
Copyright © 2008 Tech Science Press CMES, vol.37, no.1, pp.65-84, 2008

Steady-state Response of the Wave Propagation in a
Magneto-Electro-Elastic Square Column

Jianping Wei1 and Xianyue Su1,2

Abstract: The steady-state response of the wave propagation in a magneto-electro-
elastic square column (MEESC) was studied. Some new characteristics were dis-
covered: the guided waves are classified in the forms of the Quasi-P, Quasi-SV
and Quasi-SH waves and ordered by the standing wave number, and the three type
guided waves are corresponding to the extension, twist and shear modes of the
body vibration; the induced electric and magnetic fields can be aroused by the
propagating stress wave. We proposed a self-adjoint method, by which the guided-
wave restriction condition was derived. After finding the corresponding orthogonal
sets, the analytic dispersion equation was obtained. In the end, an example was
presented. The dispersive spectrum, the group velocity curve and the steady-state
response curve of MEESC were plotted.

Keyword: magneto-electro-elastic square column, guided-wave restriction con-
dition, dispersive equation, group velocity equation, steady-state response.

1 Introduction

Magneto-electro-elastic dielectrics are widely used in the aerospace structures, the
equipments of the energy and chemical industries, and they are the main part of
the electron elements and the microelectronics mechanical systems, and they play
an important role in the material science progressively. This kind of medium has
piezoelectric, piezomagnetic, elastic, dielectric and electromagnetic properties, and
there are no free electrons and electric flux in it. The electric and magnetic influ-
ences can only transmit in the forms of the induced electric and magnetic fields.
But these media are very sensitive to the outside physical fields, and they have
many response patterns. In general, there are coupling stress waves propagation
and coupling mechanical and electromagnetic signs transmission. These physical
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phenomena will affect the operation reliability and the control precision of these
equipments and systems mentioned above.

Because these media have coupled piezoelectric, piezomagnetic and anisotropic
elastic constitutive relations, etc., the characteristics of the stress wave propagation
are very complicated. If the effects of the boundary conditions are considered, the
coupling waves will reflect and refract at the boundaries, thus forming complicated
interferences and causing dispersive phenomena. Furthermore, the dynamic prob-
lem will become more difficult and complicated in magneto-electro-elastic struc-
tures.

At present, the Bessel-Fourier expansion method [Karl 1991, Paul 1997] and the
Stroh method [Ting 2002] are widely used to study the dynamic problems of the
magneto-electro-elastic and piezoelectric structures, but these two methods have
some limitations. The Bessel-Fourier expansion method can be only applied in
cylindrical structures and it requires that the physical property of the cross section
is isotropic. The Stroh method is a complex method. Theoretically, it can solve all
kinds of magneto-electro-elastic structures, but this method is only applicable to
two space arguments’ problems. The dispersive equations derived from these two
methods contain transcendental functions, so it is very difficult to plot the dispersive
spectrum.

Although the magneto-electro-elastic guided-wave problems are very complicated,
and there is not a complete dispersive spectrum for any 3D magneto-electro-elastic
structure, there are some achievements, which can be used for reference.

Paul and Venkatesan [Paul and Venkatesan 1987, 1989] applied the Bessel-Fourier
expansion method to studying the dispersive equation of a piezoelectric cylinder
with a slightly changing cross section. It is shown that the dispersive equation
changes with the slightly changing cross section. But it is very difficult to plot the
dispersive curves, so the difference between two slightly changing cross sections
cannot be compared.

Chen et al. [1998] and Ding & Xu [2002] studied the vibration of composite plates.
In order to get the iteration matrix they selected two boundary conditions (elastic
simply supported and rigid sliding supported) in the iterative process. It is very easy
to find two group orthogonal sets for these two boundary conditions, but it is very
difficult to obtain the orthogonal sets for other boundary conditions to realize the
iterative process. These imply that there are internal relations between the boundary
condition and the orthogonal sets. We have applied these two boundary conditions
in studying the wave propagation in a piezoelectric cylinder [Wei and Su 2005].

Jun and Mauro [2003] researched the elastic wave reflection on biological tissue.
Although in their model they used the averaged material properties for thin layer,
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we can see that changes in micro-level physical and geometrical parameters affect
the reflectivity of the thin layer. Verbis, Tsinopoulos and Polyzos [2002] compared
the elastic wave propagation in fiber reinforced composite materials between non-
uniform distribution of fibers and the uniform distribution of fibers. We can also
find that the slight change of physical properties can arise the large change of wave
propagation.

We have also applied an approximate model in solving the guided-wave problems
of the piezoelectric and magneto-electro-elastic cylinders [Wei and Su 2005, 2006],
obtained the lower order modes and found that the electric and magnetic physical
properties have different influences on the stress wave propagation in the piezo-
electric and magneto-electro-elastic dielectric media.

In this paper the self-adjoint method is presented in studying the steady-state re-
sponse of the wave propagation in MEESC. The physical property of the magneto-
electro-elastic dielectric medium, the space structure and boundary condition of
the guided-wave system are combined together in this method, and a guided-wave
restriction condition is derived to describe the inner relations of the guided-wave
system in mathematics. After finding the orthogonal sets, which satisfy the guided-
wave restriction condition, and mapping them from the time domain to the fre-
quency domain, the analytic dispersive equation, the group velocity equation and
the steady-state response are obtained completely.

2 Basic equation

We consider the magneto-electro-elastic dynamic equations in a rectangular coor-
dinate system. The relation between deformation and displacement is

s(u) =
1
2
(∇u+u∇). (1)

Relation between electric field and electric potential is

E(φ ) = −∇φ . (2)

Relation between magnetic field and magnetic potential is

H(ψ) = −∇ψ . (3)

where s = [si j], u = [ui], E = [Ei], H = [Hi], φ and ψ are the strain tensor, dis-
placement vector, electric field vector, magnetic field vector, electric potential and
magnetic potential, respectively.

The magneto-electro-elastic constitutive relations are

σσσ = c · ·s(u)−E(φ ) · f−H(ψ) ·d, (4)
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D = fT · ·s(u)+εεε ·E(φ )+h ·H(ψ), (5)

B = dT · ·s(u)+h ·E(φ )+μμμ ·H(ψ), (6)

where σσσ = [σi j], D = [Di] and B = [Bi] are the stress tensor, electric displacement
vector and magnetic induction vector, respectively. c = [ci jkl], f = [ fi jk], d = [di jk],
εεε = [εi j], h = [hi j] and μμμ = [μi j] are the constants of the elasticity tensor, piezoelec-
tric tensor, piezomagnetic tensor, dielectric tensor, electromagnetic tensor and per-
meability tensor, respectively. The symmetric and transpose relations of the above
tensors are ci jkl = c jikl = ci jlk = ckli j, �i jk = �ik j, �T

i jk = � jki and �i j = � ji.

The governing equations in the magneto-electro-elastic dielectric are

∇ ·σσσ = ρ ü, (7)

∇ ·D = 0, (8)

∇ ·B = 0, (9)

where ρ is the mass density. The superimposed dot indicates the differentiation
with respect to the time parameter t. Here body force is neglected for simplicity.

Substituting eqs. (1-6) into eqs. (7-9), the governing equation in the form of the
displacements, electric and magnetic potentials is

L[U(x, t)] = 0, (10)

where U(x, t) = U(x1,x2,x3, t) =
[
u φ ψ

]T
. The differential operator is

L =

⎡
⎢⎢⎢⎢⎣

ci1k1∂ik −ρ∂tt ci1k2∂ik ci1k3∂ik fi1k∂ik di1k∂ik

ci2k1∂ik ci2k2∂ik −ρ∂tt ci2k3∂ik fi2k∂ik di2k∂ik

ci3k1∂ik ci3k2∂ik ci3k3∂ik −ρ∂tt fi3k∂ik di3k∂ik

fi j1∂i j fi j2∂i j fi j3∂i j −εi j∂i j −hi j∂i j

di j1∂i j di j2∂i j di j3∂i j −hi j∂i j −μi j∂i j

⎤
⎥⎥⎥⎥⎦ , (11)

where ∂i j = ∂2

∂xi∂x j
, (i, j = 1,2,3), ∂tt = ∂2

∂t2 . In derivation of the overall formulas,
we take Einstein notation; where we do not take, a special note will be given.

3 Self-adjoint method

If the steady-state response of the structure is considered, namely, U(x, t) is the
harmonic wave in formula (10), the coefficient matrix of L[U(x, t)] = 0 will be an
Hermite’s matrix. The characteristic of the Hermite’s matrix is that all eigenvalues
are real, and the eigenvectors are orthogonal one another for different eigenval-
ues. Eringen and Suhubi [1975] got that the squares of the wave frequencies are
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positive real numbers in studying the differential operator L of isotropic material,
and the eigenvectors construct a complete orthogonal set. Gurtin [1972] proposed
a method to construct the orthogonal sets for the isotropic guided-wave systems,
and he applied this method to getting some group orthogonal sets in one- and two-
dimensional endless guided-wave systems. In this paper we still apply the charac-
teristic of the Hermite’s matrix and construct the complete orthogonal sets to solve
the magneto-electro-elastic guided-wave problem. The differential operator L is a
self-adjoint operator, so it satisfies the following integral.

∫
Ω

{VT (x, t) ·L[U(x, t)]−UT(x, t) ·L[V(x, t)]}dV = 0, (12)

where U(x, t) =
[
u φ1 ψ1

]T
and V(x, t) =

[
v φ2 ψ2

]T
are two arbitrary or-

thogonal modes of structure Ω.

Substituting the two orthogonal modes into the differential operator (11) and cal-
culating the following formula yield

(x, t) ·L[V(x, t)]

= ∇ · {v · [c · ·s(u)+∇φ1 · f+∇ψ1 ·d]}+∇ · {φ2[fT · ·s(u)−∇φ1 ·εεε −∇ψ1 ·h]}
+∇ · {ψ2[dT · ·s(u)−∇φ1 ·h−∇ψ1 ·μμμ ]}−∇ · {u · [c · ·s(v)+∇φ2 · f+∇ψ2 ·d]}
−∇ · {φ1[fT · ·s(v)−∇φ2 ·εεε −∇ψ2 ·h]}−∇ · {ψ1[dT · ·s(v)−∇φ2 ·h−∇ψ2 ·μμμ ]}
−ρv · ü +ρu · v̈

(13)

If we consider the harmonic wave propagation in this guided-wave system, the
displacements, electric and magnetic potentials will be written as

U(x, t) = B · Ū(x)e−iωt, (14)

where ω is the circular frequency. i =
√−1. B · Ū(x) is the mode. B is the wave

amplitude matrix. Ū(x) = (U1,U2,U3,U4,U5)T is the orthogonal sets.

Substituting formula (13) into integral (12), and considering the harmonic wave
form (14), we obtain

∫
Ω
{V(x, t) ·L[U(x, t)]−UT(x, t) ·L[V(x, t)]}dV

=
∫

Ω
{V̄(x) ·T[Ū(x)] ·n− Ū(x) ·T[V̄(x)] ·n}dV

(15)



70 Copyright © 2008 Tech Science Press CMES, vol.37, no.1, pp.65-84, 2008

where n is the external normal vector of the structure surface ∂Ω,

T[Ū(x)] =

⎡
⎣ c · s(u)+∇φ1 · f+∇ψ1 ·d

fT · s(u)−∇φ1 ·εεε −∇ψ1 ·h
dT · s(u)−∇φ1 ·h−∇ψ1 ·μμμ

⎤
⎦ =

⎡
⎣σσσ [Ū(x)]

D[Ū(x)]
B[Ū(x)]

⎤
⎦ ,

T[V̄(x)] =

⎡
⎣ c · s(v)+∇φ1 · f+∇ψ1 ·d

fT · s(v)−∇φ1 ·εεε −∇ψ1 ·h
dT · s(v)−∇φ1 ·h−∇ψ1 ·μμμ

⎤
⎦ =

⎡
⎣σσσ [V̄(x)]

D[V̄(x)]
B[V̄(x)]

⎤
⎦ . (16)

On the structure surface, in the form of the harmonic wave, integral (15) equals

V̄T (x) ·T[Ū(x)] ·n− ŪT (x) ·T[V̄(x)] ·n = 0, on ∂Ω (17)

and formula (17) can be written in the following determinant form:

det

(
Um Tm(Ū)
Vm Tm(V̄)

)
= 0, on ∂Ω (18)

where blocking matrix Um = diag(U1,U2,U3,U4,U5), Vm = diag(V1,V2,V3,V4,V5)
and Tm = diag(T1 jn j,T2 jn j,T3 jn j,T4 jn j,T5 jn j) are all diagonal matrixes. Further-
more we obtain

aiUi +biTi j(Ū)n j = 0, (19)

aiVi +biTi j(V̄)n j = 0, i from 1 to 5 (do not do summation over i on ∂Ω)

where ai and bi (i = 1,2,3,4,5) are dimensional constants, and will not equal zero
at the same time.

Because the orthogonal sets Ū(x) and V̄(x)have the same form, only one of the two
formulas (19) needs to be taken,

aiUi +biTi j(Ū)n j = 0, i from 1 to 5 (do not do summation over i on ∂Ω) (20)

Now, formula (20) contains a lot of information. First, it holds on the structure
surface, involving every boundary condition; second, it satisfies arbitrary struc-
tures, because of the external normal vector; third, it fully reflects the constitutive
relation of the magneto-electro-elastic dielectric medium; fourth, it gives the re-
striction condition between the displacements, electric and magnetic potentials and
the stress, electric displacement and magnetic induction. So we name formula (20)
the guided-wave restriction condition in the magneto-electro-elastic guided-wave
system. We can also get that there exists a group of different orthogonal set match-
ing every boundary condition. This proves that different boundary conditions adopt
different orthogonal sets in refs. [6∼8].
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When ai and bi (i = 1,2,3,4,5) only equal 1 or 0, there are 32(=25) group of
boundary conditions in the same normal direction. But most of them only have
meaning in mathematics, and will not appear in a real situation. We name these
boundary conditions self-adjoint boundary conditions to make a distinction with
the other boundary conditions. Formula (20) implicates the constitutive relation.
If the boundary condition only has the displacements, electric and magnetic poten-
tials, namely, ai = 1 and bi = 0 (i = 1,2,3,4,5), which means that the constraint
of the constitutive relation is removed, we need to add the constitutive relation to
constrain the solution space in this case.

So we know that the self-adjoint method describes the inner relations among the
physical property of the magneto-electro-elastic dielectric, the space structure and
the boundary condition of the guided-wave system. Then we need only find the cor-
responding orthogonal sets to thoroughly solve the guided-wave problem. In detail,
for a real guided-wave system, if the corresponding orthogonal sets are found, by
which the displacements, electric and magnetic potentials that obey the operator
equation (10) are derived, then the differential operator (11) is applied to mapping
wave propagation from the time domain to the frequency domain. The relation
between the wave number and the frequency is decided, namely, the dispersive
equation is obtained.

4 Wave propagation in MEESC

Square column is an easily manufactured simple structure with a widely applying
range. It is very easy to install the detecting devices on its boundary. If the solution
of the wave propagation and the mechanical and electromagnetic signs transmission
(energy transportation) characteristic is obtained, it will help us in applying the
magneto-electro-elastic dielectric medium and structure.

The oxy plane is the cross section of the infinite square column; the x- and y-axes
are normal to the boundary. The square column is 2L1 high and 2L2 wide. Figure 1
is the map of the exhibition of the MEESC.

Figure 1: The map of the exhibition of MEESC.
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4.1 Wave propagation governing equation in MEESC

The magneto-electro-elastic constitutive relation considered in this paper, is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σxx

σyy

σzz

σyz

σzx

σxy

Dx

Dy

Dz

Bx

By

Bz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 − f31 −d31

c12 c11 c13 − f31 −d31

c13 c13 c33 − f33 −d33

c44 − f15 −d15

c44 − f15 −d15

c55

f15 ε11 h11

f15 ε11 h11

f31 f31 f33 ε33 h33

d15 h11 μ11

d15 h11 μ11

d31 d31 d33 h33 μ33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sxx

syy

szz

2syz

2szx

2sxy

Ex

Ey

Ez

Hx

Hy

Hz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)
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Substituting constitutive relation (21) into differential operator (11) yields

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c11
∂2

∂x2 +c55
∂2

∂y2 +c44
∂2

∂z2 −ρ ∂2

∂t2 (c12 +c55) ∂2

∂x∂y

(c12 +c55) ∂2

∂x∂y c55
∂2

∂x2 +c11
∂2

∂y2 +c44
∂2

∂z2 −ρ ∂2

∂t2

(c13 +c44) ∂2

∂x∂z (c13 +c44) ∂2

∂y∂z

( f15+ f31) ∂2

∂x∂z ( f15+ f31) ∂2

∂y∂z

(d15 +d31) ∂2

∂x∂z (d15 +d31) ∂2

∂y∂z

(c13 +c44) ∂2

∂x∂z ( f15 + f31) ∂2

∂x∂z

(c13 +c44) ∂2

∂y∂z ( f15 + f31) ∂2

∂y∂z

c44( ∂2

∂x2 + ∂2

∂y2 )+c33
∂2

∂z2 −ρ ∂2

∂t2 f15( ∂2

∂x2 + ∂2

∂y2 )+ f33
∂2

∂z2

f15( ∂2

∂x2 + ∂2

∂y2 )+ f33
∂2

∂z2 −ε11( ∂2

∂x2 + ∂2

∂y2 )−ε33
∂2

∂z2

d15( ∂2

∂x2 + ∂2

∂y2 )+d33
∂2

∂z2 −h11( ∂2

∂x2 + ∂2

∂y2 )−h33
∂2

∂z2

(d15 +d31) ∂2

∂x∂z

(d15 +d31) ∂2

∂y∂z

d15( ∂2

∂x2 + ∂2

∂y2 )+d33
∂2

∂z2

−h11( ∂2

∂x2 + ∂2

∂y2 )−h33
∂2

∂z2

−μ11( ∂2

∂x2 + ∂2

∂y2 )−μ33
∂2

∂z2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(22)

So

L[U(x, t)] = 0 (23)

is the wave propagation governing equation about the constitutive relation (21),
where the displacements, electric and magnetic potentials are

U(x, t) = U(x,y, z, t)= (u,φ ,ψ)T = (u,v,w,φ ,ψ)T. (24)

On the square column boundaries, the guided-wave restriction condition can be
simplified as

a1u±b1σxx = 0
a2v±b2σyx = 0
a3w±b3σzx = 0
a4φ ±b4Dx = 0
a5ψ ±b5Bx = 0

, while x = ±L1, (25a)
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a1u±b1σxy = 0
a2v±b2σyy = 0
a3w±b3σzy = 0
a4φ ±b4Dy = 0
a5ψ ±b5Dy = 0

, while y = ±L2. (25b)

Now, after giving the boundary condition, the guided-wave system will be decided.
If the orthogonal sets satisfying the restriction condition (25) can be found, the
dynamic problem will be thoroughly solved.

4.2 Dispersive equation

Here, we select a group self-adjoint boundary condition B1

u = 0,σxy = 0,σxz = 0,Dx = 0,Bx = 0,x = ±L1,

v = 0,σyx = 0,σyz = 0,Dy = 0,By = 0,y = ±L2. (26)

It means that the square column surface cannot move in x- and y-axes directions,
but it can slide along z-axis direction, and the electric and magnetic fields are in an
open circuit state at the boundary.

Because the square column is limited in x- and y-axes directions, we apply the
standing wave superposition method to forming the wave propagation in x- and
y-axes directions, and thus we assume the displacements, electric and magnetic
potentials in the following forms.

U(x, t) = (u,φ ,ψ)T = (u,v,w,φ ,ψ)T = ∑
m,n

Umn(x, t)

= ∑
m,n

Umn(x,y)ei(kz−ωt) = ∑
m,n

BmnŪmn(x,y)ei(kz−ωt)

=
[

∑
m,n

umn(x, t) ∑
m,n

vmn(x, t) ∑
m,n

wmn(x, t) ∑
m,n

φmn(x, t) ∑
m,n

ψmn(x, t)
]T

=
[

∑
m,n

umn(x,y) ∑
m,n

vmn(x,y) ∑
m,n

wmn(x,y) ∑
m,n

φmn(x,y) ∑
m,n

ψmn(x,y)
]T

ei(kz−ωt)

=
[

∑
m,n

Amnūmn ∑
m,n

Bmnv̄mn ∑
m,n

Cmnw̄mn ∑
m,n

Dmnφ̄mn ∑
m,n

Emnψ̄mn
]T

ei(kz−ωt)

(27)

where BmnŪmn(x,y) is the mode, Bmn is the wave amplitude matrix, Ūmn(x,y) is
the orthogonal sets, Amn, Bmn, Cmn, Dmn and Emnare the coefficients of the displace-
ments, electric and magnetic potentials, respectively. b = (Amn,Bmn,Cmn,Dmn,Emn)T

is the wave amplitude vector and Bmn = diag(Amn,Bmn,Cmn,Dmn,Emn). m and n
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are the standing wave numbers; mπ/L1 and nπ/L2 will be nonnegative integers. k
is the propagating wave number along z-axis direction. In our model, the wave,
which keeps the standing wave form, propagates along the propagating wave direc-
tion. For the same standing wave form, the propagating waves are independent for
different propagating wave numbers.

From the above assumption, we find the orthogonal sets satisfying the self-adjoint
boundary condition B1, which are

ūmn =
{[

sin mπx
2L1

cos mπx
2L1

]}{[
cos nπy

2L2

sin nπy
2L2

]}
, v̄mn =

{[
cos mπx

2L1

sin mπx
2L1

]}{[
sin nπy

2L2

cos nπy
2L2

]}
,

w̄mn =
{[

cos mπx
2L1

sin mπx
2L1

]}{[
cos nπy

2L2

sin nπy
2L2

]}
, φ̄mn =

{[
cos mπx

2L1

sin mπx
2L1

]}{[
cos nπy

2L2

sin nπy
2L2

]}
,

ψ̄mn =
{[

cos mπx
2L1

sin mπx
2L1

]}{[
cos nπy

2L2

sin nπy
2L2

]}
, (28)

when m is even, the first lines are adopted; when m is odd, the second lines are
adopted. n has the same regular. When m �= a and n �= b, we obtain
∫

Soxy

ŪT
mn(x,y) · Ūab(x,y)dS = 0. (29)

where Soxy is the middle plate of the square column.

Whether the different modes are orthogonal one another is decided by the standing
wave number. So we get the complete orthogonal sets.

Substituting (27) and (28) into eq. (23), for fixed standing wave numbers m and n,
we obtain

L1(ω ,k,m,n) ·Umn(x,y) = 0, (30)

where the matrix L1(ω ,k;m,n) is an Hermite’s matrix. Its elements are in Ap-
pendix.

The differential operator (22) is applied to mapping the wave propagation from the
time domain to the frequency domain, so matrix L1(ω ,k;m,n) gives the relation
between the wave number and the frequency of the guided-wave system. When
the wave arrives, the displacements, electric and magnetic fields will not equal
zero simultaneously. So the dispersive equation of the square column about the
boundary condition B1 is

F(ω ,k;m,n)= det[L1(ω ,k;m,n)]= 0. (31)
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The elements of the matrix L1(ω ,k;m,n) are all polynomials. F(ω ,k;m,n)= 0 is a
cubic polynomial equation about the circular frequency ω2, so the ω2 can be solved
and analytically expressed by the parameters m, n and k, in other words, we get the
analytical dispersive equation. There are three ω for every group wave number m,
n and k. We denote the three wave number-frequency groups as (ωi,k;m,n), i =
1,2,3.

There is the relation ω = sc among the frequency, the wave number s =
√

m2 +n2 +k2

and the phase velocity c, so

F(sc,k;m,n)= 0 (32)

is the phase velocity equation.

4.3 Group velocity equation

The x- and y-axes directions are the standing wave directions. When the wave
number m and n are given, the energy exchange in the standing wave plane is
zero in one period time. The group velocity can be defined as cg = dω

dk . The rela-
tion between the group velocity and the wave number-frequency group is that the
propagating wave keeps the standing wave form and propagates along the z-axis
direction with the speed of this group velocity. Differentiating eq. (31) produces
dF = ∂F

∂k dk + ∂F
∂ω dω = 0 and ∂F

∂k + ∂F
∂ω cg = 0, then eliminating ω with eq. (31), the

group velocity equation is

G(cg,k;m,n) = 0. (33)

4.4 Steady-state response

The relation between the wave number-frequency groups (ωi,k;m,n), i = 1,2,3 and
the matrix L1(ω ,k;m,n) will be discussed again. First the matrix L1(ω ,k;m,n) is
blocked, and then it becomes

L1(ω ,k;m,n) =
[

A−ρω2I R
R̄T S

]
, (34)

where A−ρω2I =

⎡
⎣L111 L112 L113

L121 L122 L123

L131 L132 L133

⎤
⎦, R =

⎡
⎣L114 L115

L124 L125

L134 L135

⎤
⎦, S =

[
L144 L145

L154 L155

]
.

Because det[L1(ω ,k;m,n)]= 0, the equation

L1(ω ,k;m,n)b = 0 (35)
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has nonzero solution. The vector is denoted as b = (b1,b2,b3,b4,b5)T = (b∗
1,b4,b5)T =

(b∗
1,b∗

2)
T . Eq. (35) changes to

[
A−ρω2I R

R̄T S

][
(b∗

1)
T

(b∗
2)

T

]
= 0, (36)

so

(A−ρω2I)(b∗
1)

T +R(b∗
2)

T = 0, (37a)

R̄T (b∗
1)

T +S(b∗
2)

T = 0, (37b)

then we obtain

(A−RS−1R̄T −ρω2I)(b∗
1)

T = 0, (38a)

(b∗
2)

T = −S−1R̄T (b∗
1)

T . (38b)

In formula (38a), the matrix A−RS−1R̄T is an Hermite’s matrix, and ρω2 is the
eigenvalue, so the eigenvector must exist, denoted by b∗

1(ω1),b∗
1(ω2),b∗

1(ω3). And
we have

[b∗
1(ωi)]

T ·b∗
1(ω j) = 0, i �= j. (39)

In formula (39), the stress wave amplitude vectors, which are formed by the three
wave amplitudes about the displacement, are orthogonal at the same group wave
number with the different frequencies. This wave amplitude vector decides the or-
thogonal modes when the three group wave numbers are the same. If the matrix
RS−1R̄T = 0, this modal will degenerate to the elastic guided-wave system. The
influences of the induced electromagnetic field come from matrix RS−1R̄T . In for-
mula (38b), the wave amplitude vectors b∗

2(ω1),b∗
2(ω2),b∗

2(ω3) are derived, so the
wave amplitude vectors b(k,ωi;m,n), i = 1,2,3 are obtained. But we need point
out that [b(ωi)]

T · b(ω j) �= 0, i �= j and [b∗
2(ωi)]

T · b∗
2(ω j) �= 0, i �= j at the same

group wave number. This phenomenon comes from the assumption of this modal;
in detail, it comes from formulas (8) and (9). But it surpasses the discussion range
in this paper, so we will not debate it any more. But in formula (38b), it is hard to
get vector b∗

1(ω) by vectorb∗
2(ω). If only an electric or magnetic signal is known,

we will obtain the wave numbers m, n and k, and know the wave type, so a coef-
ficient of vector b∗

1(ω) can be derived. This character will be used in studying the
transient-state response.

When the wave amplitude vector is obtained, for arbitrary standing wave numbers
m and n, the steady-state response is derived



78 Copyright © 2008 Tech Science Press CMES, vol.37, no.1, pp.65-84, 2008

Bmn(ω) · Ūmn(x,y)

=

⎡
⎣B1mn(ω)

b4mn(ω)
b5mn(ω)

⎤
⎦

⎡
⎣Ū1mn(x,y)

φ̄mn(x,y)
ψ̄mn(x,y)

⎤
⎦

(do not do summation over m and n), (40)

where

B1mn(ω) = diag[b1mn(ω),b2mn(ω),b3mn(ω)]

and

b2
1mn(ω)+b2

2mn(ω)+b2
3mn(ω) = 1.

5 Dispersive spectrum, group velocity curve and steady-state response curve

In this part, the spectrum, the group velocity curve and the steady-state response
curve will be plotted. In computation, the following parameters are taken: c11 =
166Gpa, c12 = 77Gpa, c13 = 78Gpa, c33 = 162Gpa, c44 = 43Gpa, c55 = (c11 −
c22)/2, f15 = 11.6C/m2, f31 =−4.4C/m2, f33 = 18.6C/m2, ε11 = 11.2nF/m, ε33 =
12.6nF/m, d15 = 550N/Am, d31 = 580.3N/Am, d33 = 699.7N/Am, h11 = 5.0×
10−12Ns/VC, h33 = 3.0× 10−12Ns/VC, μ11 = 5.0× 10−5Ns2/C2, μ33 = 1.0×
10−5Ns2/C2 and ρ = 7500kg/m3. Before plotting the figures, we introduce the
non-dimensional frequency Ω = ω/cS and group velocityCg = cg/cS, where cS =√

c44/ρ.

Figure 2 shows the dispersive spectrum of MEESC. The positive and negative parts
of the abscissas k represent the real and imaginary numbers. For every standing
wave number group (m, n), there are three curves, and they are corresponding to
the Quasi-P, Quasi-SV and Quasi-SH waves, and they do not cross one another. In
this figure, the dispersive curves of standing wave numbers m=1 and n from 0 to 12
are plotted. The same type curves are ordered by the standing wave number, and
they do not cross one another. The slopes of line S and line P are corresponding to
the phase velocities cS and

cP =
√

[c33 +(d2
33ε33 + f 2

33μ33 −2 f33d33h33)/(ε33μ33 −h2
33)]/c44,

which are the phase velocities in infinite body in z-axis direction under constitutive
relation (21).

It is how we named the Quasi-P waves. In this figure, the whole property of the
dispersive spectrum is displayed.



Steady-state Response of the Wave Propagation 79

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

5

10

15

20
Ω

k (m=1)

 Quasi-P wave
 Quasi-SV wave
 Quasi-SH wave

0

12

P

S

Figure 2: Dispersive spectrum of MEESC.
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Figure 3: Group velocity curves of MEESC.
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Figure 4: Steady-state response curves of MEESC.
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Figure 5: Steady-state response curves of MEESC.
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Figure 6: Steady-state response curves of MEESC.

In figure 3, the group velocity curves are displayed, which are classified by the wave
type and ordered by the standing wave number. Line P and line S are corresponding
to the group velocities cP and cS, which are the group velocities in infinite body in
z-axis direction under constitutive relation (21).

In figure 2 and 3, the curves asymptotically tend to the line P and line S when
the propagating wave number k increases to infinite. It means that when the wave
number is larger, the wave length is shorter, the square column can be treated as
infinite body, so the phase velocities and group velocities in the square column will
tend tocP and cS.

Figure 4, 5 and 6 show the steady-state response curves corresponding to the Quasi-
P, Quasi-SV and Quasi-SH waves of m=2 and n=3, where the normalized ampli-
tudes of the displacement are plotted, and in order to display the amplitudes of the
electric and magnetic potentials, so the amplitudes of the electric and magnetic po-
tentials are reduced by 109 and 108 times in figure 4; the amplitudes of the electric
and magnetic potentials are reduced by 2*109 and 107 times in figure 5.

The three steady-state response modes are corresponding to the extensional, thickness-
twist and thickness-shear modes of the square column. It is how we named the
Quasi-SH waves. In figure 4, the curves ofw, φ and ψhave the similar curve, it
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is means that the induced electric and magnetic fields are deeply aroused by the
Quasi-P stress wave. In figure 5, the curves ofw, φ and ψ tend to zero, it is means
that the induced electric and magnetic fields are slightly aroused by the Quasi-SV
stress wave in high frequency band. But in low frequency band the amplitude of
ψ has a peak value, this phenomenon need pay attention. Because the Quasi-SH
wave can’t be affected by the induced electric and magnetic fields, or the induced
electric and magnetic fields can’t be aroused by the Quasi-SH stress wave, and the
amplitude of w tends to zero, so the three curves ofw, φ and ψ are superposition in
one line in figure 6.

6 Conclusions

The stress wave propagations affected by the induced electric and magnetic fields
in the MEESC were studied and some new characteristics about the guided waves
in it were discovered. They are

1. The guided stress waves are classified in the forms of the Quasi-P, Quasi-SV
and Quasi-SH waves corresponding to the extensional, thickness-twist and
thickness-shear modes of the square column, and are ordered by the standing
wave number.

2. The propagating waves in the channel formed by the Quasi-P, Quasi-SV and
Quasi-SH waves affected by the induced electric and magnetic fields are ob-
viously different.

3. The Quasi-P waves are thoroughly affected by the induced electric and mag-
netic fields.

4. The Quasi-SV waves are affected by the induced electric and magnetic fields
only in the lower frequency band.

5. The Quasi-SH wave is hardly affected by the induced electric and magnetic
fields.
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Appendix

The elements of L1i j(ω ,k,m,n):

L111 = c11
m2π2

4L2
1

+c55
n2π2

4L2
2

+c44k2 −ρω2, L112 = (−1)m+n(c12 +c55)
mnπ2

4L1L2
,
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L113 = i(−1)m(c13 +c44)
πmk
2L1

, L114 = i(−1)m( f15 + f31)
πmk
2L1

,

L115 = i(−1)m(d15 +d31)
πmk
2L1

, L121 = (−1)m+n(c12 +c55)
mnπ2

4L1L2
,

L122 = c55
m2π2

4L2
1

+c11
n2π2

4L2
2

+c44k2 −ρω2, L123 = i(−1)n(c13 +c44)
πnk
2L2

,

L124 = i(−1)n( f15 + f31)
πnk
2L2

, L125 = i(−1)n(d15 +d31)
πnk
2L2

,

L131 = i(−1)m+1(c13 +c44)
πmk
2L1

, L132 = i(−1)n+1(c13 +c44)
πnk
2L2

,

L133 = c44
m2π2

4L2
1

+c44
n2π2

4L2
2

+c33k2 −ρω2, L134 = f15
m2π2

4L2
1

+ f15
n2π2

4L2
2

+ f33k2,

L135 = d15
m2π2

4L2
1

+d15
n2π2

4L2
2

+d33k2, L141 = i(−1)m+1( f15 + f31)
πmk
2L1

,

L142 = i(−1)n+1( f15 + f31)
πnk
2L2

, L143 = f15
m2π2

4L2
1

+ f15
n2π2

4L2
2

+ f33k2,

L144 = −ε11
m2π2

4L2
1

−ε11
n2π2

4L2
2

−ε33k2, L145 = −h11
m2π2

4L2
1

−h11
n2π2

4L2
2

−h33k2,

L151 = i(−1)m+1(d15 +d31)
πmk
2L1

, L152 = i(−1)n+1(d15 +d31)
πnk
2L2

,

L153 = d15
m2π2

4L2
1

+d15
n2π2

4L2
2

+d33k2, L154 = −h11
m2π2

4L2
1

−h11
n2π2

4L2
2

−h33k2,

L155 = −μ11
m2π2

4L2
1

−μ11
n2π2

4L2
2

−μ33k2.
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