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A Method Based on Wavelets for Band Structure Analysis
of Phononic Crystals

Zhi-Zhong Yan1,2, Yue-Sheng Wang1,3 and Chuanzeng Zhang2

Abstract: In this paper, a numerical method based on the wavelet theory is devel-
oped for calculating band structures of 2D phononic crystals consisting of general
anisotropic materials. After systematical consideration of the appropriate choice of
wavelets, two types of wavelets, the Haar wavelet and Biorthogonal wavelet, are
selected. Combined with the supercell technique, the developed method can be
then applied to compute the band structures of phononic crystals with point or line
defects. We illustrate the advantages of the method both mathematically and nu-
merically. Particularly some representative numerical examples are presented for
various material combinations (solid-solid, solid-fluid and fluid-fluid) with com-
plex lattice structures to show the accuracy, fast convergence and wide applicability
of the method.
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1 Introduction

The phononic crystal (also termed the acoustic band gap material) is a compos-
ite medium composed of periodic arrays of two or more materials with different
mass densities and elastic properties. In analogy to photonic crystals (Joannopou-
los et al. 1995), phononic crystals may exhibit complete (or absolute) band gaps
in their transmission spectra where the propagation of acoustic or elastic waves is
strictly forbidden in all directions (if not in all directions, then we have directional
band gaps). The complete band gaps could be engineered to provide a vibration-
less environment for high precision mechanical systems in given frequency ranges.
Understanding the full band structures (including both stop-bands and pass-bands)
is expected to lead to the design of new generations of sound shields, filters, trans-
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ducers, refractive devices such as acoustic lenses and acoustic interferometers, etc.
By breaking the periodicity of the systems, it is possible to create highly local-
ized defect or guided modes within the acoustic band gaps, which are analogous
to localized modes in a photonic crystal (Bayindir et al. 2000) and to localized
impurity states in a semiconductor (Yablonovitch et al. 1991). This makes the
phononic crystals potential candidates for the design of elastic or acoustic wave
guides. Because of these promising applications, the propagation of elastic or
acoustic waves in phononic crystals has received increasing attention in the past
decade. Here, we would not exhaust all literatures but refer to the homepage
http://www.phys.uoa.gr/phononics for a comprehensive list of references on this
topic.

Although much progress has been made on photonic crystals, phononic crystals
should deserve more attentions because of their rich physics as well as the char-
acteristics of the mixed longitudinal and transverse waves with different velocities
which distinguish them from photonic crystals. However, in comparing with the
photonic crystals, we know less about phononic crystals and are still far away from
practical applications.

A typical case of a phononic crystal in two-dimension is composed of a periodic
array (in x-y plane) of material A embedded in a background material B. Both
materials A and B are general anisotropic media (solids, liquid or gas). In this
inhomogeneous linearly elastic anisotropic system with no body force, the motion
equation of harmonic plane waves for the displacement vector u(r) can be written
as

−ρ(r)ω2u(r) = ∇ · (C(r) : ∇u(r)) (1.1)

where r = (x,y) is the position vector; ω is the circular frequency; ∇ = ( ∂

∂x ,
∂

∂y) is
the two-dimensional nabla; “:” denotes the double contraction; ρ(r) and C(r) are
the position-dependent mass density and elastic stiffness tensor, respectively. For
isotropic systems, the elements of C(r) are Ci jkl = λ (r)δi jδkl +µ(r)(δikδ jl +δilδ jk)
where λ (r) is the Lamé constant and µ(r) the shear modulus; and for fluids, we
can simply set µ(r) ≡ 0. One basic task in research about phononic crystals is to
compute the band structures of the periodic problem (1.1).

Two main strategies are usually employed in computing Eq. (1.1). One consists
of band structure calculations of the corresponding infinite system. The other cal-
culates the transmission spectra by different algorithms. In the first strategy, the
plane wave expansion (PWE) method is one of the commonly used methods (for
a review on this method see Kushwaha 1999). However, this method has several
drawbacks. First, the elastic parameters, ρ(r) and C(r), are discontinuous. In
PWE method, these discontinuous step functions are reconstructed from a series of
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continuous sine and cosine functions. Since a uniformly convergent series of con-
tinuous functions always yields a continuous function, the Fourier series of the dis-
continuous elastic functions cannot be uniformly convergent. Although the Fourier
series yields convergence of the mean, the series overshoots the actual values at the
simple discontinuities. This is known as the Gibbs phenomenon. As the number
of the expansion terms is increased, the overshoots and undershoots increase while
moving closer to the discontinuity and the elastic functions can even become neg-
ative. On the other hand, when the number of the expansion terms is small, there
are large spatial fluctuations and possible local negative values of the elastic func-
tions. Another difficulty with PWE method is that the matrices appearing therein
are usually full. This makes the algorithms computationally expensive and thus
significantly limits the number of wave modes that can be taken into account. Fur-
thermore, in some situations the PWE method may gives unphysical flat frequency
bands and may be unable to give accurate results for the mixed solid/fluid systems
(Goffaux and Vigneron 2001). In the second strategy, the often used methods in-
clude multiple scattering theory (MST) method (Kafesaki and Economou 1999;
Sainidou et al. 2004; Li et al. 2006) and finite difference time domain (FDTD)
method (Sigalas and Garcia 2000; Wang et al. 2003; Hsieh et al. 2006), etc. The
MST method based on the well-known Korringa-Kohn-Rostoke theory is a use-
ful method to deal with the 3D cases including the mixed solid/fluid systems and
those with a large contrast in properties of the component materials, but is much
complex in computation and also requires a large number of terms in the multi-
ple expansion. The FDTD method is mainly used in finite phononic crystals. It
can consider complex geometry of the structures as well as the inhomogeneity,
anisotropy and nonlinearity of the materials. However when the contrast in proper-
ties of the component materials is larger, finer mesh is required, which causes large
time consumption. And sometimes interesting physical phenomena are shielded if
a further analysis of the spectra is not completed by studying the dispersion rela-
tion. However the FDTD method cannot give the spectra directly unless inverse
Fourier transformation is applied. There are some other methods which are not
commonly used, e.g. lumped-mass method (Wang et al. 2004), eigenmode match-
ing theory method (Hou et al. 2004), variational method (Goffaux et al. 2003),
finite element method (Zhang et al. 2003), etc. As mentioned above, these methods
involve various disadvantages. This makes development of alternative methods of
computation desirable.

In recent years, the localization capability and multilevel structure of wavelets have
been utilized to develop efficient numerical methods for partial differential equa-
tions (PDEs) (Santos et al. 2004; Cohen et al. 2001). The wavelet method, as one
of the meshless methods among others (Han and Atluri 2004), has been used in
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many boundary-value problems including wave propagation (Mitra and Gopalakr-
ishnan 2006; Zhang 2007; Xiang et al. 2008). Like sine and cosine in Fourier
series, wavelets are used as basis functions in representing other functions in series
forms. One advantage of wavelets is that they are well localized in both frequency
and spatial domains such that they can easily describe the discontinuities. Also,
unlike the basis functions in the classical finite element method, wavelets are os-
cillating functions of the space variables and may be better appropriate to describe
spatial oscillations of the wave fields (Checoury and Lourtioz 2006). Moreover, the
initial mesh construction is not required and the resulting matrixes are very sparse.
In one word, wavelets allow for efficient representations in computation. In other
words, wavelets are capable of quickly capturing the essence of a function with
only a small set of coefficients.

Checoury and Michel Lourtioz (2006) have recently proposed a wavelet-based
method for band structure calculations in 2D photonic crystals by using CDF62
wavelet. Motivated by their research, we try the wavelet-based method for calcu-
lating band structures of 2D phononic crystals. A biorthogonal wavelet instead of
a CDF62 wavelet, is applied. The main goal of this paper is to extend the work
to the phononic structures consisting of general anisotropic materials, mathemati-
cally illustrate the advantages of this method in details and list some representative
numerical examples for various material combinations (solid-solid, solid-fluid and
fluid-fluid) with complex lattice structures (including those with point or line de-
fects) to show the accuracy, fast convergence, wide applicability, etc. The outline of
this paper is as follows. In Section 2, we outline the basic theory about multiresolu-
tion analyses (MRA), the choice of wavelets, orthogonal wavelets and biorthogonal
wavelets. The wavelet algorithm is described in Section 3 and its numerical perfor-
mance is discussed in Section 4, followed by summary in Section 5.

2 Multiresolution Analysis and Wavelet Bases

We begin with some basic theory and notations to be used throughout this pa-
per. Let Z and R be the set of all integers and real numbers, respectively. Denote
L2(R) = { f :

∫
R | f (x)|

2dx < ∞}. In Fourier analysis, L2-functions are represented
as linear combinations of trigonometric functions. In the 1980s and 1990s, the
wavelet theory was developed on the basis of the Haar’s idea (Haar 1910). Wavelet
analysis has proved to be an efficient tool in approximation theory since Daubechies
(1988), Mallat (1999) and Meyer 1992. It is well known that multiresolution analy-
sis, introduced by Mallat from the signal processing field into mathematics (Mallat
1989), provides a nature framework for the understanding of wavelet bases, and for
the construction of wavelets. Therefore, next, we present a brief introduction to the
multiresolution analysis to analyze the wavelet bases used in this paper.
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2.1 Multiresolution analysis, scaling functions and orthogonal wavelets

A multiresolution analysis of L2(R) is defined as increasing sequence of closed
subspaces {Vj} j∈Z ⊂ L2(R), that satisfy the following properties

(i) Vj ⊂Vj+1,∀ j ∈ Z,∩ j∈ZVj = {0},∪ j∈ZVj = L2(R).

(ii) ∀ f ∈ L2(R),∀ j ∈ Z, we have f (·) ∈Vj⇔ f (2− j·) ∈V0.

(iii) f ∈V0⇒ f (·− k) ∈V0,∀k ∈ Z.

(iv) ∃φ ∈V0, such that the sequence {φ(x−k)}k∈Z = {φ0,k(x)}k∈Z is an orthonor-
mal basis (ONB) of the space V0. The function φ(x) is called the scaling
function of the multiresolution analysis.

Thanks to the conditions (iii) and (iv) it follows that φ j,k(x) := 2 j/2φ(2 jx−k), j,k ∈
Z is also an ONB of Vj. If we denote Pj : L2(R)→ Vj, the orthogonal projector
operator onto Vj, the condition (i) assures that any f ∈ L2(R) can be approximated
by its orthogonal projection onto Vj

Pj f := ∑
k∈Z

〈
f ,φ j,k

〉
φ j,k. (2.1)

Then the completeness implies convergence lim
j→∞

Pj f = f .

The main feature of multiresolution analysis is the existence of an orthonormal
wavelet basis ψ j,k(x) ∈ L2(R), obtained through dilation and translation of the
mother wavelet ψ(x), i.e. ψ j,k(x) := 2 j/2ψ(2 jx− k) with j,k ∈ Z. In other words,
an orthogonal wavelet ψ(x) is simply an L2-function with some oscillations and a
zero average, i.e.

∫
R ψ(x)dx = 0, such that wavelets have rapid decay or compact

supports, and hence have good localization capability, whereas the sine and cosine
used in Fourier analysis are harmonic waves spreading over the whole real line and
lack the aforementioned capability.

By applying projecting theorem on Hilbert space, we obtain the following equality

Vj+1 = Vj⊕Wj. (2.2)

Where the wavelet space Wj is the orthogonal complement of Vj in the space Vj+1,
such that by fixing j ∈ Z, {ψ j,k(x)}k∈Z is an orthonormal basis of Wj.

Similarly, let Q j : L2(R)→Wj be the orthogonal projection defined by

Q j f := ∑
k∈Z

〈
f ,ψ j,k

〉
ψ j,k. (2.3)
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Then considering Eq.(2.2) , we find a link between the approximation function on
Vj, and the approximation function on Vj+1

Pj+1 f = Pj f +Q j f . (2.4)

Obviously, Pj+1 f approximates f at a finer scale than Pj f does. In other words,
Pj+1 f reveals more details, which are represented by the wavelet terms in Q j f .

Since φ ,ψ ∈ V0 ⊂ V1 and {φ1,k|k ∈ Z} is an ONB of V1, we have a pair of filter
h = 〈hn〉n∈Z , g = 〈gn〉n∈Z , such that

φ = ∑
n∈Z

hnφ1,n, ψ = ∑
n∈Z

gnφ1,n, gn = (−1)nh1−n (2.5)

From Eq. (2.5), we have

φ j,k(x) = 2 j/2
φ(2 jx− k) = 2 j/2

∑
n∈Z

hnφ1,n(2 jx− k)

= ∑
n

hn2( j+1)/2
φ(2 j+1x− (2k +n))

ψ j,k(x) = 2 j/2
ψ(2 jx− k) = 2 j/2

∑
n∈Z

gnφ1,n(2 jx− k)

= ∑
n

gn2( j+1)/2
φ(2 j+1x− (2k +n))

Let m = 2k +n, then we get

φ j,k(x) = ∑
m

hm−2kφ j+1,m(x), ψ j,k(x) = ∑
m

gm−2kφ j+1,m(x) (2.6)

Set a j,k =
〈

f ,φ j,k
〉

=
+∞∫
−∞

f (x)φ j,k(x)dx and b j,k =
〈

f ,ψ j,k
〉

=
+∞∫
−∞

f (x)ψ j,k(x)dx,

then Eq. (2.6) leads to the following decomposition algorithm connecting coef-
ficients of successive approximations:

a j,k = ∑
m

hm−2kα j+1,k,b j,k = ∑
m

gm−2kα j+1,k. (2.7)

Moreover, from Eq. (2.6), the orthogonality implies that
〈
φ j,m,φ j+1,k

〉
= hk−2m and〈

ψ j,m,φ j+1,k
〉

= gk−2m. Then considering the definition of orthogonal projection
and Eq. (2.4), we get the reconstruction algorithm

a j+1,k =
〈

f ,φ j+1,k
〉

=
〈
Pj+1 f ,φ j+1,k

〉
=
〈
Pj f ,φ j+1,k

〉
+
〈
Q j f ,φ j+1,k

〉
= ∑

m
a j,m

〈
φ j,m,φ j+1,k

〉
+∑

m
b j,m

〈
ψ j,m,φ j+1,k

〉
= ∑

m
hk−2ma j,m +∑

m
gk−2mb j,m

(2.8)
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Let j0 < J be the selected coarsest and finest resolution levels, then applying Eqs.
(2.2) and (2.4) recursively yields

VJ = Vj0⊕Wj0⊕· · ·⊕WJ−1 (2.9)

and

f ≈∑
k
〈 f ,φJ,k〉φJ,k = ∑

k

〈
f ,φ j0,k

〉
φ j0,k +

J−1

∑
j= j0

∑
k

〈
f ,ψ j,k

〉
ψ j,k. (2.10)

This motivates us to carry out a progressive multilevel approximation. We first ap-
proximate the function from a coarse level, and then add in more details level by
level through wavelet terms if necessary. In addition, wavelet coefficients in the
smooth regions of a function will be small and thus can be neglected to save com-
putations and storage. In other words, compression in the wavelet decomposition
can be performed to improve the efficiency of approximation.

The periodic wavelet can be derived from the MRA in the real line mentioned
above. Suppose j ∈ Z+,k = 0, ...,2 j−1, we define

φ
(period)
j,k (x) := ∑

p∈Z
φ j,k(x− p),

V (period)
j := span{φ

(period)
j,k (x)

∣∣∣k = 0, ...,2 j−1}

ψ
(period)
j,k (x) := ∑

p∈Z
ψ j,k(x− p),

W (period)
j := span{ψ

(period)
j,k (x)

∣∣∣k = 0, ...,2 j−1}.

Then {V (period)
j } j∈Z+ forms a periodic multiresolution analysis (PMRA) in L2([0, 1]),

and {φ
(period)
j,k (x)

∣∣∣k = 0, ...,2 j−1} and {ψ
(period)
j,k (x)

∣∣∣k = 0, ...,2 j−1} are respec-

tively an ONB of V (period)
j and W (period)

j with V (period)
j ⊕W (period)

j = V (period)
j+1 .

The properties of the scaling function and wavelet affect the performance of ap-
proximation in various aspects. The lengths of their supports determine computa-
tion cost. The number of vanishing moments of the wavelet implies compression
potential. Given the number of vanishing moments, Daubechies wavelets have
the minimal support length. In this aspect, they are optimal and hence popular
in applications. As we know, in Fourier analysis, L2-functions are represented
as linear combinations of sines and cosines. However, unlike the Fourier analy-
sis where only trigonometric function bases are adopted, the wavelet analysis has
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many different function families to choose, and in the same wavelet function fam-
ily there exist different order wavelet functions. On one hand, this enhances the
ability of solving different problems; on the other hand, the appropriate choice of
the best wavelet basis must be considered for different problems. In general, four
different wavelet families such as Daubechies wavelets, Coiflets wavelets, Symlets
wavelets and biorthogonal wavelets are usually used in different fields. Here, we
considered the most representative Daubechies wavelets families and biorthogonal
wavelet families from the approximation-oriented points of view. Mathematically,
the essence of compression is to use the least wavelet series terms to approximate
the original function. Generally the basis functions are more similar to the original
function, the less wavelet series terms are necessary to approximate the original
function. Usually, the Daubechies wavelets which are often employed in some lit-
eratures do not hold the best compressibility, but biorthogonal wavelets do. There-
fore in this paper, considering the definite calculation of the phononic crystals, we
adopt the biorthogonal wavelet. User et al. (1996, 1998) compared the approxima-
tion ability of the biorthogonal wavelet families and Daubechies wavelet functions
families and showed mathematically that the biorthogonal functions have the better
approximation ability than that of the Daubechies wavelet for the smooth func-
tions. Moreover, Daubechies wavelet functions are not symmetric. In contrast,
the biorthogonal wavelet families have the strict symmetry. Thus for the periodic
structures, we prefer to choose the wavelet with symmetry and antisymmetry prop-
erties because the edge disposal is very convenient and the function distortion is the
least in the reconstruction. And, the advantages of biorthogonal wavelets are also
discussed in Ewing et al. 2004. In addition, we remind that the periodic wavelet
bases are used in our periodic problems. The periodized wavelets and their scal-
ing functions possess the similar properties of their non-periodic counterparts, e.g.
orthonormality and biorthogonality as discussed in this paper.

2.2 Biorthogonal wavelets

As discussed above, biorthogonal wavelets were motivated by concerns about exact
reconstruction and symmetry in signal processing and developed to improve the
shortcomings of orthogonal wavelets while maintaining their advantages. For ease
of exposure, we begin with the one-dimensional (1D) case. The analysis process
may be directly extended to the two-dimensional (2D) or higher-dimensional case
in a straightforward manner.

Usually, biorthogonal wavelets are connected with biorthogonal MRA. A biorthog-
onal MRA is the sequence of closed subspaces in L2(R), i.e.

Vj ⊂Vj+1, Ṽj ⊂ Ṽj+1, Wj ⊂Wj+1, W̃j ⊂ W̃j+1 (2.11)
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Set

Vj = span{φ j,k
∣∣k ∈ Z}, Wj = span{ψ j,k

∣∣k ∈ Z}
Ṽj = span{ φ̃ j,k

∣∣k ∈ Z}, W̃j = span{ ψ̃ j,k
∣∣k ∈ Z}

(2.12)

Considering Eq. (2.11), it is apparent that the following relations hold

Vj+1 = Vj +Wj,Ṽj+1 = Ṽj +W̃j. (2.13)

Vj⊥W̃j′ , Ṽj⊥Wj′ , for j ≤ j′ (2.14)

Now we construct biorthogonal wavelets and scaling functions from two pairs of
filters (hn,gn) and

(
h̃n, g̃n

)
through two-scale equations

φ = ∑
n∈Z

hnφ1,n,ψ = ∑
n∈Z

gnφ1,n, φ̃ = ∑
n∈Z

h̃nφ̃1,n, ψ̃ = ∑
n∈Z

g̃nφ̃1,n

where φ and φ̃ are called the primal scaling function and dual scaling function,
respectively; and ψ and ψ̃ are called the primal wavelet and dual wavelet, respec-
tively. It is noted that the roles of these two pairs of filters are symmetric and can
be switched. The same is true for the primals and duals.

From Eq. (2.5), again, we have the choices for gn and g̃n

gn = (−1)nh̃1−n, g̃n = (−1)nh1−n (2.15)

An important property of the biorthogonal wavelet is the following biorthogonal
relations:〈
φ0,k, φ̃0,k′

〉
= δk,k′ (2.16)〈

ψ j,k, ψ̃ j′,k′
〉

= δ j, j′δk,k′ (2.17)

For any f ∈ L2(R), we may choose a coarse resolution level j0 and a fine level J(> j0)
to carry out one-level or multilevel approximations similar to the orthogonal case

f = ∑
k

〈
f , φ̃J,k

〉
φJ,k = ∑

k

〈
f , φ̃ j0,k

〉
φ j0,k +

J−1

∑
j= j0

∑
k

〈
f , ψ̃ j,k

〉
ψ j,k. (2.18)

Eq. (2.18) indicates that the function may be decomposed by the primal functions
and reconstructed by the dual functions. One may also use the dual functions for
decomposition and the primal functions for reconstruction.

Most orthogonal scaling functions and wavelets do not have explicit expressions,
which is an obvious shortcoming for their applications in some situations. In this
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sense, biorthogonal spline wavelets are appealing since the primal scaling function
and wavelet are splines, and hence have explicit expressions and known regulari-
ties. Therefore, numerical methods built upon biorthogonal spline wavelets possess
some known regularities, and thus possess some features of the traditional finite el-
ement methods besides the advantage of the multilevel structure.

Here, the Haar wavelet (i.e. Bior(1,1)), Bior(2,8) and Bior(3,9) are plotted in Fig.1
and will be used in our numerical experiments. The detailed definition and proper-
ties of biorthogonal wavelet are referred to Cohen et al. 1992.

3 Description of the Algorithm

The algorithm is developed within the variational principle framework. The the-
ory and practice of such methods for elliptic problems are rather well understood.
For details, we refer to the corresponding literatures (Ciarlet 1978). We will only
describe here the 2D case. The 3D case is handled similarly.

3.1 Problem formulation

Consider Eq. (1.1), ρ(r) and C(x) are the space-dependent periodic functions.
The algorithm handles arbitrary lattices of periods. Treatment of periodic problems
requires utilization of the so-called Floquet-Bloch theory (Eastham 1973 for its
description in the case of partial differential equations and Ashcroft and Mermin
1976 for its applications in solid state physics). Based on the Bloch theorem, the
elastic displacements can be written in the following form

u(r) = ei(k·r)uk(r) (3.1)

where uk(r) are two-dimensional and periodic; i =
√
−1; and k = (kx,ky) is a 2D

wave vector contained in the first Brillouin Zone (BZ) of the reciprocal lattice.
Substituting (3.1) into (1.1), we obtain

(∇+ ik) · [C : (∇+ ik)⊗uk(r)] =−ρ(r)ω2uk(r). (3.2)

Eq. (3.2) can be rewritten in a variational form as

〈v, (∇+ ik) · [C : (∇+ ik)⊗uk(r)]〉=−ω
2 〈v, ρ(r)uk(r)〉 , ∀v ∈ L2(Ω) (3.3)

where v is an arbitrary square integrable function. Equivalently, (3.3) may be writ-
ten in the integral form∫
Ω

C : (∇+ ik)⊗uk(r) · (∇+ ik)vdr = ω
2
∫
Ω

ρ(r)uk(r)v̄dr. (3.4)



A Method Based on Wavelets 69

           

Figure 1: Haar and Biorthogonal scaling functions and wavelets, Bior(2,8) and
Bior(3,9)
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Due to the spatial periodicity, uk(r) and the material constants, ρ(r) and C(x), can
be expanded in biorthogonal wavelet basis and Haar wavelet basis, respectively
(see Section 2)

uk(r) = ∑
bm∈Ψ j0 ,J

ûk,mbm (3.5)

α(r) = ∑
dm∈Ψ j0 ,J

α̂k,mdm (3.6)

where α(r) = (ρ(r),C(r)); α̂k,m and ûk,m are the corresponding wavelet coeffi-
cients; and the localized basis set is{

ϕ
period
j0,k1,k2 : k1 = 0, ...,2 j0−1; k2 = 0, ...,2 j0−1}

∪{ψ(λ ),period
j,k1,k2 : λ = 1,2,3; k1 = 0, ...,2 j−1; k2 = 0, ...,2 j−1; j = j0, ...,J−1

}
.

(3.7)

Each function in this set is the 2D periodic wavelets and scaling functions consist-
ing of a product of two 1D periodic wavelets and scaling functions (see figure 1). It
is understood that different wavelet basis may be selected for ρ(r), C(x) and uk(r).
The integer J fixes the approximation degree and the maximum number 22J of the
wavelets and scaling basis functions used in the expansion. An adaptive algorithm
would add or remove wavelets during calculations without restriction on the integer
J and would stop when a desired accuracy is obtained.

Substituting Eq (3.5) into Eq. (3.4), and then choosing the square integrable func-
tion v = bq, we obtain∫
Ω

C : [(∇+ ik)⊗ ûk,pbp] · (∇+ ik)b̃qdr = ω
2
∫
Ω

ρ(x)ûk,pbpb̃qdr (3.8)

As stated in Section 2, an arbitrary function f ∈ L2[0,1] may be approximated by
the wavelet series at a given j0 scale and a complementary part at a finer scale [see
Eq. (2.10)],

f (x) =
2 j0−1

∑
k=0

skϕ
period
j0,k (x)+ ∑

j∈Z
j≥ j0

2 j−1

∑
k=0

d j,kψ
period
j,k (x), x ∈ [0, 1], (3.9)

where k is the location in space. One can change the scale of the function by chang-
ing the truncation of the series in j to improve the accuracy of the approximation.
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Considering the fact that ρ(r) and C(r) are all piecewise constant functions, we
will use the periodic Haar wavelets to represent them. As for the displacement
fields we will try the periodic Bior3.9 wavelets which involve more vanishing mo-
ments than Bior2.8 wavelets. The advantages of using these wavelets have been
demonstrated in Section 2.

Haar wavelet is a step function. It is the only one compactly supported, orthogonal
and symmetric wavelet and is well adapted to the piecewise constant functions. Eq.
(3.9), which is now supposed to represent ρ(r) and C(r), may be expanded in the
form of the periodic Haar wavelets and scaling functions,

f Haar(x) =
2 j0−1

∑
k=0

skϕ
period,Haar
j0,k (x)+ ∑

j∈Z
j≥ j0

2 j−1

∑
k=0

d j,kψ
period,Haar
j,k (x), (3.10)

where the wavelet coefficients

sk =
〈

ϕ
period,Haar
j0,k , f Haar

〉
and d j,k =

〈
ψ

period,Haar
j,k , f Haar

〉
.

When expanding the phononic crystal displacements in the wavelets, we expect that
they can be represented accurately with as few coefficients as possible. Here, we
will use the periodic Bior3.9 wavelets. Similarly Eq. (3.9), which is now supposed
to represent displacements, may be expanded in the following form

f bior3.9(x) =
2 j0−1

∑
k=0

skϕ̃
period,bior3.9
j0,k (x)+ ∑

j∈Z
j≥ j0

2 j−1

∑
k=0

d j,kψ̃
period,bior3.9
j,k (x), (3.11)

where the wavelet coefficients

sk =
〈

ϕ
period,bior3.9
j0,k , f bior3.9

〉
and d j,k =

〈
ψ

period,bior3.9
j,k , f bior3.9

〉
.

The above equation indicates that the function f bior3.9(x) may be decomposed by
the primal functions and reconstructed by the dual functions.

The above formulation, Eqs. (3.9)-(3.11), is for 1D periodic systems. To calculate
the elastic band structures of 2D phononic crystals, we must use 2D wavelets de-
fined on [0,1]⊗ [0,1]. (Bi)orthogonal wavelets on [0,1]⊗ [0,1] are generated by
periodizing compactly supported wavelets on R⊗R via tensor products. For exam-
ple, Figure 2 shows the 2D Haar scaling function, ϕ(x,y) = ϕ(x)ϕ(y), and the three
wavelet functions, ψ(1)(x,y) = ϕ(x)ψ(y), ψ(2)(x,y) = ψ(x)ϕ(y) and ψ(3)(x,y) =
ψ(x)ψ(y), resulting from the tensor products of the 1D Haar scaling and wavelet



72 Copyright © 2008 Tech Science Press CMES, vol.38, no.1, pp.59-87, 2008

Figure 2: A 2D Haar scaling function and three wavelet functions

functions. An arbitrary 2D periodic function f (x,y) can be expanded in the 2D
periodic wavelets, e.g.,

f (x,y) =
2 j0−1

∑
k1=0

2 j0−1

∑
k2=0

χk1,k2ϕ
period
j0,k1,k2(x,y)+ ∑

j∈Z
j≥ j0

2 j−1

∑
k1=0

2 j−1

∑
k2=0

γ j,k1,k2ψ
(λ )period
j,k1,k2 (x,y),

λ = 1,2,3, x,y ∈ [0,1] (3.12)

where the coefficients χk1,k2 and γ j,k1,k2 are defined in similar way to those in Eqs.
(3.10) and (3.11).

Eq. (3.8) may be rewritten in a compact form

M · ûk = ω
2B · ûk (3.13)

where M and B are sparse matrices and ûk the column vector containing ûxk, ûyk
and ûzk. The elements of these matrices are

(M)p,q =
∫
Ω

C : [(∇+ ik)bp] · (∇+ ik)b̃qdr (3.14)

(B)p,q =
∫
Ω

ρ(r)bpb̃qdr (3.15)
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Eq. (3.13) leads to the eigenvalue problem. Numerical solution to this problem
can be conducted by truncating the series in j to J-th terms, i.e. j = j0, ...,J− 1.
The eigenvalues of (3.13) considered as functions of k are called band functions or
dispersion relations. The union of ranges of all band functions forms the spectrum
of the original problem.

If the plane (x, y) is a symmetric plane of the anisotropic system, the in-plane
and out-of-plane wave modes are uncoupled and can be solved separately from the
eigenvalue equation (3.13).

3.2 Assembling and storage of the matrices

Computation of matrices M and B is straightforward according to the formulas
introduced above. This involves the computation of the wavelet integrals. For
example, on substitution of the periodic Haar wavelet expansions of the functions
ρ(r) and C(r) into Eqs. (3.14) and (3.15), (M)p,q can be expressed as a linear
combination of the wavelet integrals with the form∫
Ω

ψ
period,Haar(r)(∇+ ik)bp · (∇+ ik)b̃qdr, (3.16)

which are independent of the particular forms of ρ(r) and C(r) and therefore can be
computed with high accuracy once for all. The basic idea is that the computation of
the wavelet integrals on general decomposable domains can be reduced to the com-
putation of the similar integrals on the unit interval (i.e. [0, 1]). In this reduction
process, suitable approximations are introduced to make the computation efficient.
The construction on a fairly general domain Ω is achieved by the following steps

R→ [0,1]→ [0,1]2→Ω =
⋃

Ωi, Ωi ∼ [0, 1]2, (3.17)

where the first step is completed by restriction and adaptations at the edges, the
second step by tensor product, and the third step by domain decomposition tech-
niques.

The key point for the wavelet integral in Eq. (3. 16) mainly relies on the two-
scale relation for the wavelets and scaling functions (see Niklasson et al. 2002 and
Bertoluzza 2000 and references therein ).

3.3 Solution of the generalized eigenvalue problem

The choice of a proper method for solving the generalized eigenvalue problem
(3.13) is also very important. In computing band structures of phononic crystals,
one is usually interested only in a small number (up to 10) of the lowest eigenvalues.
Thus we expect a method that provides calculation of only such eigenvalues rather



74 Copyright © 2008 Tech Science Press CMES, vol.38, no.1, pp.59-87, 2008

than attempting to compute all of them, and that efficiently utilizes sparseness of
matrices involved. The classical iterative method is known to have these properties
and can solve the eigenproblems faster than a direct solution. They usually need
a good starting point for iteration as well as the knowledge of a good precondi-
tioner (i.e. an approximate inverse of the matrix M). Here we will now briefly
describe the algortithm (for details we refer to David 2002). For a given scale J,
the eigenvectors of the sub-matrix MJ−1

k can be used as the initial value to calculate
the eigenvalue problem of the matrix MJ

k because MJ−1
k may be regarded as a first

order approximation of MJ
k . The detailed preconditioning and adaptability of the

matrix MJ
k can be referred to Cohen and Masson 1999. In this paper, we choose the

preconditioning of the matrix MJ
k as

(
(M j0

k ) 0
0 diaDk,J

)−1

(see Cohen and Mas-

son 1999). Obviously, the dimension of the diagonal matrix diaDk,J = (md,d) is
(22J−22 j0)× (22J−22 j0) where md,d are the diagonal elements of matrix MJ

k with
22 j0 < d ≤ 22J . So, we may easily compute the preconditioner since the inverse of
the matrix M j0

k is relatively smaller than MJ
k .

4 Performance of the Algorithm

In this section, we will illustrate the performance of the developed method for sev-
eral typical 2D phononic crystals with or without defects. The calculations were
implemented on a personal computer with a Pentium4, 2.5GHz CPU and 256MB
memory. In order to check whether the algorithm works correctly and efficiently,
we have tested it against several typical cases with different lattice structures, scat-
terer shapes and material combinations.

(a)                                    (b) 

M X

Figure 3: The transverse cross-section (a) and the first Brillouin zone (b) of the 2D
triangular lattice

Two typical lattice structures—triangular and square, and two kinds of scatterer
cross-sections —circular and square are calculated. Figs. 3 and 4 show, respec-
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(a)                          (b)                        (c) 

M

X

Figure 4: The transverse cross-sections (a,b) and the first Brillouin zone (c) of the
2D square lattice
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Figure 5: Band structures for a square lattice of AlAs circular columns embedded
in GaAs with general anisotropy. The solid curves are for the in-plane modes and
the dashed curves for the out-of-plane modes

tively, the transverse cross-sections and the first Brillouin zones of the triangular
and square lattices.

4.1 Solid-solid systems

We first check the validity of the present method for anisotropic material combina-
tions by considering a square lattice of AlAs circular columns embedded in GaAs
which was studied in Tanaka and Tamura (1998) with the PWE method. The mate-
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rial constants may be found in the reference. In calculation, we take 4096 wavelet
basis functions. The results of the first few band structures are shown in Fig. 5.
These results agree well with those obtained by the PWE method (see Fig.1 in
Tanaka and Tamura 1998). That is to say, the wavelet method can yield the same
results as the PWE method.

To check the accuracy and convergence of the present method, we perform the
detailed computation for a system with large acoustic mismatch. Here we take
the isotropic material combinations of Au/Epoxy with different lattice structures
and scatterer shapes. The material parameters are ρgold = 19500kg/m3, ρepo =
1180kg/m3, cl,gold = 3360m/s, cl,epo = 2535m/s, ct,gold = 1239m/s, ct,epo = 1157m/s.
The filling fraction is f = 0.4. Fig. 6 illustrates the band structures in the first
Brillouin zone for the triangle lattice with the circular scatterers (Fig. 6a), the
square lattice with the circular scatterers (Fig. 6b) and the square lattice with the
square scatterers (Fig. 6c). The frequencies are measured in the dimensionless unit
ωa/2πct,epo. The solid lines represent the in-plane modes and the dashed lines
show the out-of-plane modes. For comparison, the results obtained with the PWE
method (see Kushawaha 1999) are represented by the scattered solid circles for the
in-plane modes and by the scattered hollow circles for the out-of-plane modes. The
results by these two methods are identical. In calculation, we take 1024 wavelet ba-
sis functions and 1089 plane waves. Table 1 lists the frequency regions of the first
three spectral bands for the last case (the square lattice with the square scatterers),
which numerically shows the satisfied agreement between the two methods.

Table 1: Frequency regions of the first three spectral bands for the square lattice
with the square scatterers

Band No.
In-plane modes

PWE method Wavelet method
1 [0, 0.34476] [0, 0.33348]
2 [0, 0.37091] [0, 0.3541]
3 [0.34615, 0.40714] [0.33587, 0.39699]

Band No.
Out-of-plane modes

PWE method Wavelet method
1 [0, 0.25] [0, 0.2356]
2 [0.7806, 0.87364] [0.77101, 0.86334]
3 [0.8381, 0.89029] [0.8277, 0.8801]

To verify the convergence of the developed method, we define a relative error of
the eigenfrequency as δk,n =

∣∣ωk,n−ωk,n,re f
∣∣/ωk,n,re f , where the referenced value

ωk,n,re f is the eigenfrequency with 4096 wavelet basis functions. The relative errors
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Figure 6: Band structures for Au/Epoxy systems: (a) triangular lattice of circular
scatterers; (b) square lattice of circular scatterers; and (c) square lattice of square
scatterers. The lines are from the wavelet method, and the scattered symbols from
the PWE method
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Figure 7: Convergence of the wavelet method, maximum relative error versus the
number of wavelet basis functions: (a) triangular lattice of circular scatterers; (b)
square lattice of circular scatterers; (c) square lattice of square scatterers
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were calculated for the first 8 eigenmodes (1≤ n≤ 8) with arbitrary k by selecting
various numbers (smaller than 4096) of the basis functions. Then we choose the
maximum values (i.e. max

1≤n≤8,∀k
{δk,n}) and plot them versus the number of basis

functions in Fig. 7 which is corresponding to the band structures in Fig. 6 for
the three systems. It is seen that the algorithm converges faster for the out-of-
plane modes than for the in-plane modes. This is due to the fact that the in-plane
motion involves a higher order system of the eigenvalue problem. The algorithm
exhibits the similar convergence for both triangular and square lattices with circular
scatterers (see Figs. 7a and 7b). However, one may find that the convergence for
the square lattice with square scatterers (Fig. 7c) is faster than that for the other two
cases (Figs. 7a and 7b). The reason is related to the choice of the basis functions
which are actually the products of two Bior3.9 functions, one depending only on x
and the other on y (see section 3). A smaller number of wavelets is then needed to
describe the wave fields in the square (x,y) geometry than in the circular one.

4.2 Mixed solid-fliud systems

The PWE method works poorly for mixed solid-fluid systems because of the com-
plex wave modes ranging from the longitudinal modes in the fluid to the mixed
longitudinal and transverse modes in the solid (Li et al. 2003). For the system with
the solid scatterers in the fluid matrix, the PWE method may yield the results well
approximately by imposing the rigid condition to the scatterers. However, for the
system of the solid host with holes filled with the fluid, an artificial transverse speed
must be assumed in the fluid when the PWE method is used, otherwise it fails to
give correct results (Goffaux and Vigneron 2001). Even though, the computed re-
sults are very much sensitive to the choice of the artificial transverse speed which is
not a trivial task. In addition, this technique is only valid for a low-density fluid such
as air, but not for a high-density fluid. Here we will show that the wavelet method
works very well for this case by re-computing the examples studied in Mei (2005)
— iron rods of circular cross-section embedded in water. The material parameters
are ρiron = 7670kg/m3, ρwater = 1000kg/m3, cl,iron = 6010m/s, cl,water = 1490m/s
and ct,iron = 3230m/s; and the filling fraction f = 0.4. The band structures are il-
lustrated in Fig. 8. The left part of the figure shows the results for the triangular
lattice with iron rods which are accordant with Fig. 3d of Mei (2005); the middle
part shows the dispersion relations for the square lattice with iron rods which is
identical to Fig. 3c of Mei (2005). The right part corresponds to the inverted struc-
ture of the middle part, i.e., a system of the iron host with holes filled by water for
which the PWE method fails. In calculation, we take 1024 basis functions.

To check the convergence of the algorithm with the number of the basis functions,
we compute the percentage change between the eigenvalues of the longitudinal
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Figure 8: Band structures for iron-water systems: the left is for triangular lattice
with iron rods, the middle for square lattice with iron rods, and the right for square
lattice with water cylinders
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Figure 9: Band structures of transverse modes for an array of vacuum holes in the
silicon host with a point defect in a 5×5 supercell, the filling fraction f = 0.6

modes obtained by using different basis sizes for the middle and right parts of Fig.
8. The results are listed in Table 2 where the “Maximum % change” and “Average
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Figure 10: Band structures for an array of steel cylinders in the water host with a
point defect in a 5×5 supercell, the filling fraction f = 0.55 and rd = 0.5r0

% change” are defined as

1
N

max
∣∣ωk,N,small set −ωk,N,l arge set

∣∣
and

1
N

{
1
M

∣∣ωk,N,small set −ωk,N,l arge set
∣∣}

respectively, in which N is the total number of the bands we consider and M is the
total number of the points we calculate along one edge of the Brillouin zone, say
Γ−X . Here we take N=4 and M=11. It is shown that 1024 basis functions may
yield results with satisfied accuracy.

Table 2: Algorithm’s convergence data

Water host with iron rods Iron host with water cylinders
Maximum Average Maximum Average
% change % change % change % change

16 and 256 12.6 5.5 15.89 7.6
256 and 1024 2.1 1.1 5.7 3.54
1024 and 4096 0.5 0.1 1.1 0.68

Next we compute the band structures for systems with defects. The supercell
technique, which has been proved very efficient in studying the defect modes of
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phononic crystals (Khelif et al. 2003), will be used. We first consider a square lat-
tice of vacuum holes in silicon host with a point defect which is created by filling
a hole with silicon. The material parameters of silicon are ρsi = 2330kg/m3 and
ct,si = 5362m/s, the filling fraction f = 0.6. The band structures of purely trans-
verse waves are illustrated in Fig. 9 where the solid lines show the results for the
system with defects and the dashed lines for the perfect system. Two defect modes
are found to appear in the band gaps. The upper one is very flat which implies the
localization of the waves in the system. In calculation, we use the 5× 5 supercell
containing a point defect in the center (see the right part of Fig. 9). To get good
accuracy, 4096 basis functions are used in the wavelet expansions. The results are
in good agreement with those obtained by Huang and Wu (2005) with the PWE
method for the same system (see Fig. 1 in Huang and Wu 2005).

As the second example, we re-compute the system consisting of steel cylinders
arranged in water in square lattice with the filling friction f = 0.55 which was
studied in Wu and Liu (2002) by using the PWE method. We replace a steel cylinder
by a smaller one (rd = 0.5r0) to create a point defect. Again 5× 5 supercell and
4096 basis functions are used in calculation. Band structures are shown in Fig. 10
where the dots are results obtained for a perfect system by using the unit cell. A
flat defect mode is observed. The results are found in good agreement with those
in Wu and Liu 2002 (see Fig. 4 therein).

4.3 Fluid-fluid supercell systems

The fluid-fluid systems are relatively simple because only the longitudinal wave
mode is involved. Therefore we will consider systems with defects. As the first
example, a square lattice of mercury cylinders in water host with a point defect is
computed by using 5×5 supercells, see the right part of Fig. 11. The filling frac-
tion f = 0.65 and the filling fraction of defects fd = 0.01. The material parameters
of mercury are ρHg = 13500kg / m3 and cl,Hg = 1450m / s. The left part of Fig.
11 illustrates the band structures where a localization mode induced by the defects
is observed. The results agree perfectly with Fig. 4-10 in Wu (2001). The con-
vergence of the method for this example is shown in Fig. 12. In calculation, we
take 4096 wavelet basis functions. The second example is a square lattice of water
cylinders in mercury host with a line defect as shown in the right part of Fig. 13.
The filling fraction is f = 0.3. The line defect is created by replacing an array of
water cylinders with smaller ones (rd = 0.5r0). The band structures are plotted in
Fig. 13 which shows very good agreement with Fig. 4-3 of Wu (2001).

The last four examples (Figs. 9 to 13) show that the wavelet method, together with
the supercell technique, is efficient for analysis of the defect states of phononic
crystals, although more basis functions are necessary in wavelet expansions be-
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Figure 11: Band structures for an array of mercury cylinders in the water host with
a point defect in a 5×5 supercell, the filling fraction f = 0.65 and the defect filling
fraction f = 0.01
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cause of large supercell size (generally 5×5).

5 Conclusions

A wavelet-based method is developed in this paper for band structure calculations
of two-dimensional phononic crystals. Various numerical examples show some
merits of the method. For instance, the method can treat systems with general
anisotropic materials. The algorithm converges fast and can yield accurate results
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with fewer (generally 1024) wavelet basis functions for various lattice structures.
The method works efficiently for all kinds of material combinations, including
mixed solid-fluid system where the PWE method encounters difficulties. The su-
percell technique of the wavelet method is also proved efficient although more ba-
sis functions are necessary. Generally speaking, the developed wavelet method is
expected to be an efficient method in computing the band structures of phononic
crystals.
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