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Application of the Generalized Finite Difference Method to
improve the approximated solution of pdes
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Abstract: One of the most universal and effective methods, in wide use today,
for solving equations of mathematical physics approximately is the finite difference
method (FDM). The Generalized finite difference method (GFDM) is evolved fron
classical (FDM), which can be applied over general or irregular clouds of points.
This paper starts by showing the GFDM. In this paper, this meshless method is
used for solving second-order partial (pde’s) with constant coefficients in any type
of domain. The method gives the values of derivatives in the nodes using the direct
application of the formulae in differences obtained.
The following points describe an a posteriori error estimator. This serves as a start-
ing point for an h-adaptive method to improve the solution of pde’s by selectively
adding nodes to the domain.

1 Introduction

During recent years, meshless methods have emerged as a class of effective numer-
ical methods which are capable of avoiding the difficulties encountered in conven-
tional computational mesh based methods. Considerable research in computational
mechanics has been devoted to the development of meshless methods (see Atluri
and Shen (2002), Liu (2003), Li and Liu (2004)). In these methods, the domain of
interest is discretized by a scattered set of points. One of the earliest developments
in meshless methods was the SPH method. The foundation of the SPH method
is the kernel estimate introduced by Monaghan (1982) and Monaghan (1988). In
this method, partial differential equations (pde’s), such as conservation laws, are
transformed into integral equations, and the kernel estimate then provides the ap-
proximation to estimate field variables at discrete points. Liu, Jun, Li, Adee and
Belytschko (1995) proposed a different kind of "gridless" multiple scale method
based on reproducing kernel and wavelet analysis (RPKM method), to improve the
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accuracy of the SPH method for finite domain problems. In this method, the kernel
function is modified by introducing a correction function to meet the reproducing
conditions.

The diffuse element method developed by Nayroles, Touzot and Villon (1992) was
the first meshless method based on the Galerkin method. They proposed a Dif-
fuse Element Method that employs moving least-squares interpolants in conjunc-
tion with the Galerkin method to provide a mesh-free computational formulation.
Belytschko, Lu and Gu (1994) developed an alternative implementation using mov-
ing least squares approximation as defined by Lancaster and Salkauskas (1981).
They called their approach the Element Free Galerkin (EFG) method. Several
other meshless methods as Partition of Unity Finite Element method (PUFEM)
by Babuska and Melenk (1997); h-p cloud by Duarte and Oden (1996); Natural el-
ement method (NEM) by Sukumar, Moran, and Belytschko (1998) have also been
reported in the literature. These methods employ the Galerkin procedure by using
a shadow mesh of elements for integrating the weak formulation.

Other possibility to integrate the weak formulation is to use the meshless Petrov-
Galerkin method (MLPG) as reported by Atluri and Zhu (1998), Atluri and Zhu
(1998). The MLPG is a truly meshless method because all integrations are per-
formed over overlapping and regularly shaped subdomains. A mixed approach was
introduced to improve the MLPG method using finite difference method by Atluri,
Liu and Han (2006), Atluri, Liu and Han (2006).

Another important path in the evolution of meshless methods has been the develop-
ment of the Generalized Finite Difference Method (GFDM), also called meshless
finite difference method. The bases of the GFD were published in the early seven-
ties. Jensen (1972) was the first to introduce fully arbitrary mesh. He considered
Taylor‘s series expansions interpolated on six-node stars in order to derive the finite
difference (FD) formulae approximating derivatives of up to the second order. Per-
rone and Kao (1975) suggested that additional nodes in the six-point scheme should
be considered and an averaging process for the generalization of finite difference
coefficients applied. The idea of using an eight node star and weighting functions
to obtain finite difference formulae for irregular meshes, was first put forward by
Liszka and Orkisz (1980) using moving least squares (MLS) interpolation. and an
advanced version of the GFDM was given by Orkisz (1998). Benito, Urena and
Gavete (2001) reported that the solution of the generalized finite difference method
depends on the number of nodes in the cloud, the relative coordinates of the nodes
with respect to the star node, and on the weight function employed.

GFD methods have been used in many engineering applications and in papers
where irregular geometries and free-moving boundaries are involved by Tang, Chen,
Yang Kobayashi and Ku (2002), Tang, Yang Kobayashi and Ku (2001), Yang, Tang,
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Yuan, Kerwin, Liu Canton, Hatsukami and Atluri (2008).

An h-adaptive method in GFDM is described in Benito, Urena, Gavete and Alvarez
(2003) and Urena, Benito, Gavete and Alvarez (2005). Gavete and Benito (2003)
reported improvements of GFDM and comparison with other meshless method.

This paper describes how the GFDM can be applied for the improve solution of
different partial differential equations (pde’s).

The paper is organized as follows. Section 1 is an introduction. Section 2 de-
scribes the GFDM obtaining the explicit formulae. Section 3 describes an adaptive
algorithm and shows the a posteriori error indicator in the GFDM. In Section 4
some numerical results are included to illustrate the efficiency of the h-adaptive
algorithm. Finally, in Section 5 some conclusions are given.

2 Generalized finite difference approximation

Let us assume a problem governed by the following second-order pde:

L2[U ] = 0 in Ω (1)

with boundary conditions

L1[U ] = 0 in Γ (2)

where U is a function at least twice differentiable in Ω ⊂ R2 with boundary Γ. L2
and L1 are linear partial differential second and first order, respectively.

On defining the composition central node with a set of N points surrounding it
(henceforth referred as nodes), the star then refers to the group of established nodes
in relation to a central node. Each node in the domain have an associated star
assigned.

If U0 is the value of the function at the central node of the star, with coordinates
(x0,y0) and Ui the value of the function at the rest of nodes, of coordinates (xi,yi)
with i = 1, · · · ,N, then, according to the Taylor series expansion we know that an
approximation , ui, of the second order for the Ui, is:

ui = u0 +hi
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where hi = xi− x0;ki = yi− y0.
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with respect the partial derivatives, and using w(hi,ki) which is a weighting func-
tion, a linear equations system is obtained

ADu = b (5)

where
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{
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The explicit expressions of the vector Du depend on the number of nodes, the se-
lection and placing of the nodes (star) and the weight function.

From the previously obtained matrix equation Eq. 5 and as the matrix of coefficients
Ap is symmetrical, it is then possible to use the Cholesky method in order to solve
the same. The aim is to obtain the decomposition of Ap in the product of an upper
and a lower triangular matrices QQT . Then, the equation Eq. 5 can be written as:

QQT Du = b (9)
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This is then solved in two stages, the first of which is:

QT Du = Y (10)

Which provides the vector Du, after solving:

QY = b (11)

On solving the system Eq. 11 in descending order, the Y values are obtained. Once
the vector Y has been established, it is then easy to solve the system Eq. 10 and to
obtain the following difference formulae:
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If in a node of the domain the partial derivatives of the equations are substituted
in Eq. 1 and Eq. 2 by the explicit differences formulae Eq. 11, the star equation is
obtained as

u0 =
N

∑
i=1

miui, with
N

∑
i=1

mi = 1 (13)
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If this process is carried out for each node of the domain a linear equations system
is obtained, where the unknowns are the values ui. On solving this system, the
approximated values of the function in the nodes of the domain are obtained and
the partial derivatives may easily be calculated from the aforementioned Eq. 12.

From the above it may be seen that the star equation depends on the following
factors:

• The number of nodes of the star (N).
The results improve as the number of nodes in the star increases, although
over a certain number of nodes (≥ 8 for 2-D) this improvement does not
compensate the effort of the calculation process involved.

• The relative coordinates of the nodes of the star with regards to the central
node (hi,ki).
When selecting the nodes of the star, Jensen (1972) only considered the dis-
tance of the nodes to the central node, and selected those closest to the same.
This method shall subsequently referred to as the distance criterion. This
criterion may produce distorted stars with an uneven distribution of nodes
around the central node which is, subsequently, reflected by more imprecise
results (see Benito, Urena and Gavete (2001)).
Perrone and Kao (1975) suggested a second method, which may be referred
to as the eight segment criterion, consisting of the selection of the nearest
node in each octant of a system of cartesian axes around the central node of
the star. Given the irregular density of the node this method produces further
calculation error. A viable alternative would be to correct this last method in
terms of distance, assuring that none of the nodes are set at greater distances
to those indicated, and thereby correcting the effect of node density irregu-
larity.
A third method, proposed by Liszka and Orkisz (1980), Orkisz (1998), which
denominated the four quadrants criterion, consists of the selection of the two
nearest nodes per quadrant. The mentioned quadrant is established in the
same manner as that indicated above by cartesian axes around the central
node of the star. This method corrects the problems of the octant method.
The results improve when using the four quadrants criterion and the dis-
tance criterion of selection of nodes of the star (see Benito, Urena and Gavete
(2001)).

• The weighting function w.
The factor mi in Eq. 13 depends on weighting function w. Then , the influ-
ence of the weight function is clear, the value of the function in a node of
the domain is the weighting sum of the values of the function in the rest of
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the nodes of the star (Eq. 13), with more influence of the nodes closest to the
central node.
Different weighting functions can be used as potential, exponential or splines.
Potentials.

ω =
1

(dist)n ,n = 2,3,4 (14)

Exponentials

ω = exp−k(dist)2
,k > 0 (15)

Quartic Spline.
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Cubic Spline.
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where RP is a parameter.

Figure 1: Exponential and Splines Figure 2: Potentials

The weighting functions are plotted in rectangular coordinates and there are two
graphs, weighting magnitude versus distance central node for exponential and splines
weighting functions (Fig. 1) and logarithm of weighting magnitude versus distance
in the case of potential functions (Fig. 2).

The potential functions give more influence to the star nodes the nearer they are to
the central node (greater mi values.
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3 Influence of the weighting functions.

The issue of influence of weighting function is examined in the context of two nu-
merical examples. In both cases a Laplace equation is solved using the four quad-
rants criterion to select the star nodes and different weighting functions described
in the previous section.

The global exact error can be calculated as

Global exact error =

√
∑

N
i=1 e2

i
N

exacmax
(18)

where N is the number of nodes in the domain, exacmax is the maximum exact value
of function in the domain, ei is the exact error in the node i.

The nodal absolute exact error is,

nodal error = |ei|= |sol(i)− exac(i)| (19)

and it will be drawn by vertical lines in figures.

Figure 3: U(x,y) = exp(8x)sin(8x)
50 Figure 4: Cloud of 81 nodes

Example I.- The exact solution is (Fig. 3)

U(x,y) =
exp(8x)sin(8x)

50
(20)

The domain is defined by Fig. 4 (mesh with 81 nodes).

Tab. 1 shows the global exact error, Eq. 18, values. The best results are obtained
using the potential function as it can be appreciated in this Tab. 1.
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Table 1: Influence of the weight function (Example I).

Example Weight function Global error
I Pot. (n = 3) 0.002281
I Exp. (k = 5) 1.639
I Exp. (k = 0.5) 1.741
I Quartic (RP = 0.1) 1.746
I Quartic (RP = 0.05) 1.746
I Cubic (RP = 0.5) 2.264
I Cubic (RP = 0.1) 1.746
I ω = 1 1.746

Figure 5: U(x,y) = log(x2 + y2) Figure 6: Cloud of 289 nodes

Example II.- The exact solution is (Fig. 5)

U(x,y) = log(x2 + y2) (21)

The domain is defined by Fig. 6 (mesh with 289 nodes).

Tab. 2 shows the global exact error, Eq. 18, values as in the previous case the best
results are obtained when the potential weighting function is used.

4 Comparison with the standard Finite Difference Method

In order to analyse the potential of GFDM a comparison with the standard FDM is
carried out in this section.
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Table 2: Influence of the weight function (Example II).

Example Weight function Global error
II Pot. (n = 3) 0.03136
II Exp. (k = 5) 0.258
II Exp. (k = 0.5) 0.2614
II Quartic (RP = 0.1) 0.1434
II Quartic (RP = 0.05) 0.2615
II Cubic (RP = 0.5) 0.3648
II Cubic (RP = 0.1) 0.1799
II ω = 1 0.2615

Tab. 3 and Tab. 4 show the global exact errors (Eq. 18) obtained solving the ex-
amples I and II of the previous section applying the standard Finite Difference
Method (SFDM)(five point schemes) and the GFDM for stars with eight and five
nodes (GFD8 and GFD5 respectively).

Table 3: Comparison with SFDM.Example I

Cloud of nodes Methods Global error
Regular (81) GFD8 0.002281
Regular (81) GFD5 1.094
Regular (81) SFD 1.094

5 An h-adaptive method in the GFD

In this section an h-adaptive method in the GFD is shown. This adaptive method
proposes adding nodes selectively in the domain to improve the approximated so-
lution.

The a posteriori error indicator, Ind(u0), used in this paper is defined by the weighted
addition of the absolute values of the difference between the fourth order and the
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Table 4: Comparison with SFDM. Example II

Cloud of nodes Methods Global error
Regular (289) GFD8 0.03136
Regular (289) GFD5 0.1507
Regular (289) SFD 0.1507

second order approximations, obtained using Taylor serial expansions
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The 3rd and 4th order partial derivatives are calculated using the values of 1st and
2nd order derivatives and the explicit differences formulae.

Figure 7: Example of h-adaptive algorithm. I) Nodes of the star and triangles. II)
New nodes

If the value given by the a posteriori error indicator in a node is greater than a fixed
value (first parameter=Error limit (EL)) then new nodes are added at the centre of
gravity of triangles made using this node and the other nodes of the star. If the area
of a triangle is smaller than the mean area (second parameter),of the triangles of a
star (eight in the example of Fig. 7), then the new node should not be added.
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Fig. 7 show, an example, the application of the h-adaptive algorithm. A star whose
central node is represented by a square, and the other nodes of star, eight (in this
case), by circles and the triangles that can be built using the star nodes avoiding
overlapping.

Fig. 7 shows the new nodes added, five in this case (because the triangles made
using the central node and the nodes whose numbers are: 8,7,4, have an area smaller
than the mean area).

6 Numerical results

The efficiency of the algorithm has been illustrated analyzing the reduction in the
solution error value of pde’s with constant coefficients as well as nodes are added.
This section includes three examples of the application of the h-adaptive algorithm
to improve the approximated solution of second order pde’s with constant coeffi-
cients. It is interesting to see how not only the global error (Eq. 18) but also the
nodal errors (Eq. 19) are significantly reduced.

The domains are irregular and the solutions are chosen so that important gradients
are presented.

The potential weighting function (Eq. 14) has been used in every example.

As the idea is to analyse the efficiency of the algorithm, the clouds of nodes of
these academic examples have been generated randomly. In real applications it
would logical to choose the most regular position of nodes possible, considering the
shape of the domain, the number of star nodes, the shape of boundary, the boundary
conditions, etc. Below, the h-adaptive algorithm will add new nodes selectively if
necessary.

6.1 Case elliptic

Application to solve Laplace equation, with Dirichlet boundary condition and the
exact solution is Eq. 21(Fig. 5). The domain is defined by Fig. 8 (mesh with 125
nodes).

The first cloud, Fig. 8, has 125 nodes (38 nodes in the boundary) and after two
adaptive steps (EL = 0.01 and EL = 0.0055) we obtain the cloud showed in Fig. 9,
which has 145 nodes (41 nodes in the boundary, three nodes more that the first
clouds, included in the area with greater error).

In Tab. 5 we can see a summary of the global exact error (Eq. 18) obtained using
the adaptive method.

Fig. 10 and Fig. 11 show the nodal errors (Eq. 19) for the step 1 (cloud of 125
nodes) and for the last step (cloud of 145 nodes) respectively, as it is shown in
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Figure 8: First cloud of 125
nodes

Figure 9: Last cloud of 145
nodes

Figure 10: First cloud. Nodal er-
rors (125 nodes)

Figure 11: Last cloud. Nodal er-
rors (145 nodes)

Fig. 11 the nodal errors decrease.

6.2 Case hyperbolic

Application to solve the equation

∂ 2U
∂x2 −3

∂ 2U
∂y2 = 0 (23)

with Dirichlet boundary condition and the exact solution is (see Fig. 12)

U(x,y) = x3 + xy2 (24)
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Table 5: Adaptive Method (case 1). Global error.

Number of nodes Error %
125 0.05665
133 0.04617
145 0.02796

Figure 12: U(x,y) = x3 + xy2

The domain is defined by Fig. 13 (mesh with 76 nodes).

The first cloud, Fig. 13, has 76 nodes (36 nodes in the boundary) and after four
steps using the adaptive algorithm we obtain the cloud showed in Fig. 14, which
has 134 nodes (56 nodes in the boundary, twenty nodes more that the first clouds,
included in the side with a greater error).

In Tab. 6 we can see a summary of the global errors (Eq. 18) obtained using the
adaptive method.

Fig. 15 and Fig. 16 show the nodal errors (Eq. 19) for step 1 (cloud of 76 nodes)
and for the last step (cloud of 134 nodes) respectively.
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Figure 13: First cloud of 76
nodes

Figure 14: Last cloud of 134
nodes

Figure 15: First cloud. Nodal er-
rors (76 nodes)

Figure 16: Last cloud. Nodal er-
rors (134 nodes)

Table 6: Adaptive Method (case 2). Global error.

Number of nodes Error %
76 0.2706
83 0.2197

116 0.08236
130 0.07868
134 0.07069
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Figure 17: U(x,y) = 1
x+y

6.3 Case parabolic

Application to solve the equation

∂ 2U
∂x2 −2

∂ 2U
∂x∂y

+
∂ 2U
∂y2 +

∂U
∂x
− ∂U

∂y
= 0 (25)

with Dirichlet boundary condition and the exact solution is (Fig. 17)

U(x,y) =
1

x+ y
(26)

The domain is defined by Fig. 18 (mesh with 102 nodes)(with 0.02≤ x≤ 1).

The first cloud, Fig. 18, has 102 nodes (46 nodes in the boundary) and after three
steps (EL = 0.0086, EL = 0.0005 and EL = 0.00025) using the adaptive algorithm
we obtain the cloud showed in Fig. 19, which has 134 nodes (52 nodes in the
boundary, six nodes more that the first clouds, included in the side with a greater
error).

In Tab. 7 we can see a summary of the global errors ((Eq. 18)) obtained using the
adaptive method.

Fig. 20 and Fig. 21 show the nodal errors ((Eq. 19)) for step 1 (cloud of 102 nodes)
and for the last step (cloud of 134 nodes) respectively.
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Figure 18: First cloud of 102
nodes

Figure 19: Last cloud of 134
nodes

Figure 20: First cloud. Nodal er-
rors (102 nodes)

Figure 21: Last cloud. Nodal er-
rors (134 nodes)

Table 7: Adaptive Method (case 3). Global error.

Number of nodes Error %
102 0.01588
106 0.009414
123 0.00726
134 0.006231

7 Conclusions

The use of the generalized finite difference method using irregular clouds of points
is an interesting way of solving partial differential equations. The results obtained
for different equations show that the generalized finite difference method provides
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excellent results for the value of the function and its derivatives.

The best results are obtained using functions with a steeper slope, then weighting
functions like the potential are advisable. It is more difficult to appreciate this when
the solutions are smoother.

The h-adaptive algorithm efficiency has been checked, analyzing the reduction in
the solution error value as well as the situation of the added nodes for different par-
tial differential equation, defined in several domains. The main control parameter
of the h-adaptive method is the error limit of each step.The error limit value for
each step of the h-adaptive method, must be smaller than the average of the esti-
mated error of the nodes and to include a number of nodes less than the 40% of
total nodes.

The application of the h-adaptive method to several cases, shows that better results
are obtained when the error limit is progressively reduced in every step in order to
reach the benchmark error fixed for the problem.

The h-adaptive method proposed add nodes so that the possibility of ill-conditioned
clouds of points is avoided.
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