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A Parameter Free Cost Function for Multi-Point Low
Speed Airfoil Design

G. Veble1 ,2,3

Abstract: A simple cost function is proposed that depends on the inviscid pres-
sure distribution around an airfoil and that, when minimized, results in airfoils that
promote laminar flow. Additional constraints specify the design point of the air-
foil. The method allows for straightforward inclusion of multiple design points.
The resulting airfoils are quantitatively similar to those already successfully used
in practice.
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1 Introduction

In an attached incompressible flow over an airfoil at high Reynolds numbers, the
thin boundary layer behaviour is driven by the pressure distribution as given by
a largely inviscid flow around the airfoil away from the boundary layer [Ander-
son Jr. (2007)] . The thickness of the boundary layer decreases with increasing
the Reynolds number, making the inviscid solution valid ever closer to the airfoil
boundary. One of the most important features of the boundary layer flow is the
fact that severe adverse pressure gradients, that occur due to the slowing down of
the nearby inviscid component of the flow, promote separation of the flow from the
surface. While a detached flow might reattach further downstream, it will never-
theless disturb a possibly laminar airflow and cause a transition to turbulence. For
laminar airfoil design with minimum drag it is therefore essential that the point of
the pressure gradient reversal is moved as far downstream as possible in order to
promote laminar airflow along most of the surface, while still allowing for a gradual
recovery of the pressure to the freestream value close to the trailing edge.

For a given required lift value, such requirements demand pressure distributions
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that quickly reach an almost constant value of negative pressure in the downstream
direction along both the upper and lower parts of the airfoil, and then from a certain
point drop in a gradual way towards the trailing edge [Anderson Jr. (2007)]. Such
a design creates a relatively low peak (negative) pressure value in order to allow
for the adverse pressure gradient region close to the trailing edge to be as short as
possible. Low peak negative pressure is, on the other hand, also a welcome feature
for the design of transonic airfoils, as this delays the formation of shocks. The
requirements for both laminar and transonic airfoils are therefore quite similar in
terms of the desired pressure distributions.

It is possible to design airfoils with specified pressure distributions via inverse
methods [Lighthill (1945); Strand (1973); Selig and Maughmer (1992)]. These
distributions can not be arbitrary but must satisfy certain constraints due to the fact
that the pressure distributions must correspond to an actual flow. There may also
be additional constraints imposed by the designer, such as the profile thickness.
Designing pressure distributions that satisfy all these constraints is not entirely
straightforward.

The goal of the work presented here is to avoid having to explicitly specify a de-
sired pressure distribution when designing an airfoil. Instead, a simple cost func-
tion is proposed that, when minimized, leads to inviscid and incompressible pres-
sure distributions with the desired properties as outlined above. The proposed cost
function, which leads to airfoils quantitatively similar to the ones already used in
practice, is parameter free. The parameters determining the airfoil characteristics
enter the computation via straightforward design constraints such as specified lift
coefficient. Using a cost function approach allows these constraints to be handled
naturally by using standard approaches for constrained minimization.

Optimization problems [Nocedal and Wright (2007), Papalambros and Wilde (2000)]
are an active field of research in themselves, and occur in various contexts such as
fluid dynamics [Medic, Mohammadi, Petruzzelli, Stanciu, and Hecht (1999), Ami-
rante, Catalano, Dadone, and Daloiso (2007)], structural optimizations [Fedelin-
ski and Gorski (2006), Lamberti and Pappalettere (2007)], electrical engineering
[Jimenez-Octavio, Lopez-Garcia, Pilo, and Carnicero (2008)] and new approaches
towards uncertain optimization are studied [Jiang and Han (2007)].

Another advantage of using a cost function approach is evident when dealing with a
multi point design. Creating an airfoil that performs best at more than a single angle
of attack by using the usual inverse design methods requires the designer to spec-
ify various pressure distributions for different angles of attack that are all closely
constrained by one another, making this a nontrivial task. On the other hand, a cost
function based approach merely requires that all pressure distributions for various
angles of attack minimize a (weighted) sum of possibly identical cost functions for
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all angles of attack, without specifying in advance what the distributions should be
like.

The value of the proposed method lies especially in situations where there is a
need to design a large number of similar airfoils with continuously varying design
points, such as e.g. the cross sections of a propeller, as the procedure is fully
autonomous and can therefore be automated. In the cases where more specific
design requirements are necessary, the procedure is still valuable in that it can come
up with a reasonable initial design that can then be further optimized to meet those
requirements.

2 Formulation

The paper deals with pressure distributions for incompressible, ideal flows around
an airfoil. Designing an airfoil with respect to inviscid pressure distributions rather
than e.g. minimum drag may be a preferred method since the turbulent flow pre-
dictions are still somewhat inaccurate due to the incomplete state of the available
turbulence modelling, especially as far as the laminar to turbulent transition is con-
cerned. High Reynolds number flows around streamlined bodies feature a narrow
wake and boundary layer in comparison to the body size. Outside of these areas
the flow is well described by the inviscid solution, and it is this inviscid solution
that governs the behaviour of the boundary layer. Designing the inviscid pressure
distributions in a correct manner will therefore produce the desired boundary layers
that e.g. minimize drag and prevent separation.

A cost function is sought that, when minimized, will lead to airfoils with favourable
pressure distributions that feature the minimum of pressure variation, along with
moderate adverse pressure gradients in the areas of the flow slowdown. Let p = v2

2v2
0

be the dimensionless negative pressure variable, where v is the tangential velocity
of the ideal fluid at the airfoil surface and v0 is the freestream velocity. The chosen
cost function is calculated as a functional of the obtained pressure distribution as

f (z,w) =
∫ L

0
dl

∣∣∣∣ d
dl

p(z,w; l)
∣∣∣∣ . (1)

The variable l = s/c is the ratio between the counter-clockwise arc length along
the airfoil surface starting and the chord of the airfoil c. The variable l goes from 0
at the top of the trailing edge to L at the bottom of the trailing edge. The vector z
represents the set of optimization variables with respect to which the cost function
is minimized. The vector w denotes any possible additional variables which can be
used to specify the design point for the airfoil, but which are not varied during min-
imization and will therefore often be omitted in the following text. It is important
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to stress that there are no free parameters in this cost function. Since a parame-
ter free cost function can lead to only a single optimal solution, different solutions
are obtained by specifying additional constraints that depend on the desired airfoil
properties.

The reasoning for choosing such a pressure functional is as follows. It is clear that
the integral above can be evaluated on each interval where the sign of the pressure
gradient is constant. If the points l j denote the set of all r zeros of the pressure
gradient d p

dl (l j) = 0 together with with l0 = 0 and lr+1 = L, then the integral can be
evaluated as

f (z,w) =
r

∑
j=0

∣∣p(z,w; l j+1)− p(z,w; l j)
∣∣ . (2)

In an exact inviscid calculation the pressure at the cusped trailing edge is equal to
0 for any nonzero angle between the upper and lower surfaces of the airfoil, as the
velocity close to that point drops to 0. In a numerical implementation of the cost
function, due to discretization, the jump from 0 pressure to the one calculated at
the actual trailing edge panel must be added.

In order to minimize this cost function, the corresponding pressure distribution
should have as few pressure gradient reversals as possible. The differences in pres-
sure on each subinterval should also be minimal. This should favour pressure dis-
tributions that are as uniform as possible. It is therefore expected that the above
cost function will lead to the desired airfoil designs.

The procedure is, however, incomplete without specifying the constraints. Only
by constraining the solution space will the minimization converge to a regular and
reasonable solution. Such constraints are, for example, a specified section lift coef-
ficient and the maximum thickness of the airfoil, but also the constraints that limit
the adverse pressure gradients.

The design problem expressed as a general cost function minimization makes an
extension to multi-point design quite natural. It is proposed here that multi point
design should be performed by specifying a base design point at given lift and
thickness constraints, and then allowing for variations in some problem parameters
(usually the angle of attack) with respect to the base point. The cost function should
then be given as a weighted sum

f̃ (z,w) = f (z,w)+
d

∑
k=1

ρk f (z+Δzk ,w+Δwk) (3)

where d is the number of extra design points. The offsets of the minimization
variables z at the design point k from the base design point are given by Δzk, which
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are some given constants, and similarly for the design point variable offsets Δwk.
The weights ρk represent the relative contributions of each design point to the total
cost function. Note that the change in the design point can be specified by offsetting
not only the constants w but also the minimization variables z. For example, this
allows for the airfoil to be optimized with respect to various offset angles of attack,
with the angle of attack at the base design point being a minimization variable itself.

While this is not a multiple design point optimization in the sense of being able to
tailor various airfoil segments and pressure details to satisfy very specific require-
ments at different design points, it is nevertheless demonstrated that the multiple
design point procedure as described above yields airfoils with good performance
at the basic design point with a biased operating window towards the design points
with less significant weights.

3 Implementation

In order to perform the optimization the airfoil shape needs to be specified as a
smooth function of a finite number of variables. An arbitrary smooth airfoil shape
can be represented as

y(x) = ±τn(x)
3(1−x)

√
3x

2
+ζn(x), x ∈ [0,1], (4)

where the signs correspond to the top and the bottom segments of the airfoil and
where both the thickness function τn(x) and the camber function ζn(x) are repre-
sented by the n-th order Bézier polynomials [Bartels, Beatty, and Barsky (1998)]

τn(x) =
n

∑
i=0

Ti,nbi,n(x), (5)

ζn(x) =
n−1

∑
i=1

Ci,nbi,n(x), (6)

with Bernstein basis polynomials

bi,n(x) =
(

n
i

)
xi(1−x)n−i. (7)

The 0-th and n-th control point are set to 0 for the camber shape so that the chord
of the airfoil always coincides with the x axis. The cost function is minimized with
respect to the variables Ti,n and Ci,n.

The Bézier polynomials have a useful feature that their order n can be increased by
1 while preserving the polynomial via the mapping

Ti,n+1 =
iTi−1,n +(n+1− i)Ti,n

n+1
. (8)
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This allows one to perform a basic optimization of an airfoil with respect to fewer
variables and then increase the number of variables upon convergence in order to
refine the optimization.

The minimization variables are chosen to be

z = {α ,T0,T1, . . .Tn,C1,C2, . . .Cn−1} , (9)

where α is the angle of attack, which, in the given formulation, is the angle between
the incoming velocity vector and the x axis. In the problem as formulated here, the
design parameter vector w is chosen to be empty as it is simply the angle of attack
variation which is used to specify the various design points.

Two of the applied constraints are the section lift coefficient cl and the maximum
thickness of the airfoil in the y direction, tmax. Any possible constraints can be
specified as functions of the same variables as the cost function f (z) and will be
denoted by g j(z). In the present case this means g1 = cl and g2 = tmax. The value
of cl is obtained directly from the panel method via the sum of all panel vorticities,
whereas the maximum thickness calculation is performed by a Newton method
search for the zero derivative of the airfoil thickness as obtained from the Eq. 4.

Another constraint will generally be required in order to promote favourable pres-
sure recovery in the regions of adverse pressure gradient near the trailing edge.
While there exist models that promote optimal pressure recovery without separa-
tion such as the Stratford pressure recovery [Liebeck and Ormsbee (1970)] or its
improvements [Eppler (1991)], a model is sought here that has the general charac-
teristics of the ideal recovery but which is local in terms of the pressure distribution
is and independent of the coordinates, such that it can be generally applicable to a
large class of airfoils. A model is used that can be expressed as a constraint relating
pressure and its derivative of the form

r(z) = min
l

{
θ (p(l))

d

dl̃
p(l)+ μ p(l)ν

}
= 0. (10)

The derivation with respect to the length parameter, d/dl̃, is to be taken in the di-
rection of the local fluid flow. The constant μ gives the inverse of the typical length
over which the pressure recovery takes place, while ν determines how much faster
the recovery takes place at larger negative pressures. The weight function θ should
be equal to 1 for large negative pressures, but it should be 0 when the negative
pressure approaches 0 due to the fact that, in an inviscid calculation, the pressure
gradients close to the trailing edge of the airfoil will be approaching infinity for any
nonzero angle of the cusp between the upper and lower surfaces, and thus the pres-
sure gradient can not be constrained close to the values of pressure approaching 0.
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The function was chosen as

θ (p) =

⎧⎪⎨
⎪⎩

p− p0 > δ p ; 1

−δ p < p− p0 < δ p ; 1
2

[
1+ sin

(
π(p−p0)

2 δ p

)]
p− p0 < −δ p ; 0

(11)

where p0 denotes the negative pressure where the constraint becomes significant
and δ p gives half the transition interval.

A constant vorticity panel method with a vorticity Kutta condition at the trailing
edge is used to determine the velocity and hence pressure distributions around the
airfoil (see Appendix A: for solution details).

A simple constrained gradient search method is employed to search for the min-
imum of the cost function f̃ ,. Faster converging schemes rely on the analytical
behaviour of the cost function close to the minimum. They were therefore pur-
posely avoided due to the non analytical nature of both the cost function as well as
of the certain constraints.

As, due to the large number of minimization variables, the gradient computations
are expensive, an approximate line search along the constrained gradient direction
is performed before recalculating the gradient. For more implementation details
see Appendix B:.

4 Results

The procedure as outlined in the previous section was used to obtain example air-
foils for both single and multiple design points. In all the calculations shown, the
order of the Bézier polynomial was n = 9. The number of panels in the panel
method was N = 100, with the x coordinates that are joining the neighbouring pan-
els being distributed according to the formula

xi = wi − sin(2πwi)/(2π), wi = i/(N/2), (12)

which bunches the panels close to the leading and trailing edges, where pressure
variations are fastest. The obtained airfoils were then analyzed with the program
XFOIL v6.961 [Drela and Giles (1987)], using the default parameters of the pro-
gram. There were 200 panels used in the analysis, redistributed from the original
coordinates within the program itself.

As an example of the design procedure, an airfoil with a primary design lift co-
efficient cl = 1 and a thickness to chord ratio of 12% was chosen. The pressure

1 Mark Drela’s XFOIL program is distributed under the GPL licence at
http://web.mit.edu/drela/Public/web/xfoil/
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Figure 1: A series of airfoils of 12% thickness and a design lift coefficient cl = 1.0.
In the top picture, the pressure distribution for the case of a single design point is
shown as a dotted curve, the double design point distribution is shown dashed and
the triple design point is shown as a full curve (cp = 1− v2/v2

0). In the bottom
picture, the corresponding airfoil shapes are shown. See text for details.

recovery parameters were picked as μ = 3, ν = 1, p0 = 1/2 and δ p = 1/20. The
airfoil was first designed at the single design point. A double design point calcu-
lation with the offset angle of attack Δα1 = 1/(4π) and the weight ρ1 = 1/5 (see
Eq. 3) was then performed. Finally, a triple design point calculation with an addi-
tional negative angle of attack offset Δα2 = −1/(4π) and the weight ρ2 = 1/5 was
done. The results of these three calculations are given in Fig. 1.

The dotted curve represents the pure single point design. The minimization pro-
cedure yields a pressure distribution that, on the top surface, very quickly reaches
a plateau near the leading edge. Pressure then remains constant along the length
of the airfoil until the region of adverse pressure gradient is reached, where the be-
haviour is dominated by the adverse pressure gradient constraint as given by Eq. 10.
On the bottom surface, the minimization favours a plateau in pressure as well, with
two significant differences. There exists a certain amount of pressure loading both
near the leading and the trailing edges of the airfoil. As the pressure distribution in
this area is not affected by the pressure gradient constraint, the front and rear load-
ing is a feature of the cost funtion (Eq. 1) itself. Since the cost function minimizes
the variations in pressure, this additional loading, that alters the bottom pressure
distribution only midly, occurs in order to reduce the maximum velocity on the
upper surface. Such a pressure distribution favours a laminar flow, while the slow
pressure recovery towards the trailing edge prevents significant airflow separation.

The dashed curve gives the pressure distribution for the double design point, where
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an additional bias exists towards larger angles of attack. The weight given to the
secondary design point is small enough that it does not destroy the plateaus in
pressure on either side of the airfoil. The main difference to the single point design
case is the reduction of the pressure loading on the bottom side near the leading
edge, and a more gradual rise of negative pressure towards the plateau on the top
side. A slight increase in the maximum negative pressure on the top side is present.
The main difference in geometry between the single and double design point cases
is in the higher airfoil camber of the latter.

The full curve gives the pressure distribution for the triple point design. As can be
seen, both the upper and lower surface pressure distributions now have a gradual
rise towards the plateau. The plateau on the bottom surface is, however, somewhat
perturbed due to the conflicting requirements, extending the pressure recovery re-
gion over a larger part of the airfoil. The camber of the airfoil is increased with
respect to the single design point case, but is lower than for the double design
point. The main feature of the triple point design is the larger leading edge radius
in comparison to both other cases.

All the three cases were analysed with XFOIL to determine their viscid perfor-
mance at the Reynolds number Re = 3×106. The results are shown in Fig. 2. The
single design point reaches the minimal drag, but not significantly so. Due to its
narrow leading edge, the laminar airflow over the top of the surface is destroyed
almost immediately when increasing the angle of attack past its design point (cor-
responding to the actual viscid lift coefficient cl = 0.865 at this Reynolds number),
which manifests itself in the increase of drag and even a slight local drop of the lift
coefficient with increasing the angle of attack. Due to the front pressure loading,
the airfoil performs well for lift coefficients below its design point.

The double design point case shifts the value of the laminar flow breakdown to
higher lift coefficients, and also makes this transition more gradual. More impor-
tantly, it allows the airfoil to reach a higher maximum lift coefficient. Favouring
higher lift coefficients, does, however, compromise the airfoil performance at the
lower lift coefficients. Drag is increased for lift coefficients below about 0.8 when
compared to the single design point case.

The triple design point case represents a good compromise. It attains neither the
maximum lift to drag ratio ((cl/cd)max = 240 for the triple, 245 for the double and
233 for the single design point case at the given Reynolds number) nor the mini-
mum drag. Its drag performance at zero lift coefficient, however, is only marginally
worse than for the single design point case. Interestingly, its maximum lift coeffi-
cient is even higher than for the double design point case. This can be attributed to
the larger leading edge radius which is a consequence of the airfoil being optimized
over a larger range of lift coefficients.
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Figure 2: Polar plots at the Reynolds number Re = 3× 106for the series of air-
foils as shown in Fig. 1, using the same line types for the various airfoils. The
corresponding airfoil geometries are given in the inset.
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Figure 3: Polar plots for the high lift airfoil of 15% thickness and design lift coef-
ficient cl = 2.5 as shown in the inset for the Reynolds numbes Re = 3×106 (solid)
and Re = 106 (dashed).
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To show the versatility of the method, it was applied in order to design a high
lift airfoil with the design lift coefficient cl = 2.5 and a prescribed 15% thickness.
A triple point design was used with the offset angles Δα1,2 = ±1/(2π) and the
weights ρ1,2 = 1/10 in order to increase the operating range of the airfoil. The
pressure recovery parameters were μ = 2.5, ν = 3, p0 = 3/5 and δ p = 1/5. The
main difference to the previous case is the choice of the parameter ν , which was
chosen such that the pressure recovery shape as given by Eq. 10 follows the asymp-
totic form as presented by Liebeck and Ormsbee (1970) for large x. The shape of
the obtained airfoil and its polar plots as given by XFOIL are shown in Fig. 3. The
resulting airfoil shape is highly cambered. The airfoil attains the maximum lift co-
efficient of about cl = 2.47 at the Reynolds number Re = 3× 106 and cl = 2.33
at Re = 106. While the boundary layer theory breaks down in the cases of large
separations, the maximum lift coefficient as obtained from it can nevertheless still
be of interest as a relative comparison number, especially in the regime somewhat
below the "peak" value where the boundary layer theory is still adequate. The cor-
responding maximum lift to drag ratios are (cl/cd)max = 238 and (cl/cd)max = 152,
respectively.

The pressure distribution for this airfoil is given in Fig. 4. Again flat pressure dis-
tributions are favoured, with the multi point design ensuring that the rise to both
plateaus near the leading edge is gradual. The pressure recovery on the top sur-
face is governed by the corresponding constraint. On the bottom surface, the pres-
sure distribution tends to remain constant and then gradually rises closer to the
freestream value near the trailing edge. Such a distribution is qualitatively similar
to those employed by Liebeck and Ormsbee (1970).

It is of interest whether the outlined procedure is capable of resulting in airfoils
similar to those that are already successfully used in practice. As an example,
an airfoil as used on the Pipistrel series of aircraft, such as the Virus model that
recently won the most categories in the NASA Centennial Challenge competition2,
is taken. The set of parameters for the cost function (Eq. 3) that, when minimized,
results in an airfoil that matches the real one as closely as possible is given by the
the design lift coefficient of 0.45, the thickness of 17% and using an additional
design point that is offset by an angle of attack Δα1 = 1/(2π) with the weight ρ1 =
1/3. The pressure recovery constraint parameters were μ = 1.5, ν = 1, p0 = 0.6
and δ p = 0.05.

The comparison of the calculated and the actual airfoil is given in Fig. 5. Not
only are the general features of the two airfoils similar, but the actual contours
match closely as well. The airfoil resulting from the optimization procedure clearly

2 2007 NASA Personal Air Vehicle Challenge, http://cafefoundation.org/
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Figure 4: The pressure distribution (cp = 1− v2) for the airfoil as shown in Fig. 3
at its design point cl = 2.5.

reproduces the basic features such as slight aft pressure loading of the actual airfoil
and the different rise towards the plateaus of the pressure distribution on the top
versus the bottom side. The largest difference between the two airfoils can be seen
in the aft section of the bottom side, where the calculated airfoil remains wider
and therefore allows for a faster pressure recovery than can be found on the actual
airfoil. It should be stressed that the optimization procedure only takes a very small
number of parameters in order to obtain the airfoil shape. Apart from tweaking
these few parameters in order to obtain as close a match as possible, there was
no input from the real airfoil data into the optimization procedure, not even as a
starting point for the calculation.

5 Conclusion

The procedure as outlined in this paper allows for automatic calculation of low
speed airfoils that conform to some of the typical design principles. As the auto-
matic optimization is performed by using a parameter free cost function and a num-
ber of constraints with few parameters, the procedure requires little input from the
designer. The procedure can also be easily generalized to multiple design points,
resulting in airfoils that perform well over a range of angles of attack. While clas-
sical design methods already provide the means to design excellent airfoils, the
proposed method is most useful in situations where there is a need to design a large
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Figure 5: The comparison of the airfoil as used on the Pipistrel series of aircraft
(dotted) with the computed shape (full) is shown in the bottom picture. The pres-
sure distribution for the computed airfoil (full) and the existing airfoil (dotted) at
the design lift coefficient cl = 0.45 is given in the top picture.

number of similar airfoils with continuously varying design points, such as those
along different cross sections of a wing or a propeller.

The cost function as chosen here was deliberately as simple as possible while still
producing desirable results. A single, low parameter cost function is unlikely to
satisfy all the possible airfoil design requirements. It is easy to extend the outlined
method towards additional demands. One possible modification is to introduce a
bias to the pressure gradient in the cost function (Eq. 1) such that favourable (rather
than zero) pressure gradients are optimal. On the other hand, for transonic design it
might be better to simply use the maximum negative pressure reached at the surface
of airfoil as the cost function.

The cost function in Eq. 1 can also be expressed as an integral over a surface in
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three dimensions. It remains a problem for the future whether such a cost function
might extend the procedure from the design of airfoils to the design of full three-
dimensional bodies.

References

Amirante, R.; Catalano, L. A.; Dadone, A.; Daloiso, V. S. E. (2007): Design
Optimization of the Intake of a Small-Scale Turbojet Engine. CMES: Computer
Modeling in Engineering and Sciences, vol. 18, no. 1, pp. 17–30.

Anderson Jr., J. D. (2007): Fundamentals of Aerodynamics. McGraw-Hill,
Singapore.

Bartels, R. H.; Beatty, J. C.; Barsky, B. A. (1998): An Introduction to Splines
for Use in Computer Graphics and Geometric Modelling, chapter 10. Morgan
Kaufmann, San Francisco, 1998.

Drela, M.; Giles, M. B. (1987): Viscous-inviscid analysis of transonic and low
Reynolds number airfoils . AIAA Journal, vol. 25, pp. 1347–1355.

Eppler, R. (1991): Airfoil Design And Data. Springer-Verlag, Berlin.

Fedelinski, P.; Gorski, R. (2006): Analysis and optimization of dynami-
cally loaded reinforced plates by the coupled boundary and finite element method.
CMES: Computer Modeling in Engineering and Sciences, vol. 15, no. 1, pp. 31–40.

Jiang, C.; Han, X. (2007): A New Uncertain OptimizationMethod Based on
Intervals and An ApproximationManagementModel. CMES: Computer Modeling
in Engineering and Sciences, vol. 22, no. 2, pp. 97–118.

Jimenez-Octavio, J.; Lopez-Garcia, O.; Pilo, E.; Carnicero, A. (2008): Cou-
pled Electromechanical Optimization of Power Transmission Lines. CMES: Com-
puter Modeling in Engineering and Sciences, vol. 25, no. 2, pp. 81–97.

Lamberti, L.; Pappalettere, C. (2007): Weight Optimization of Skeletal Struc-
tures with Multi-Point Simulated Annealing. CMES: Computer Modeling in En-
gineering and Sciences, vol. 18, no. 3, pp. 183–221.

Lewis, R. I. (1991): Vortex Element Methods for Fluid Dynamic Analysis of
Engineering Systems. Cambridge University Press, Cambridge.

Liebeck, R. H.; Ormsbee, A. I. (1970): Optimization of Airfoils for Maximum
Lift. Journal of Aircraft, vol. 7, pp. 409–416.



A Parameter Free Cost Function for Multi-Point Low Speed Airfoil Design 257

Lighthill, M. J. (1945): A New Method of Two-Dimensional Airfoil Design.
Technical Report 2112, Aeronautical Research Council, R&M, 1945.

Mantia, M. L.; Dabnichki, P. (2008): Unsteady 3D Boundary Element Method
for OscillatingWing. CMES: Computer Modeling in Engineering and Sciences,
vol. 33, no. 2, pp. 131–153.

Medic, G.; Mohammadi, B.; Petruzzelli, N.; Stanciu, M.; Hecht, F. (1999): 3D
Optimal Shape Design for Complex Flows: Application to turbomachinery. AIAA
Paper, vol. 99-0833.

Nocedal, J.; Wright, S. J. (2007): Numerical Optimization. Springer-Verlag,
New York.

Papalambros, P. Y.; Wilde, D. J. (2000): Principles of Optimal Design: Model-
ing and Computation. Cambridge University Press, Cambridge.

Press, W. H. (2007): Numerical Recipes: The Art of Scientific Computing.
Cambridge University Press, Cambridge.

Selig, M. S.; Maughmer, M. D. (1992): Multipoint inverse airfoil design method
based on conformal mapping. AIAA Journal, vol. 30, pp. 1162–1170.

Sellountos, E.; Sequeira, A. (2008): A HybridMulti-Region BEM / LBIE-
RBF Velocity-Vorticity Scheme for the Two-Dimensional Navier-Stokes Equa-
tions. CMES: Computer Modeling in Engineering and Sciences, vol. 23, no. 2,
pp. 127–147.

Strand, T. (1973): Exact Method of Designing Airfoils With Given Velocity
Distribution in Incompressible Flow. Journal of Aircraft, vol. 10, pp. 651–659.

Appendix A: Implementation of the panel method

The ideal incompressible flow around an airfoil is calculated by the constant vor-
ticity panel method [Lewis (1991)]. Such boundary element methods still attract
significant attention in fluid dynamics today [Sellountos and Sequeira (2008),Man-
tia and Dabnichki (2008)]. Each panel i has an assigned vorticity density γi. The
value of γi is also equal to the tangential velocity of the flow at the boundary. The
velocity contribution of each panel with the center ci, length ai, unit tangent vector
ti and unit normal vector ni to the total flow is calculated as

vi = vtti +vnni, (13)

vt =
1

2π
(
tan−1(xn,xt −ai/2)− tan−1(xn,xt +ai/2)

)
, (14)
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vn =
1

4π

(
ln

[
(xt −ai/2)2 +x2

n

(xt +ai/2)2 +x2
n

])
(15)

with

xt = (r−ci) · ti, xn = (r−ci) ·ni. (16)

The function tan−1(y,x) with the range [−π ,π) is the polar angle function for the
coordinates x and y and is equal to tan−1(y/x) in the first and the fourth quadrant.

The boundary condition requires that the tangential velocity on the internal side of
the boundary should equal 0. If the velocity far away from the airfoil equals v0, this
leads to the system of N equations for N panel vorticities

N

∑
j=1

Ai jγ j = v0 · ti (17)

where

Ai j = −ti ·v j, i �= j, Aii =
1
2
. (18)

If the panels closest to the trailing edge are given the indices 1 and N, then the Kutta
condition is expressed as

γ1 + γN = 0, (19)

This, however, leads to an overdetermined system N +1 equations for N unknowns.
The solution employed here is to perform a quasi inversion of the now non-square
matrix Ai j using the singular value decomposition (see e.g. Press (2007)). While
in principle a quasi inverse would lead to a solution only approximately satisfying
all the equations, it is important to note that the square system of equations without
the Kutta condition is actually underdetermined, since the ideal flow solution can
admit an arbitrary total vorticity. This means that the quasi inverse will actually
be able to satisfy all of the conditions since the Kutta condition merely fixes the
existing vorticity degree of freedom in the square system of equations.

Once the system is solved, the lift coefficient is given by the total vorticity as

cl = 2
N

∑
j=1

γiai. (20)
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Appendix B: Minimization implementation

In order to perform the minimization of a function f̃ (z) over the variables z under
the constraints cl(z) = g1(z) = g1,0, tmax(z) = g2(z) = g2,0 and r(z) = g3(z) =
g3,0 = 0, where g j,0 are specified constants, the calculation of gradients with respect
to z must be performed for the cost function as well as all the constraints. These
gradients are denoted as ∇ f̃ , ∇g1, ∇g2 and ∇g3 and are calculated numerically
by offsetting each variable xi of the vector z by a small ε and performing a finite
difference approximation for the derivative. Choosing too small an ε will cause
numerical instabilities. The value ε = 10−4 was used throughout.

In order to keep the search constrained, the descent should not follow ∇ f̃ but only
its component that is orthogonal to all constraint gradients ∇c j . On each calculation

of a new gradient, its projection ∇ f̃ is calculated such that ∇ f̃ ·∇g j = 0 for all
j = 1, . . . ,m, where m is the number of constraints (3 in the present example). This
is performed by solving the system of m equations for each i,

m

∑
j=1

(∇gi) · (∇g j)λ j = (∇ f̃ ) · (∇gi), (21)

in order to obtain the constrained gradient

∇ f̃ = ∇ f̃ −
m

∑
j=1

λ j∇g j. (22)

The system (Eq. 21) can be solved directly, or iteratively by a repeated projection
of the current solution vector along the directions of each constraint gradient ∇cl ,
where the starting solution vector is the unconstrained cost function gradient. This
amount exactly to the Gauss-Seidel iteration for the system (Eq. 21).

A linear minimum search is then performed in the direction of ∇ f̃ . Since the con-
straints g j will in general not be linear functions of search coordinates, drifts from
the specified constraint values will occur spontaneously while following the search
direction ∇ f̃ , which is calculated at a single point on the line. Since, during each
linear search, the constraint gradients are nevertheless not expected to deviate sig-
nificantly from the initial values, after each step to obtain the n-th iteration for the
variables z, a number of repeated additional correction steps is performed

zn = zn −
m

∑
j=1

Δg j
∇g j

|∇g j|2 , (23)

where

Δg j(z) = g j(z)−g j,0 (24)
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is the error in the constraint function. This will not lead to the constraints being
satisfied exactly during each step of the search, but once convergence is approached
the correction steps become more efficient and lead to a converging final solution.

The inexact linear search along a chosen direction was performed by taking steps
of finite size along the projected gradient direction, starting from a small step size
(|δz| = 10−4 was chosen), applying the above correction step each time and then
increasing the step size by a fixed multiplication factor (β = 3/2 in the present
example) until the step size |δz| became larger than some number (|δz| < 10−2

in present calculations), and from there on the step size was kept constant. Upon
reaching a local minimum for the cost function on this set of points, a new search
is started by repeating the gradient calculations from the obtained minimal point.
Typicially a few ten recalculations of the gradient direction are sufficient for finding
a reasonable solution, while about a few hundred are needed for convergence within
the prescribed variable step |δz|.


