
Copyright © 2008 Tech Science Press CMES, vol.37, no.2, pp.97-112, 2008

A Study of Boundary Conditions in the Meshless Local
Petrov-Galerkin (MLPG) Method for Electromagnetic

Field Computations

Meiling Zhao1 and Yufeng Nie2

Abstract: Meshless local Petrov-Galerkin (MLPG) method is successfully ap-
plied for electromagnetic field computations. The moving least square technique
is used to interpolate the trial and test functions. More attention is paid to impos-
ing the essential boundary conditions of electromagnetic equations. A new coupled
meshless local Petrov-Galerkin and finite element (MLPG-FE) method is presented
to enforce the essential boundary conditions. Unlike the conventional coupled tech-
nique, this approach can ensure the smooth blending of the potential variables as
well as their derivatives in the transition region between the meshless and finite el-
ement domains. Then the boundary singular weight method is proposed to enforce
the boundary conditions for electromagnetic field equations accurately. Practical
examples in engineering, including the computations of the electric-field intensity
of the cross section of long straight metal slot, the end region of a power trans-
former and axisymmetric problem in the electromagnetic field, are solved by the
presented approaches. All numerical verification and all kinds of comparison anal-
ysis show that the MLPG method is a promising alternative numerical approach
for electromagnetic field computations, and the proposed techniques can be good
candidates for imposing essential boundary conditions.

Keyword: Meshless local Petrov-Galerkin (MLPG) method, electromagnetic field
computation, essential boundary, coupled method.

1 Introduction

In the past decade meshless methods have emerged as very promising numeri-
cal approaches for computation mechanics. Meshless methods can eliminate the
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time-consuming human labor process of constructing meshes or generating adap-
tive meshes in solving many problems with moving boundaries, high gradients and
so on, and alleviate or deal with the known drawbacks of the finite element (FE)
method, such as locking, element distortion and other problems related with the
finite element method. Among many meshless methods, a meshless local Petrov-
Galerkin (MLPG) method, which was presented in Atluri and Zhu (1998), does
not need any mesh, either for the interpolation of the solution variables or for the
integration of the weak forms. The MLPG method can use various interpolation
schemes, such as moving least square (MLS) [Lancaster and Salkauskas (1981)],
the partition of unity (PU) [Babuska ans Melenk (1997)] or Shepard functions and
etc., and can be based on a local weak formulation to get the symmetric or unsym-
metric local weak forms, which has been developed as a general framework for
solving partial differential equations in Atluri and Shen (2002a, b).

In recent years, the MLPG method has been widely applied for various problems,
including those in elasto-statics [Li, Shen, Han and Atluri (2003); Han and Atluri
(2003ab, 2004a)], fracture mechanics [Kim and Atluri, (2000)], elasto-dynamics
[Han and Atluri (2004b)], nonlinear problems [Han, Rajendran, Atluri (2005)],
fluid mechanics [Lin and Atluri (2001); M. Haji Mohammadi (2008)] and heat
conduction problems [Sladek, Sladek, Atluri (2004a), Wu, Shen, Tao (2007)] and
other fileds [Han, et al.. (2006); Atluri, et al.. (2006a, b); Liu, et al.. (2006)].
Though the MLPG method has achieved remarkable successes in many fields, it is
seldom used to electromagnetic computations. In this work, the MLPG method is
successfully applied for practical problems of electromagnetic field. The moving
least square approximation is used to construct the shape functions. The special
attention is paid to the enforcement of the essential boundary conditions of electro-
magnetic equations.

While using the meshless approximation without the Kronecker-Delta properties,
such as MLS, Shepard function and PU, the imposition of the essential boundary
conditions (EBC) is not as straightforward as for the finite element method. In
many literatures, a Lagrange multiplier technique has widely used to impose the
essential boundary. However, it produces a stiffness matrix without banded and
positive definite properties. The penalty parameter technique by Zhu and Atluri
(1998) does not need other additional unknown variables, but needs an appropriate
choice of the penalty parameter. Many MLPG methods usually use this approach
to obtain the weak form and enforce the boundary. A modified collocation method
is also a very important technique to enforce the essential boundary conditions in
the MLPG method [Zhu and Atluri (1998)]. In this approach, second derivatives of
the shape functions are usually needed in constructing the global stiffness matrix
for the interior nodes. The local boundary integral equation method, as a special
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MLPG, can relatively easily enforce the essential boundary conditions, although it
involves a singular integral [Zhu, Zhang and Atluri (1998a, b)]. A transformation
method presented by Atluri, Kim and Cho (1999) investigated the relation between
the actual nodal values of the interpolant and the fictitious nodal ones, and used the
linear transformation to make the shape functions satisfy the Kronecker-δ proper-
ties and impose the EBC at the cost of involving the inverse of a matrix. Because
of its accuracy enforcement of the essential boundary, the transformation method is
taken into consideration for the comparison analysis in this paper. In our work, two
techniques, as good alternatives to impose the essential boundary conditions, are
proposed in the meshless local Petrov-Galerkin method and successfully applied
for electromagnetic field computations. Firstly, a new coupled MLPG-FE method
is presented to impose the EBC. In this approach, the analysis domain is divided
into two regions where the FE method and the MLPG method are used separately.
It defines a transition domain between the two regions. In the transition part, a new
ramp function, which is different from the conventional function in Belystchko
(1996), is chosen to combine the shape functions of the two methods. Using this
technique, the continuity conditions of potential variables and their derivatives are
satisfied, while in the conventional method the derivatives undergo a jump across
the interface. Then a boundary singular weight function method (BSW) is pro-
posed to impose the EBC in the MLPG method. Using both methods, the essential
boundary conditions can be accurately enforced. Finally, all above techniques are
successfully applied for practical electromagnetic field computations, and the re-
sults validate the efficiency of the proposed approaches. The new coupled MLPG-
FE method gives full play of the advantages of both the MLPG and FE method, and
successfully imposes the EBC and avoids the discontinuity of the derivatives of the
potential variables in the traditional technique. By the comparison investigation,
it can be seen that the singular weight function technique can save considerable
computational time.

2 MLPG method

2.1 Moving least square approximation (MLS)

The MLS method is usually used to interpolate random data with appropriate accu-
racy, and the property of MLS has been widely discussed in literatures [Atluri and
Zhu (1998), Jin, Li and Aluru (2001)]. Consider a function u(x) in Ω. The MLS
approximation uh(x) is defined by

uh(x) =
m

∑
j=1

p j(x)a j(x) = pT(x)a(x), (1)
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where m is the number of basis functions. Minimizing some weighted discrete L2

norm by least square theorem, we can obtain a(x). Finally we have

uh(x) =
n

∑
i=1

Φi(x)u∗(xi), (2)

where the MLS shape function is

Φi(x) =
m

∑
j=1

p j(x)(A−1(x)B(x)) ji. (3)

In Equation (3), A(x) and B(x) are defined by

A(x) =
n

∑
i=1

wi(x)p(xi)pT(xi), (4)

B(x) = [w1(x)p(x1),w2(x)p(x2), ...,wn(x)p(xn)], (5)

where wi(x) is the supported compacted weighted function. In general, Φi(x j) �=
δi j .

2.2 Local Petrov-Galerkin integral equation

Consider the boundary value problem in the static field⎧⎪⎨
⎪⎩
−Δu = f in Ω
u = u on Γu
∂u
∂n = q = q on Γq

, (6)

where Γ = Γu ∪Γq. A local weak formulation can be written as∫
Ωs

(Δu+ f )vdΩ = 0. (7)

Choose v(x,xI) as test function in every sub-domain, and we can obtain the linear
system

K•u∗ = f, (8)

where

KIJ =
∫

Ωs

(ΦJ,x(x)v,x(x,xI)+ΦJ,y(x)v,y(x,xI))dΩ−
∫

Γsu

∂ΦJ(x)
∂n

v(x,xI)ds, (9)

fI =
∫

Γsq

qv(x,xI)ds+
∫

Ωs

f v(x,xI)dΩ. (10)

In Eq. (9) and Eq. (10), I = 1,2, ...,N, J = 1,2, ...,M. N denotes the total number
of nodes of Ω, and M is the number of test function centered at xI , which do not
vanish at xJ .
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3 Coupling of MLPG and FE

As shown in Figure 1,Ω = ΩFE ∪ ΩMLPG ∪ ΩT , and ΩT is the transition region
between ΩFE and ΩMLPG, where the FE method and the MLPG method are used
separately. In order to make the modified shape function transit smoothly from one
region to another, we redefine the shape function as

Φ̃i(x) =

⎧⎪⎨
⎪⎩

Φi(x) in ΩMLPG

Φi(x)+R(x)(Ni(x)−Φi(x)) in ΩT

Ni(x) in ΩFE .

(11)

Its corresponding derivative is

Φ̃i, j(x) =

⎧⎪⎨
⎪⎩

Φi, j(x) in ΩMLPG

Φi, j(x)+R(x)(Ni, j(x)−Φi, j(x))+R, j(x)(Ni(x)−Φi(x)) in ΩT

Ni, j(x) in ΩFE .

(12)

Instead of traditional ramp functions, a new R(x) is proposed in this paper as fol-
lowing

R(x) =

(
∑

i
Ni(x)

)2

, xi ∈ ΓT F . (13)

In Eq. (13), R(x) satisfies

R(x) =

{
1 x ∈ ΓT F

0 x ∈ ΓT M
(14)

and

R, j(x) = 0 x ∈ ΓT M, (15)

Eq. (14) and Eq. (15) ensure the smooth blending of the shape function and its
derivatives between the two sub-domains. Moreover, the modified shape function
has the property of Kronecker-δ everywhere in the essential boundary. Figure 2
shows the comparison of the new coupled method and the traditional method in
1D. It can be seen from Figure 2(a) that, although the traditional modified shape
function is continuous at the interface, but it has a discontinuity of the derivative at
the interface, which is displayed by the tangent slope of the imaginary line, while
the new coupled MLPG-FE shape function, which is shown in Figure 2(b), ensures
the continuity of the shape function and its derivative simultaneously.
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Figure 1: Schematics of the MLPG-FE method

Figure 2a: Comparison of the origi-
nal MLPG and the traditional coupled
MLPG-FE shape functions in 1D

Figure 2b: Comparison of the original
MLPG and the new coupled MLPG-FE
shape functions in 1D

4 Boundary singular weight function method

The original paper of MLS method by Lancaster and Salkauskas (1981) as sug-
gested that by introducing a singularity into the weight function, and the approx-
imation leads to interpolation. This concept was first introduced by Kaljevic and
Saigal (1997) to the element free Galerkin method (EFGM) function. In their ap-
proach, singular weight functions are employed all discrete nodes, and the Kronecker-
δ properties are recovered in the MLS shape functions. In this paper, the MLPG
shape functions are constructed with singularities introduced only to the constrained
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boundary nodes. As such, this method does not generate interpolation functions at
the interior nodes, but it is sufficient to obtain nodal values at the restrained bound-
ary nodes for direct imposition of the EBC.

A singularity is introduced to the weight functions with a designated node I located
at on the essential boundary

w̃(x− x̃i,y− ỹi) =
w(x− x̃i,y− ỹi)
f (x− x̃i,y− ỹi)

, (16)

where f (0,0) = 0, and the superposed ∼ on the nodal coordinate denotes a node
with singularity imposed in the associated shape function. The function f is chosen
to have the following form

f (x− x̃i,y− ỹi) =

[(
x− x̃i

ax

)2

+
(

y− ỹi

ay

)2
]p

, p > 0 (17)

where p reflects the order of singularity, and ax, ay

are the parameters to adjusting the size of influence domain.

Using Eq. (16), we get the shape function associated with the weight w̃ (x− x̃i,y− ỹi)
as following

Φ̃i(x) = pT (x)Ã−1(x)p(x̃i)w̃(x− x̃i), (18)

where

Ã(x) = ∑
j/∈Γu

p(x j)pT (x j)w(x−x j)

+ ∑
k∈Γu,k �=I

p(x̃k)pT (x̃k)w(x− x̃k)+ p(x̃i)pT (x̃i)w̃(x− x̃i). (19)

Other shape functions are

Φ j(x) = pT (x)Ã−1(x)p(x j)w(x−x j) j /∈ Γu, (20)

Φ̃k(x) = pT (x)Ã−1(x)p(x̃k)w̃(x− x̃k),k ∈ Γu, k �= i. (21)

The singular weight shape functions Φ̃i(x) have the following property

Φ̃i(x → x̃i) = 1. (22)

Other shape functions have the following property

Φ j(x → x̃i) = 0, (23)
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Φ̃k(x → x̃i) = 0,k ∈ Γu, k �= i. (24)

Recall the approximation of the potential variable

uh(x̃i) =
n

∑
j=1, j �=i

Φ j(x̃i)u j + Φ̃i(x̃i)ui = ui. (25)

Compared with the approach by Kaljevic, the proposed boundary singular weight
method provides exact nodal values at the constraint boundary nodes, and partly
saves computational cost.

5 Numerical examples

5.1 Numerical validation and comparison analysis

The grounding metal slot with the square domain in the dimension 1m× 1m, in
which the upper wall insulated with the earth has the electric potential ϕ = 10sin(πx),
and the side wall and the bottom wall both have the electric potential of zero,
is shown in Figure3. This electrostatic model is used for verification of the ac-
curacy and convergence of the presented methods. We use regularly distributed
441(21×21), 121(11×11), 36(6×6) nodes for this model. The appropriate ra-
dius of the influence domain is chosen according to Nie and Atluri (2006). 3×3
Gaussian quadrature is used to integrate the energy in each small partition over the
intersection of ΩI

te and ΩJ
tr. The proposed MLPG-FE method is applied to compute

the model, in which the bilinear Lagrange rectangular elements are used to enforce
the essential boundary conditions.

For the convergence study, we separately use MLPG, MLPG-FE and the FE with
the same order interpolation to solve this problem, and the following relative error
is defined as:

Re =

√
N

∑
i=1

(ϕ i −ϕi)2
/ N

∑
i=1

ϕ2
i , (26)

where ϕ and ϕ are the numerical solution and the analytical solution respectively,
and N is the number of nodes set in the studied domain. As can be seen, Figure 4
shows the proposed MLPG-FE method has better convergence than the FE method.
Moreover, from the Figure 5 we can see that the electric-field intensity, which is the
derivative of electric potential variable, is continuously distributed in the analysis
field.

To study the computational effort required for the proposed methods, the problem
is computed by the MLPG with penalty, the transformation method (TM), the pro-
posed MLPG-FE and the boundary singular weight function method (BSW) sepa-
rately, and the comparison of normalized error and CPU time using these methods
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are listed in Table 1. In the table, the error and CPU time are normalized by those
in the case of the penalty method. The results indicate that the BSW has saved
computational effort in a degree.

Figure 3: The cross-section of long straight metal slot

Figure 4: The convergence curve of the
electric potential

Figure 5: The distribution of the
electric-field intensity in the analysis
field (the half field)

Table 1: Comparison of normalized error and CPU time

Penalty MLPG-FE TM BSW
Normalized Error 1.000 0.984 0.975 1.107
Normalized CPU Costs 1.000 1.002 1.105 0.783
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5.2 The end region of a power transformer

To validate the proposed techniques further, they are used to compute the end fields
of a power transformer in Yang and Ni (2003), which is illustrated in Figure 6.

First the new coupled MLPG-FE method is applied to solve this problem. In the
meshless region, the linear basis is used. At the same time, Γ1 and Γ3 are the
essential boundaries which are enforced by bilinear Lagrange rectangular elements.
The appropriate radius of the influence domain is chosen according to Nie and
Atluri (2006). Figure 7 gives the arrangement of nodes and elements needed in the
studied region. The reliability of the proposed method is implicated in Figure 8,
which shows the accurate comparison of the numerical results for the FE method
and the proposed method respectively, and verifies the reliability of the new coupled
MLPG-FE method.

Then we use the FE method with biquadratic Lagrange rectangular elements to
solve the model, and take the solution as the reference value, which is usually
thought closer to the real value than the solutions by the FE method with bilinear
Lagrange rectangular elements and the MLPG-FE method. The electric potential
distributions along Line AB are given in Figure 9, which shows that the proposed
MLPG-FE method possesses a high accuracy.

Then the BSW in MLPG is used to solve the model. From the comparison between
the BSW in MLPG and the FE method in Figure 10, we can see that the results of
the transformation method and the FE method are quite close to each other.

Figure 6: Schematics of the end region
of a power transformer

Figure 7: The arrangement of nodes and
elements
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Figure 8: Comparison of results with
the proposed MLPG-FE method and the
FE method

Figure 9: Comparison of electric poten-
tial along Line AB

Figure 10: Comparison of numerical results of the proposed BSW in MLPG and
the FE method

5.3 Axisymmetric case

Another class of problems that can be analyzed using the proposed technique is
that of axisymmetric problems. Axially symmetric geometries, which are known
as bodies of revolution, not only exist but are very common. Here we consider
the geometry of Figure 11 in Jianming Jin (2002), where two coaxial waveguides
having different inner radius are joined. This geometry is rotationally symmetric
with respect to the z−axis, so in the ρz−plane the potential satisfies

− 1
ρ

∂
∂ρ

(
εrρ

∂ϕ
∂ρ

)
− ∂

∂ z

(
εr

∂ϕ
∂ z

)
=

ρc

ε0
, (27)



108 Copyright © 2008 Tech Science Press CMES, vol.37, no.2, pp.97-112, 2008

Figure 11: Cross section in the ρz− plane of the join between two coaxial waveg-
uides

Figure 12: Equipotential lines by the FE
method near the join between two coax-
ial waveguides

Figure 13: Equipotential lines by BSW
near the join between two coaxial
waveguides

where ρc is charge density, ρ and z are cylindrical coordinate variables, εr is relative
dielectric constant of medium, and ε0 is vacuum dielectric constant. Since the
perturbation is confined near the join, the potential at some distance away from the
join should be the same as in the unperturbed case. Therefore, the potential far
enough away from the join is independent of z, or in other words, it satisfies the
condition

∂ϕ
∂ z

= 0. (28)

This can be used as the boundary condition to terminate the solution domain.

We use the FE method, the MLPG with penalty formulation and the MLPG with
BSW to solve the waveguides model separately. The equipotential contours are
plotted in Figure 12 and Figure 13, which show the proposed BSW in MLPG gives
good results as well as the accuracy enforcement of essential boundary. The electric
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Figure 14: Comparison of electric potential along Line AA′

potential distributions along Line AA′ can be seen in Figure 14. Comparison of the
numerical results shows that BSW method has better approximation in the essential
boundary than the MLPG with penalty parameter.

6 Conclusions

In this paper, the MLPG method has been successfully used to solve the electro-
magnetic problems. In addition, a new coupled MLPG-FE method and a boundary
singular weight function method in the MLPG are developed. Comparison research
with existing approaches has been analyzed by computing electromagnetic exam-
ples. Both the proposed approaches can directly enforce the essential boundary
conditions. The new coupled MLPG-FE method provides smooth transition of the
potential variable and its derivatives between the MLPG and FE domains. It makes
numerical solution more reasonable and objective. The singular weight function
method has saved computational time to a great extent. All the numerical results
show that the MLPG method is promising in solving electromagnetic problems, es-
pecially such as models where part of the domain changes in its geometrical shape,
shape optimizations of electromagnetic equipments, coupled field problems and so
on, and the proposed techniques are effective and efficiency as good alternatives to
enforce the essential boundary conditions.
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