on penetration problems [Han, Liu, Rajendran, and Atluri (2006)], nematostat-
ics [Pecher, Elston, and Raynes (2006)], magnetic diffusion [Johnson and Owen
(2007)], heat conduction [XueHong, ShengPing, and WenQuan (2007)], composite
materials [Dang and Sankar (2008)], incompressible viscous fluid flow [Haji Mo-
hammadi (2008)], topology optimization of structures [Li and Atluri (2008a,b)].

Though tensor product basis functions have been suggested as possible candidates
for generating the trial and test spaces in meshless methods [Belytschko, Krongauz,
Organ, Fleming, and Krysl (1996)], the literature quite exclusively considers Radial
Basis Functions (RBF) as the natural candidates.

Unlike for FEM methods, comprehensive error analysis for RBF based MLPG tech-
niques is not available. Interesting theoretical results for uniformly elliptic opera-
tors on quite general domains are available [Wendland (1999)], but they apply to
MLPG with RBF basis trial functions, which is not implemented in practice, since
an RBF basis does not provide a Partition of Unity (PU) [Babuska, Banerjee, and



Accurate MLPG Solution of 3D Problems 45

Osborn (2004)] (see also Section 2.1). In order to have trial basis functions match-
ing this property, one can exploit RBF as weights for the Moving Least Squares
(MLS) technique, see e.g. [Atluri, Kim, and Cho (1990)].

Following up to date literature, we implemented MLPG methods exploiting RBF
weights. These methods require accurate evaluation of 3D integrals on balls and
portions of balls, which is not an easy task to perform. To overcome this problem,
meshless boundary integral techniques has been proposed, e.g. in [Zhang, Tanaka,
and Endo (2005); Atluri, Han, and Rajendran (2004); Li, Shen, Han, and Atluri
(2003)]. However, in order to obtain accurate solutions inside the problem domain,
we exploit volume–based integration formulas.

Note that in 3D potential problems, where complicate domain geometries are usu-
ally involved, linear FEM with either prismatic or tetrahedral elements is the eliged
approach in the vast majority of applications. Higher order elements on 3D meshes
are difficult both to implement and to manage. Hence in the sequel MLPG methods
are compared with tetrahedral FEM [Gambolati, Pini, and Tucciarelli (1986)], and
the acronym “FEM” stands for linear, tetrahedral FEM.

In this paper we show that effective MLPG solution, non boundary–integral based,
of Poisson 3D problems can be obtained at the price of primarily identifying ac-
curate cubature formulas. Moreover, techniques must be devised in order both to
improve the evaluation speed of the stiffness matrix entries and to reduce storage
requirements.

2 Meshless schemes

Let us consider the linear 3D Poisson equation on the domain Ω

−∇2u(x) = f (x), (1)

where f is a given source function. Dirichlet and Neumann boundary conditions
are imposed on the domain boundary ∂Ω

u = u on Γu
∂u
∂�n

≡ q = q on Γq
(2)

where u and q are the prescribed potential and normal flux, respectively, on the
Dirichlet boundary Γu and on the Neumann boundary Γq, being ∂Ω = Γ = Γu ∪Γq.
The outward normal direction to Γ is denoted by�n.

It is well known that solving Poisson problem, disregarding for a while Dirich-
let boundary conditions, is equivalent to finding that function u ∈ S , S being
a suitable trial space, which satisfies a Petrov–Galerkin weak formulation. More
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precisely, for every test function v ∈ T , where T is a suitable test space, one must
impose

∫
Γu

qv dΓ+
∫

Γq

qv dΓ+
∫

Ω

(
3

∑
k=1

∂u
∂xk

∂v
∂xk

− f v

)
dΩ = 0, (3)

being x = (x1,x2,x3) any point in Ω. The final Ritz–Petrov–Galerkin approach
relies upon restricting conditions (3) to suitable finite–dimensional trial and test
spaces B = span{φ1, . . .,φNB} ⊂ S , U = span{ψ1, . . .,ψNT } ⊂ T . The approxi-
mated solution of Poisson problem is obtained by assuming u = ∑i ui φi and solving
for the unknowns ui the NB ×NT linear system obtained by writing the eqs (3) for
each v = ψ j, j = 1, . . .,NT . In order to deal with a system with as many equa-
tions as unknowns, in the sequel we assume NB = NT . For numerical treatment,
the problem domain must be discretized by a set of N nodes. To each mesh node
we associate one basis function and one trial function, hence NB = NT = N will be
assumed in the sequel.

Using compact supported trial and test functions in the weak formulation (3) amounts
to writing a set of so called Local Symmetric Weak Forms (LSWF), one for each
basis test function. The i-th LSWF may be written as

∫
Γ(i)

u

qψi dΓ+
∫

Γ(i)
q

qψi dΓ+
∫

Ω(i)

(
3

∑
k=1

∂u
∂xk

∂ψi

∂xk
− f ψi

)
dΩ = 0. (4)

The form is symmetric in the sense that both the trial and the test functions have
equal order differentiability requirements. We have Ω(i) = supp(ψi), while Γ(i)

u =
∂Ω(i)∩Γu is the intersection of our local integration domain boundary with Dirich-

let boundary pieces. Analogously, Γ(i)
q = ∂Ω(i) ∩ Γq is the intersection of our

local integration domain boundary with Neumann boundary pieces. Eventually,
Γ(i)

I = ∂Ω(i)\(Γ(i)
u ∪Γ(i)

q ), is the portion of ∂Ω(i) lying inside Γ. We assume that

continuous test functions are used, hence integrals involving Γ(i)
I do not appear,

being ψi(∂Ω(i)) = 0.

Solving the discrete variational problem allows one to compute the coefficients ûi,
s.t. the final approximated solution is

ũ(x) =
N

∑
i=1

ûi φi(x).

The final MLPG linear system of equations is

Kû = f (5)
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being û the vector of fictitious nodal values, K the stiffness matrix; f is the known
vector.

Note that, unlike in FEM, MLPG trial basis is not a cardinal one, i.e. φ j(xi) �= δi j

hold true, hence ũ(xi) �= ûi holds, too. For this reason, the û j values are called
fictitious nodal values. A recover step is to be performed in order to compute the
actual nodal values, ũi = ũ(xi), i = 1, . . .,N.

Imposing boundary conditions (BC) in MLPG schemes is slightly less straightfor-
ward than in FEM methods, due to the facts just recalled. Let us focus on Dirichlet
BC. One can approximately impose BC on each Dirichlet node, x j, by simply set-
ting û j = u j. However, to exactly impose Dirichlet BC, one must compute the
values φi(xk), for each xk which is a Dirichlet boundary node. An exact Dirichlet
value ūk can be set on the corresponding boundary point, xk, by replacing the k–th
MLPG linear system equation with the equation ũ(xk) = ∑N

i=1 ûi φi(xk) = ūk. This
latter procedure, called in the sequel exact Dirichlet, is usually more time consum-
ing than the former inexact one. In the sequel, whenever not otherwise stated, exact
Dirichlet BC are imposed.

2.1 Trial and test spaces

Trying to extend meshless variational approaches from 1–dimensional to d–dimen-
sional problems, one can exploit tensor–product functions as the test and trial func-
tions, as suggested e.g. in [Belytschko, Krongauz, Organ, Fleming, and Krysl
(1996)]. We follow a different approach, which is ubiquitous in literature, i.e.
we start from Radial Basis Functions (RBF); they have the general form [Powell
(1992)]

s(x) =
N

∑
j=1

λ j w(
∥∥x−x j

∥∥).
Let us assume a so called generating RBF, g(r), together with a set of points,
S = {x j, j = 1, . . .,N}, are given. The space spanned by the functions φ j(x) =
g(
∥∥x−x j

∥∥), i = 1, . . .,N, will be called the RBF space generated by g (and S). The
RBF spaces proposed in literature do not provide PU property [Babuska, Banerjee,
and Osborn (2004)], also called zero order consistency, i.e. ∑N

j=1 φ j(x) = 1; more-
over, constant functions do not belong to these finite dimensional spaces. Note
that such a drawback does not prevent convergence of meshless Galerkin meth-
ods, as proved in [Wendland (1999)], but is likely to produce very low accuracy
in approximating polynomials at any finite dimension. To overcome this prob-
lem, many authors suggest that the basis trial functions, φ j, are obtained by ex-
ploiting a suitable technique which ensures that PU is fulfilled. Following many
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authors, we obtain this goal by exploiting the Moving Least Square (MLS) tech-
nique with a set of RBF weights, hence obtaining approximations based upon the
so called MLS shape functions [Atluri and Zhu (2002); Belytschko, Krongauz, Or-
gan, Fleming, and Krysl (1996); Lancaster and Salkauskas (1981)]. They become
our trial basis functions. In this paper, we show results exploiting quadratic MLS,
i.e. the weighted minimization is performed on quadratic polynomials [Lancaster
and Salkauskas (1981)], and the ensuing shape functions, beside PU, also achieve
first order consistency, i.e. ∑N

j=1 x j,k ·φ j(x1,x2,x3) = xk, k = 1,2,3. Note that x j,k is
the k-th component of the j-th node, x j = (x j,1,x j,2,x j,3).

When implementing MLPG, in principle one can avoid explicitly computing the
MLS shape functions [Atluri (2004)], but, in order to perform the recover step, i.e.
computing the nodal solution values, one must compute the values V = {φ j(xi),
i, j = 1, . . .,N}. This is the reason why recovering requires further computations
compared to merely solving the MLPG linear system, which provides the fictitious
values only. Note that the values φi(xk) for each xk on the Dirichlet boundary,
which form a subset in V , allow for imposing the exact Dirichlet BC, as pointed out
in [Atluri, Kim, and Cho (1990)]; previous papers stated that only inexact Dirichlet
BC can be imposed in MLPG methods based upon MLS.

It is important to note that the support of each trial basis function φ j, which is an
MLS shape function, is equal to the spherical support of the corresponding RBF
weight function wj, whose radius is denoted in the sequel by r j.

In order to specify our MLPG procedure, we need to identify suitable test func-
tions. Many choices were proposed [Atluri (2004)]; following [Atluri and Zhu
(2002); Belytschko, Krongauz, Organ, Fleming, and Krysl (1996); Lu, Belytschko,
and Gu (1994)], we use RBF functions with the same analytical expression as that
used for the MLS weights. This approach is called MLPG1 in [Atluri (2004)],
and hereafter is denoted. Note that trial functions differ from the test ones, hence
unsymmetric stiffness matrices are generated. Our computational experience on
2D problems [Ferronato, Mazzia, Pini, and Gambolati (2007a,b)] suggests that the
support of the test functions can be smaller than the trial ones. In the sequel we
denote by ρi the support radius of the test RBF function based upon node xi. For
more details, see for instance [Ferronato, Mazzia, Pini, and Gambolati (2007a)].

2.2 RBF generators

As the MLS weights and test functions, we exploited either Gaussian or spline 3D
RBF. In both cases the support of the function is a ball with radius ηi.
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Gaussian RBF have the analytical form [Lu, Belytschko, and Gu (1994)]

wi(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp

[
−
(

di
ci

)2k
]
−exp

[
−
(

ηi
ci

)2k
]

1−exp

[
−
(

ηi
ci

)2k
] , 0 ≤ di ≤ ηi

0, di ≥ ηi

(6)

where di = ‖x−xi‖ is the distance between x and xi; As usual in literature, we set
k = 1. The parameter ci controls the shape of the function. When a uniform grid
with mesh size h is enrolled, following [Lu, Belytschko, and Gu (1994)] we set
ci = c = h.

We also considered quartic spline functions after [Belytschko, Krongauz, Organ,
Fleming, and Krysl (1996)]

wi(x) =

⎧⎨
⎩1−6

(
di
ηi

)2
+8
(

di
ηi

)3 −3
(

di
ηi

)4
, 0 ≤ di ≤ ηi

0, di ≥ ηi

(7)

Our results published in [Ferronato, Mazzia, Pini, and Gambolati (2007a,b)] show
that Gauss RBF weights are preferable over splines. In the sequel, the Gauss RBF
generating function is exploited, unless not specified otherwise.

3 Implementation issues

3.1 Cubature rules

In order to obtain an effective MLPG1 solution, an accurate and efficient evaluation
of the integrals in the LSWF (4) must be performed. Since we decided to exploit
RBF–based trial and test spaces, the integration sub-domains in our LSWF, Ω(i) =
supp(ψi)∩Ω, result to be either (a) spheres inside Ω, when interior nodes far from
the boundary are considered; or (b) portions of spheres when Ω(i) overflows the
problem domain Ω. We focus on cubature rules developed for sub-domains of type
(a) only. Integration over regions of type (b) is implemented by the same procedure
as in case (a), by neglecting the quadrature points lying outside Ω.

The simplest idea is to exploit Gauss-Legendre’s product rule with integration
nodes chosen along x-, y-, and z-directions. Unfortunately, this approach is not
as accurate as one should expect, even confining to 2D integrals. Indeed, when
approximating the integral of z(x,y) = 1 on the unit circle, in order to achieve an
as small as 2×10−4 magnitude absolute error, one must enroll a 20×20 Gauss-
Legendre formula [De and Bathe (2001)].
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We tested the feasibility of cubature rules in producing accurate MLPG solutions,
by performing the so called Patch Test [Atluri (2004)]. It consists in checking that
the MLPG solution is exact when Poisson problem on a square is solved on only
one internal node, all the other nodes being Dirichlet boundary points. We consider
both linear and quadratic Patch Tests, which means that the exact solution to be
reproduced is either a linear, or a quadratic one, respectively.

Using Gauss formulas in a polar coordinate frame, the 2D Patch Test is fulfilled,
provided suitable nodes are enrolled [Mazzia, Ferronato, Pini, and Gambolati (2007)].
The 3D Patch Test is fulfilled only when a large number of nodes is available.

Modern scientific literature is surprisingly poor of integration rules for balls; this is
a major point why meshless methods based upon compact–supported RBF are said
to be troublesome. We focused on well-known Stroud’s cubature rules [(Stroud,
1971, pag. 291,292)], more precisely Rule S3 : 7−4, with degree 7, featuring 64
nodes; Rule S3 : 14−1, degree 14, with 288 nodes (subroutine SPH14); degree 15,
512 nodes (subroutineSPH15, after [(Stroud, 1971, pag. 352)]). The 7–point Stroud
formula matches the linear Patch Test, but not the quadratic one. The 14–point
Stroud formula does not comply neither the linear Patch Test, nor the quadratic
one, while the 15–point formula matches both.

We found that the 15–degree rule provide accurate integral values at affordable
computational costs. In the sequel, all 3D integrations are performed using this
rule.

3.2 Speeding up computations

When the radii of the test functions, ρi, are either as large as, or larger, than the
domain diameter, D, a dense MLPG1 linear system matrix K is obtained. The
computational cost rapidly increases with the number of nodes, N, and storage
requirements become prohibitively large. In order to obtain a sparse, manageable,
MLPG1 linear system, we set ρi � D, i = 1, . . .,N. The ensuing matrix K has in
general an arbitrary pattern; hence K was stored in CSR (Compressed Sparse Row)
format.

When performing MLPG1 computations, a main time consuming task consists in
evaluating the stiffness coefficients, i.e. integrating ∇φi ·∇ψ j product functions.
Since the radii of both the trial and test function supports are usually far smaller
than the domain diameter, one has ∇φi ·∇ψ j = 0 each time

∥∥xi −x j
∥∥ is large, com-

pared to ri and ρ j. Hence, in order to efficiently evaluate the integrals in eq. (4),
one is likely to first identify for each node, xi, both those indexes j s.t. ∇φ j(xi) �= 0,
and those indexes k s.t. ∇ψk(xi) �= 0. In principle, all grid nodes must be consid-
ered, but in order to attain a reasonable efficiency, a search value s is set, s.t. when
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|xi −xm| > s, both ∇φm(xi) � 0, and ∇ψm(xi) � 0, m = 1, . . .,N, j �= m can be as-
sumed. When performing cubature rules, we considered only the points inside the
sphere centered at xi with radius R = min{s,2(ρi + ri)}. Such a strategy allows for
a dramatic reduction of the computational cost.

3.3 Assessment of radii

Our MLPG1 method need the crucial assessment of trial and test function radii.
There is no exhaustive theory for performing this issue, hence parameter tuning
was performed by analyzing MLPG1 error on a set of test solutions, which we now
list.

3.3.1 Test solutions

We browsed the not so large literature on solving 3D potential problems by non–
standard (i.e. non–FEM) methods. After [Zhang, Tanaka, and Endo (2004)], we
consider the harmonic polynomial

u(x,y, z) = x3 +y3 + z3 −3yx2 −3xz2 −3zy2. (8)

In the sequel, this test solution is labeled (uP3).

After [Wang, Zhong, and Zhang (2006)], two trigonometric functions are consid-
ered.

• The function (uT1) which equally varies along the three coordinate directions

u(x,y, z) = sinx+ sin y+ sinz+ sin(3x)+ sin(3y)+ sin(3z). (9)

• The function (uT2) which changes more rapidly in the z- and y-directions.

u(x,y, z) = sinx+ sin y+ sinz+ sin(5y)+ sin(10z). (10)

Moreover, we consider the composed cosine–polynomial solution (uCP) after [Mazzia,
Pini, Putti, and Sartoretto (2003)]

u = cos

(
3π
(

x3 +y3 + z3

3
− x2 +y2 + z2

2

))
. (11)

3.3.2 Heuristics.

To allow parameter assessment by a reasonably small test bed, we cannot afford
neither to work with an irregular domain, nor exploiting non–uniform meshes. We
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Figure 1: MLPG1 error (e) behavior vs the ratio r/h, when ρ = h was set (left
frame). The right frame shows the MLPG1 error behavior vs the ratio ρ/h, when
r = 2.25h. The exact solution is (uCP), h = 1/8 was set.

choose a simple problem domain, i. e. the cube C = [0,1]3. A uniform discretiza-
tion grid is set, featuring the same mesh size h = hx = hy = hz on each coordinate
direction. Irrespective of the grid point xi, we set unique r and ρ values, which
depend upon the grid spacing [Nie, Atluri, and Zuo (2006)].

Let ũ be our numerical approximation function of the exact problem solution, u.
After [Atluri (2004)] we exploit the following error estimator

e =

√
∑N

i=1(ui − ũi)2

‖u‖2
, (12)

which is consistent with the L2 norm of the true error, where u = (u1, . . .,uN),
ui = u(xi) is the exact solution nodal value.

The generating RBF is Gauss exponential after eq. (6), where ci = h is set.

The basis trial function support radius, r, should be chosen large enough so that
the regularity of K is ensured [Nie, Atluri, and Zuo (2006)]. On the other hand, r
should be small enough to maintain the local character of the MLS approximation.
A guessed interval is 2h ≤ r ≤ 4h, which is so large that K is non singular.

The test function support radius, ρ , must be small, in order to reduce the computa-
tional cost of integrations in our LSWF. On the other hand ρ must be so large that
the support union of all test functions encompasses the whole domain. The guess
ρ = h matches these requirements.

Assume ρ = h is set, and (uCP) solution is computed. The left frame in Figure 1
shows the behavior of the MLPG1 error as a function of the ratio r/h. One can see
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Figure 2: Minimum eigenvalues of FEM and MLPG1 linear operators vs the mesh
spacing, h.

that a minimum error is attained for r = 2.25h. This result was obtained for all our
test solutions.

Once r = 2.25h is set, we study the assessment of ρ . The right frame in Figure 1
shows the behavior of the MLPG1 error as a function of the ratio ρ/h. One can
see that ρ/h = 1, i.e. ρ = h is a reasonable choice for attaining a small error. This
result makes us more confident that our ρ = h guess, set before assessing r, is a
well–founded choice. This same conclusion was drawn when approximating all
our test solutions.

In the sequel, r = 2.25h, ρ = h, are set.

4 Numerical results

4.1 Discrete operator conditioning

Figure 2 shows the minimum eigenvalue behavior of both FEM and MLPG1 oper-
ator, when h changes. Note that MLPG1 operator, like FEM, is a positive definite
one. Our numerical experiments show that the maximum eigenvalue of MLPG1 op-
erators in all our test problems, is close to 1 when the mesh spacing is “small”, like
for FEM operators. Hence the conditioning of both FEM and MLPG1 operators is
quite the same when the asymptotic regime is reached.

The MLPG1 linear system in 2D problems is usually solved via direct methods,
like [Li, Demmel, Gilbert, and Grigori (2007); MUMPS (2007); PARADISO (2007)].
These methods are efficient and accurate for 2D problems, but too storage demand-
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Figure 3: Number of iterations spent to solve the MLPG1 linear system, vs its size,
when the (uCP) solution is computed.

ing when 3D real–life problems are attacked. Preconditioned iterative methods
are the best choice for large 3D problems. We efficiently solved our 3D problems
via preconditioned Bi-CGSTAB [van der Vorst (1992)]. Preconditioning was per-
formed via incomplete Crout factorization [Kershaw (1978)]. The iterations for
solving the MLPG1 linear system K x = b, were stopped when the relative resid-
ual is smaller than a suitable tolerance, more precisely ‖b−K xm‖/‖b‖ ≤ 10−15.
Figure 3 shows that the number of iterations for solving the MLPG1 linear system
is likely to be as small as O(N1/3). This result confirms the good conditioning of
our MLPG1 operator. Other MLPG techniques do not provide such numerically
well–behaved projected operators. As an example, we implemented the MLPG5
method [Atluri (2004)], which exploits Heaviside step functions as the test func-
tions. When solving our Poisson test problems with MLPG5, we cannot compute
the solution of the ensuing linear system by ILUT [Saad (1994)] preconditioned
Bi-CGSTAB, since no convergence is attained.

4.2 MLPG1 vs FEM error behavior

Figure 4 shows our error results when solving Poisson problems on the unit cube,
imposing Dirichlet boundary conditions. MLPG1 solution was computed using
the uniform grids Gh, featuring grid spacings h = 1/(4q), q = 1,2, . . .,8. For
comparison, linear FEM solutions of our test problems were computed, too. Our
FEM implementation [Gambolati, Pini, and Tucciarelli (1986)] exploited the tetra-
hedral meshes which are obtained by dividing into three pieces each cube in the
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Figure 4: FEM and MLPG1 error behaviors vs the mesh spacing h. Going from top
to bottom, the exact solutions are (uP3), (uT1), (uT2), and (uCP).

corresponding Gh mesh. Both MLPG1 and FEM errors were estimated using for-
mula (12).

Figure 4 shows that FEM error decreases with h, except but the case (uP3). In the
latter case, even when the coarsest mesh is exploited, FEM solution is as accurate
as the linear system solver. Refining the mesh seemingly enlarges the error.

MLPG1 errors are smaller than FEM ones, except in the (uP3) case, where the
superiority of linear FEM in approximating low degree polynomial solutions is
clearly shown.

We also tested our MLPG1 code when the spline in eq. (7) is enrolled as the RBF
generator for both the trial and test spaces. Table 1 shows MLPG error behavior
vs the mesh spacing h, when the (uCP) solution is approximated. As one can see,
poor accuracy was obtained. Moreover, no useful approximations can be computed
when h < 6.25×10−2. We conclude that quartic splines given by eq. (7) are not
apt for solving 3D potential test problems by our MLPG1 procedure.
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Table 1: MLPG error behavior vs the mesh spacing h, when the RBF quartic spline
given by eq. (7) is exploited. The (uCP) solution is approximated.

h MLPG error
2.50E-1 4.10E-3
1.25E-1 1.58E-3
8.33E-2 7.00E-4
6.25E-2 4.98E-4

4.3 Convergence order

Assuming that an asymptotic regime is reached, the error, eh, of a numerical proce-
dure, as a function of the grid spacing h can be roughly assumed to be eh = C · hp.
The constant C does not depend on the geometry of the mesh, when an initial uni-
form mesh is enrolled and the other meshes are obtained by uniform refinements.
Assume that the errors were computed for mesh spacings h1 > h2 > · · ·> hr. Con-
vergence order estimates, p(hi), can obtained by

p(hi) = (log
ehi

ehi−1

)/(log
hi

hi−1
), i = 2, . . ., r.

Figure 5 shows the convergence order estimations computed on the ground of our
results shown in Figure 4. One can see that, except when the solution (uP3) is
considered, FEM convergence order approaches p = 2 when h goes to zero, as
predicted by theory. In the (uP3) case, FEM error displays a peculiar behavior,
discussed in the previous Section, producing negative, worthless, p(hi) values.

When (uP3), (uT1) and (uT2) solutions are chased, p > 2 hold true for MLPG1 con-
vergence order, except only for (uP3), when the h–pair (0.25,0.125) is considered.
This is a better convergence speed than linear FEM. A distinguished case is when
the (uCP) solution is considered. In this case MLPG1 convergence order is oscillat-
ing. We confronted with analogous behaviors when solving poroelastic problems
with MLPG1, due to inaccurate integral evaluations [Ferronato, Mazzia, Pini, and
Gambolati (2007b)]. We argue that the peculiar MLPG1 convergence behavior on
(uCP) is due to an higher variation in the accuracy of the MLPG1 known vector en-
tries, when the number of sampling points changes. In order to substantiate this hy-
pothesis, assume that we need to compute a paradigmatic MLPG1 known vector en-
try, i.e. an integral I =

∫
Ω g(x)dx, where g = f w̄, and w̄ is Gauss RBF weight based

upon a grid point, say the centroid of our test domain C = [0,1]3, f being our source
function. Let us consider the uniform grids, featuring grid spacings h = h̄,2 h̄,4 h̄,



Accurate MLPG Solution of 3D Problems 57

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.02  0.04  0.06  0.08  0.1  0.12

p(
h)

h

u=(uP3)

MLPG1

FEM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.02  0.04  0.06  0.08  0.1  0.12

p(
h)

h

u=(uT1)

MLPG1

FEM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.02  0.04  0.06  0.08  0.1  0.12

p(
h)

h

u=(uT2)

MLPG1

FEM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.02  0.04  0.06  0.08  0.1  0.12

p(
h)

h

u=(uCP)

MLPG1

FEM

Figure 5: Behaviors of FEM and MLPG1 convergence order estimations, p(h),
vs h. Going from top to bottom, the exact solutions are (uP3), (uT1), (uT2), and
(uCP).

where h̄ is a suitable base grid spacing. Assume that the exact I value is obtained
by running Matlab triplequad command on the finest grid. On the other hand, let
us consider the naive cubature rule Ih = h3 ∑n3

j=1 g(x(h)
j ), where n = [1/h]. Figure 6

plots the relative differences |1− Ih/I| vs h, when h̄ = 3.8×10−3, a grid spacing
which ensures a reliable sampling of the function g. The approximated solution
is either (uT2) or (uCP). One can see that the variation in the difference is much
higher in the (uCP) case, compared to the (uT2) one, confirming that the variation
of the cubature error produced by changing the number of sampling points is higher
when (uCP) solution is chased. This result corroborates our hypothesis that cuba-
ture errors are responsible for the oscillating MLPG1 convergence behavior in the
(uCP) case.

4.4 Dirichlet BC

Figure 7 shows the MLPG1 error behaviors vs h, when the (uCP) solution is ap-
proximated, and either exact, or inexact Dirichlet BC are imposed. One can see that
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the difference in the errors is negligible, suggesting that the more time-consuming
procedure of imposing exact boundary conditions, does not provide useful improve-
ments. The same conclusion was obtained for all our test solutions.

5 Conclusions

We analyzed the MLPG solution of 3D Poisson problems. The following points
deserve mention.

• Test and trial spaces were identified, and crucial parameter values were as-
sessed, in order to obtain an effective MLPG1 scheme for solving 3D Poisson
problems.

• Accurately performing 3D integrals is a main issue for obtaining accurate
MLPG1 solutions. Using product Gauss rules does not provide accurate
enough estimations. We identified cubature rules which entail the required
accuracy.

• While linear systems arising in 2D problems are usually solved via direct
methods, solving those large linear systems arising in 3D applications re-
quires iterative solvers. We efficiently solved our 3D problems via precondi-
tioned Bi-CGSTAB.

• Strategies for reducing the computational cost of the MLPG1 computation
flow were devised and tuned, which allow for a dramatic reduction in the
computing time. Applying these techniques has an analogous cost-reduction
valence as the assembling step in FEM procedures.

• The behavior of our MLPG1 error was analyzed and compared with linear
FEM. Apart from the case when low degree polynomial solutions are approx-
imated, MLPG1 error reduction is superior than FEM one. MLPG1 conver-
gence speed is anytime p > 2, which outperforms p � 2 produced by FEM.
However, MLPG1 convergence speed is affected by the cubature accuracy in
the computation of the MLPG1 known vector.

• Using quartic splines given by eq. (7), as both the MLS weight and the test
functions, did not provide useful results.
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