
Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.119-147, 2008

Shared Memory OpenMP Parallelization of Explicit MPM
and Its Application to Hypervelocity Impact

P. Huang1,2, X. Zhang1,3, S. Ma1 and H.K. Wang1

Abstract: The material point method (MPM) is an extension of particle-in-cell
method to solid mechanics. A parallel MPM code is developed using FORTRAN
95 and OpenMP in this study, which is designed primarily for solving impact dy-
namic problems. Two parallel methods, the array expansion method and the do-
main decomposition method, are presented to avoid data races in the nodal update
stage. In the array expansion method, two-dimensional auxiliary arrays are cre-
ated for nodal variables. After updating grid nodes in all threads, the auxiliary
arrays are assembled to establish the global nodal array. In the domain decompo-
sition method, the background grid is decomposed into some uniform patches, and
each thread deals with a patch. The information of neighbor patches is exchanged
through shared variables. After updating nodes in all patches, their nodal variables
are assembled to establish the global nodal variables. The numerical tests show that
the domain decomposition method has much better parallel scalability and higher
parallel efficiency than the array expansion method. Therefore, a parallel computer
code, MPM3DMP, is developed based on the domain decomposition method. Fi-
nally, MPM3DMP is applied to a large-scale simulation with 13,542,030 particles
for obtaining the high-resolution results of debris cloud in hypervelocity impact.

Keywords: Material point method, PIC, parallel methods, OpenMP, hyperveloc-
ity impact.

1 Introduction

The material point method (MPM) [Sulsky, Chen, and Schreyer (1994); Sulsky,
Zhou and Schreyer (1995)] is an extension of the particle-in-cell (PIC) method
[Harlow (1963); Brackbill, Kothe, and Ruppel (1988)]. MPM is applied to the

1 School of Aerospace, Tsinghua University, Beijing 100084,China
2 Institute of System Engineering, China Academy of Engineering Physics, Mianyang 621900,

China
3 Correspondence author. E-mail: xzhang@tsinghua.edu.cn



120 Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.119-147, 2008

solid dynamic problems by updating the stress in material points rather than in
grid, so that the history dependent material can be modeled conveniently. Being a
fully Lagrangian particle method, MPM discretizes a material domain using a set
of material points, which are also called particles. The particles carry all state vari-
ables such as displacement, stress, strain and temperature. The momentum equa-
tions are solved on a predefined regular background grid, so that the grid distortion
and entanglement are completely avoided. MPM possesses the advantages of both
Lagrangian method and Eulerian method. Recently, some researchers developed
the generalized interpolation material point (GIMP) and the other variants for im-
proving the accuracy of MPM [Bardenhagen and Kober (2004); Steffen, Wallstedt,
Guilkey, Kirby and Berzins (2008)].

MPM and its variants have been successfully applied to solve many complicated en-
gineering problems, such as Taylor bar impact [Sulsky and Schreyer (1996)], upset-
ting problems [Sulsky and Kaul (2004)], hypervelocity impact [Zhang, Sze, and Ma
(2006)], explosive processes [Hu and Chen (2006); Guilkey, Harman and Baner-
jee(2007)] and multiphase flows [Zhang, Zou, VanderHeyden and Ma (2008)].
Some problems, which involve material failure [Schreyer, Sulsky, and Zhou (2002);
Sulsky and Schreyer (2004); Chen, Gan and Chen (2008)], dynamic fracture [Guo
and Nairn (2004); Guo and Nairn (2006), Ma, Lu, and Komanduri (2006)] and film
delamination [Shen and Chen (2005)], have also been studied using MPM and its
variants.

Memory

P0 P1 P2 Pn

Pocessors

Figure 1: A shared-memory architecture.

Parallelization of MPM is desirable to obtain high-resolution results for large-
scale engineering problems. Parker (2006) developed a parallel MPM code using
Message Passing Interface (MPI). A parallel MPM computation with 16 million
particles was executed by Parker and co-workers in Massively Parallel Process-
ing (MPP) machines [Parker, Guilkey and Harman (2006)]. MPI is an applica-
tion program interface (API) to design a parallel code, which supports distributed-
memory machines, such as cluster and MPP machines. In the parallel MPM code



Shared Memory OpenMP Parallelization 121

developed by Parker (2006), the computational domain was decomposed to many
patches. The information of neighbor patches was exchanged explicitly by us-
ing MPI_ Send and MPI_ Receive operation. Based on the Structured Adaptive
Mesh Refinement Application Infrastructure (SAMRAI), Ma and co-workers pre-
sented parallel GIMP simulations for the multi-scale problems [Ma, Lu, Wang,
Roy, Hornung, Wissink and Komanduri (2005)]. SAMRAI is designed to provide a
framework for multi-processor distributed memory computations, which is devel-
oped using C++ and MPI. In addition, the Parallel Object Oriented Methods and
Applications (POOMA) framework is also developed by C++ and MPI, which is
specially designed to provide a flexible environment for data parallel programming
of Particle-in-cell (PIC) type codes [Reynders, Hinker, Cummings, Atlas, Baner-
jee, Humphrey, Karmesin, Keahey, Srikant, and Tholburn (1996)]. A parallel high-
performance 3D Maxwell PIC code, called Capone, has been implemented using
POOMA II framework on Linux [Candel, Dehler and Troyer (2006)].

In shared memory machines, parallelization for MPM could be achieved using
OpenMP. OpenMP has the significant advantage of allowing programs to be incre-
mentally parallelized [Quinn (2004)]. Annoying message passing between differ-
ent sub domains is avoided in OpenMP. It is easier to parallelize a serial code using
OpenMP than MPI. OpenMP is designed to provide a standard interface for FOR-
TRAN and C/C++ programs. OpenMP is suitable for shared-memory machines,
such as multi-core computers and Symmetric Multi-Processor machines (SMP).
Fig. 1 shows the architecture of this class of computers. In fact, this class of
machines implicitly supports the message exchange between different processors
through shared memory. Although shared-memory machines can never compete
with MPP machines for large-scale simulations, the high performance computa-
tional environment can be setup by this class of machines easily and cheaply.

OpenMP has been successfully applied to parallel computations of molecular dy-
namics [Couturier and Chipot (2000), Goedecker (2002)]. The speedup of a parallel
molecular dynamics code was reported between 6.0 and 7.0 under eight proces-
sors [Couturier and Chipot (2000)]. Using OpenMP and FORTRAN 77, a parallel
smoothed particle hydrodynamics (SPH) code named HYDRA_OMP was devel-
oped by Thacker and Couchman (2006). Moreover, OpenMP was applied to paral-
lel computations for Ab initio quantum chemistry [Sosa, Scalmani, Gomperts and
Frisch (2000)] and fluid dynamics [Martin, Papada and Doallo (2004); Ayguadea,
Gonzaleza, Martorella and Jostb (2006)]. In this study, two parallel methods are
presented for parallelization of MPM based on OpenMP, which are the array ex-
pansion method and the domain decomposition method. A parallel computer code
is developed for solving the impact problems.

This paper is organized as follows. In section 2, the algorithm of explicit MPM is



122 Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.119-147, 2008

reviewed briefly. In section 3, the parallel modes of OpenMP are described briefly.
In section 4, MPM is parallelized by two parallel methods based on OpenMP. A
parallel MPM code called MPM3DMP is developed. In section 5, Taylor bar im-
pact is simulated by using the MPM models with different sizes for comparing the
parallel efficiency. Then, MPM3DMP is further applied to hypervelocity impact for
obtaining the high-resolution results of debris cloud. Lastly, section 6 is a summary
of our discussions and our conclusions.

2 Review of the MPM algorithm

In MPM, each body is discretized by a set of particles which carry all state vari-
ables (see Fig.2). In each time step, the MPM computation consists of two parts:
updating variables for grid nodes and updating variables for particles. Because the
particles are rigidly attached to a regular background grid, they move with the grid
during each time step. The variables can be mapped between particles and grid
nodes using the standard shape functions of the finite element method (FEM).

MPM was compared with other numerical methods such as FEM and SPH for in-
vestigating its accuracy and performance [Guilkey and Weiss (2003); Ma, Zhang
and Qiu (2009)]. The more accuracy simulations of MPM could be performed
by changing the shape functions [Steffen, Wallstedt, Guilkey, Kirby and Berzins
(2008)], using different computational schemes [Bardenhagen (2002)] and adopt-
ing an adaptive algorithm [Tan and Nairn (2002)]. In addition, some researchers
presented contact MPM algorithms for solving contact and friction between of bod-
ies. [York, Sulsky and Schreyer (1999); Bardenhagen, Brackbill and Sulsky (2000);
Hu and Chen (2003); Pan, Xu, Zhang, Zhu, Ma and Zhang (2008)].

Figure 2: Material discretization in MPM. Solid line denotes the boundary of ma-
terial domain. Solid dot denotes material point and dash lines denote background
grid.



Shared Memory OpenMP Parallelization 123

The standard MPM algorithm is described briefly as follows. In the following
equations, the subscript i denotes the value of grid node i, the subscript p denotes
the value of particle p, and the superscripts k and k+1 denote the value at time step
k and k+1, respectively. Sip = Ni(Xp) is the shape function of node i evaluated
at particle p, and Gip = ∇Ni(Xp) is the gradient of the shape function of node i
evaluated at particle p. MPM computation in each time step can be completed over
four steps [Sulsky, Chen, and Schreyer (1994); Zhang, Sze and Ma (2006)].

(1). Map the particle variables to grid nodes to establish their momentum equa-
tions.

The mass of grid node i can be obtained by mapping the mass of those particles
located in the cells connected to grid node i, namely

mk
i = ∑

p
mpSk

ip (1)

The momentum of grid node i can be obtained in the same way as

pk
i = ∑

p
mpvk

pSk
ip (2)

The force of grid node i can be obtained as

fk
i =

(
fint
i
)k +

(
fext
i
)k (3)

where
(
fint
i
)k is the internal force of grid node i and given by(

fint
i
)k =−∑

p
σ

k
p ·Gk

ip
mp

ρk
p

(4)

(fext
i )k is the external force of grid node i and given by(

fext
i
)k = ∑

p
mpSipbp +

∫
Γt

SiptdΓ (5)

where b is the specific body force, and t is the prescribed traction on boundary
Γt .

(2). Update the momentum of grid node i using the explicit time integration,

pk+1
i = pk

i + fk
i ∆t (6)

Both pk+1
i and fk

i are set to zero on the fixed boundary.



124 Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.119-147, 2008

(3). Map the nodal results back to particle p to update its position xk+1
p and velocity

vk+1
p ,

xk+1
p = xk

p + v̄k+1
p ∆t (7)

vk+1
p = vk

p +ak
p∆t (8)

where

v̄k+1
p =

8

∑
i=1

pk+1
i

mk
i

Sk
ip (9)

ak
p =

8

∑
i=1

fk
i

mk
i
Sk

ip (10)

(4). Update the particle stress using a constitutive model.

To obtain more accurate nodal velocities, the updated particle velocity is mapped
back to grid nodes in the Modified Update Stress Last (MUSL) scheme [Chen and
Brannon (2002); Nairn (2003)], namely,

vk+1
i =

1
mk

i
∑
p

mpvk+1
p Sk

ip (11)

The incremental strain and vorticity of particle p can be evaluated by

∆εεε
k
p =

∆t
2

8

∑
i=1

[
vk+1

i

(
Gk

ip

)T
+Gk

ip

(
vk+1

i

)T
]

(12)

∆ωωω
k
p =

∆t
2

8

∑
i=1

[
vk+1

i

(
Gk

ip

)T
−Gk

ip

(
vk+1

i

)T
]

(13)

The density and Cauchy stress of particle p are updated by

ρ
k+1
p = ρ

k
p

/(
1+ tr

(
∆εεε

k
p

))
(14)

σσσ
k+1
p = σσσ

k
p +∆rk

p +∆σσσ
k
p (15)

where ∆rk
p = ∆ωωωk

p ·σσσ k
p−σσσ k

p ·∆ωωωk
p.The incremental stress ∆σσσ k

p is updated by a con-
stitutive model. For hypervelocity impact problems, the particle pressure is updated
by an equation of state (EOS), such as Mie-Grüneisen EOS.

Based on the aforementioned scheme, a serial computer code called MPM3D is
developed using FORTRAN 95 and object-oriented programming techniques. The



Shared Memory OpenMP Parallelization 125

code has a highly modularized and object-oriented property because of using mod-
ules and derived data types. The flowchart of MPM3D code is given in Fig. 3.
It can be seen that the MPM computation can be divided into two parts: updating
variables for grid nodes (Eqs.(1)∼ (6)) and updating variables for particles (Eqs.(7)
∼ (15)). When updating the nodal variables, the state variables of particles keep
unchanged. When updating the state variables of particles, the nodal variables keep
unchanged. The variables of grid nodes and particles are updated through looping
over particles [Chen and Brannon (2002)].

3 Brief review of OpenMP

The standard mode of parallelization in OpenMP is the fork/join mode [Quinn
(2004)], which is illustrated in Fig.4. The master thread executes the serial part
of a code. At the beginning of a parallel code, the master thread forks some slave
threads. The master thread and slave threads work concurrently across the parallel
section. All threads return the single master thread at the end of a parallel code.
OpenMP supports the incremental parallelization and shared memory. When mul-
tiple threads write the same shared variables at the same time, an unpredictable
result will be obtained due to data races. Avoiding data races is a serious issue in
writing a correct parallel code using OpenMP.

OpenMP have two common styles of programming [Chandra, Dagum, Kohr, May-
dan, McDonald and Menon (2001)]: loop-level parallelization and code-block par-
allelization. In the loop splitting method, all loop iterations are equally decomposed
and distributed across all the threads. For executing a loop in a parallel manner, the
directive ‘!$omp parallel do’ is placed before the do loop code.

With the code-block parallelization, portions of code will be replicated, and the
same computational process is executed in every thread. For executing the code-
block parallelization, the directive ‘!$omp parallel’ is placed at the beginning of
the parallel area, and the directive ‘!$omp end parallel’ is placed at the end of the
parallel area. Using the code-block parallelization, an entire loop domain is divided
into different loop sub domains according to different threads.

Regardless of which parallel mode is employed, the data dependence must be re-
moved in different threads. Different synchronization mechanisms can be used in
OpenMP to avoid data races, such as the critical section directive and reduction
clause. To avoid writing a shared variable by multiple threads at the same time, the
critical section is created in the parallel area. In the critical section, only one thread
at a time can update the value of a shared variable. However, if a critical region
is very large, the program performance might be poor [Pantalé (2005); Chapman,
Jost and VanderPas (2007)]. OpenMP provides the reduction clause for perform-



126 Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.119-147, 2008

 2

 
 

Start

Input the initial parameters of
particles, grid, nodes and material

Calculate the nodal mass, momentum, and force
by looping over particles (Eqs.(1)~(5))

Update the nodal  momentum by nodal force (Eq.(6))

Update the position and velocity for every
particle by nodal variables (Eqs.(7)~(10))

Recalculate the nodal momentum
by looping over particles (Eq.(11))

Calculate the incremental strain  and
vorticity for every particle (Eqs.(12)~(13))

Update the Cauchy stress and density for
 every particle (Eqs.(14)~(15))

Finish?

Update the energy of all particles

Output the state variables of particles

End

N

Y

t=t+Δt

 
Figure 3:  Flowchart of MPM3D code. Figure 3: Flowchart of MPM3D code.

Master

thread

Slave threads

Parallel

section

Master

thread

Parallel

section

Slave threads

Figure 4: A fork/join parallel mode.



Shared Memory OpenMP Parallelization 127

ing recurrence calculations and avoiding data races. The code adopting reduction
clause has better parallel performance than the code using the critical section di-
rective. However, only scalar variables are allowed to use a reduction clause. The
reduction of an array can be achieved using the array expansion method. In this
method, a two-dimensional auxiliary array A_list(:, nthreads) is created for a one-
dimensional array A(:) in a parallel area. The parameter nthread is the total number
of threads used in a parallel code. Thread j only operates the jth column of the array
A_list, so that data races are avoided. At the end of the parallel area, the array A(:)
can be assembled by

A(:) =
nthreads

∑
j=1

A_list(:, j) (16)

4 The OpenMP parallelization of MPM

In each time step, the MPM computation is completed over two stages. The first
stage updates variables for grid nodes through looping over particles (Eqs.(1) ∼
(6)). However, the loops over particles are dependent of each other because dif-
ferent particle loops may operate the same grid node at the same time. Therefore,
special attention must be paid to data races when parallelizing this stage using
OpenMP.

The second stage updates variables for particles through looping over particles
(Eqs.(7) ∼ (15)). Data races don’t occur in this stage because each particle loop
only operates the particles belonging to this loop. Consequently, the OpenMP par-
allelization of this stage can be achieved straightforwardly by using the loop split-
ting method.

4.1 Parallelization of nodal variable updates

Let Mg(N), Pxg(N) and Fxg(N) denote the nodal mass, momentum and force ar-
rays, respectively, where N is the total number of grid nodes. These arrays are
calculated by looping over particles. As above mentioned, the loops over particles
are dependent of each other in this stage. Therefore, the array expansion method
and the domain decomposition method are used to avoid data races, respectively.

4.1.1 The array expansion method

In the array expansion method, the one-dimensional array of a nodal variable is ex-
panded to a two-dimensional array. For example, two-dimensional arrays Mg_list(N,
nthreads), Pxg_list(N, nthreads) and Fxg_list(N, nthreads) are created as the aux-
iliary arrays for the nodal mass Mg(N), momentum Pxg(N) and force Fxg(N), re-



128 Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.119-147, 2008

spectively. Thread i only operates the ith column of these arrays, so that the data
races are avoided. The update stage of nodal variables can be parallelized as

!$omp parallel do &
!$omp private(state variables of particles) &
!$omp default(shared)
do p =1, number_ particles
thread = omp_get_thread_num()+1
...
do n = 1,8
node = Influence_Node(n)
update Mg_list(node,thread)
update Pxg_list(node,thread)
update Fxg_list(node,thread)
end do
end do

where the function Influence_Node(n) returns the index of nth node in the cell con-
nected to particle p. Because the loop is over particles, the state variables of parti-
cles need to be declared as private variables for each thread. After updating nodal
variables in all threads, the auxiliary array Mg_list is assembled into the nodal
mass array Mg according to Eq.(16). Moreover, the auxiliary arrays Pxg_list and
Fxg_list are assembled into arrays Pxg and Fxg, respectively. By using the array
expansion method, the critical region is eliminated in the parallel code, so that the
parallel efficiency could be enhanced. However, the memory requirement will in-
crease significantly with increasing threads.

The time integration of the nodal momentum is given by Eq.(6). There are no data
races in this loop, so that the time integration can be parallelized easily using the
loop splitting method as

!$omp parallel do
do n = 1, number_gridnodes
Pxg(n)= Pxg(n)+ Fxg(n)*dt
end do
!$omp end parallel do

where number_gridnodes is the total number of grid nodes, and dt is the time step
interval.



Shared Memory OpenMP Parallelization 129

4.1.2 The domain decomposition method

In the domain decomposition method, the background grid is decomposed into
some uniform patches. The number of patches is set equal to the number of threads,
so that each thread deals with one patch. An example is shown in Fig.5, in which
the computational grid is decomposed into four uniform patches. The global IDs
of particles are shown in Fig.5(a), and the local IDs of these particles in each patch
are shown in Fig.5(b). In our MPM implementation, the same computational grid
is used in all time steps, so that the global ID and local ID of a grid node in each
patch keep unchanged in all time steps.

Actually, MPM can be viewed as a special Lagrangian FEM, in which the particles
rather than the Gauss points serve as the integral points. In FEM, the Gauss points
keep in the fixed location in an element in all time steps. After partitioning the
finite element domain into patches, the Gauss points are automatically partitioned
into different patches. All Gauss points stay in their original element in all time
steps. However, the particles in MPM are only rigidly attached to the grid within
one time step, and they may locate in different grid cells in different time steps.
Therefore, it is necessary to determine the local ID of a particle in a patch. A two-
dimensional array called Pindex is created to determine the local ID of a particle
in a patch, and its element (i, j) determines the global ID of the particle in patch j
with local ID i. For example, the array Pindex for the problem shown in Fig.5 is
given as

Pindex =


2 1 8 4
3 6 10 9
5 7 14 12
11 16 0 13
0 0 0 15


The particles are divided into several groups to generate the array Pindex in a paral-
lel manner, and each thread deals with a group of particles. For the problem shown
in Fig.5, let the first thread deal with the particles 1 to 4, and let the second thread
deal with the particles 5 to 8. Let the third thread deal with the particles 9 to 12,
and let the fourth thread deal with the particles 13 to 16. A two-dimensional array
patnp_th is created for counting the particles, whose element (i, j) stores the num-
ber of particles in patch j counted by thread i. For the example shown in Fig.5, the
array patnp_th is given as

patnp_th =


2 1 0 1
1 2 1 0
1 0 1 2
0 1 1 2





130 Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.119-147, 2008

The array patnp_th can be generated in a parallel manner. Based on the array
patnp_th, a one-dimensional array patnp is created by summing up each column

of the array patnp_th, namely, patnp(i) =
nthreads

∑
j=1

patnp_th( j, i). The ith element

of the array patnp is the number of particles in patch i. For the example shown in
Fig.5, the arry patnp is given as

patnp =


4
4
3
5


The maximum element of the array patnp determines the size of the array Pindex.
Finally, the array Pindex can be created by arrays patnp_th and patnp in a parallel
manner.

Each thread deals with a patch for avoiding data races in the domain decomposition
method. According to Eqs. (1) ∼ (5), the local variables of nodes in one patch are
updated by the following parallelized code.

!$omp parallel do &
!$omp private (state variables of particles) &
!$omp default(shared)
do patch = 1, patch_number
do i = 1, patnp(patch)
p = Pindex(i,patch)
...
do n = 1,8
subnode = subnodefun(Influence_Node(n),patch)
update Subgrid_list(subnode,patch)%Mg
update Subgrid_list(subnode,patch)%Pxg
update Subgrid_list(subnode,patch)%Fxg
end do
end do
end do

where patch_number is the total number of patches, and the function subnode-
fun(i, j) returns the local ID of the grid node i in patch j. Subgrid_list(s, j) contains
the mass, momentum and force of a grid node, whose local ID is s in patch j.

The nodal mass Mg(), momentum Pxg() and force Fxg() can be assembled from the
array Subgrid_list by the following parallelized code.



Shared Memory OpenMP Parallelization 131

Nodes

Particles

1

2
3

4

6
7

8 9

11

12

13

14

15

10

5
16

Nodes

Particles

1

2
3

4

6
7

8 9

11

12

13

14

15

10

5
161

2
3

4

6
7

8 9

11

12

13

14

15

10

5
16

(a)  A computational domain and the global IDs of particles

Patch1 Patch2

Patch3 Patch4

1
2

4
3

1

2
3

4

1
3

2
1

2
3

4

5

Patch1 Patch2

Patch3 Patch4

1
2

4
3

1
2

4
3

1

2
3

41

2
3

4

1
3

2

1
3

2
1

2
3

4

5

1

2
3

4

5

(b) Patches and the local IDs of particles

Figure 5: Decomposition of a background grid domain.

do patch = 1, patch_number
!$omp parallel do &
!$omp private(variables) &
!$omp default(shared)
do subnode = 1, patch_node_number
node = globalnode(subnode,patch)
Mg(node)= Mg(node)+Subgrid_list(subnode,patch)%Mg
Pxg(node)=Pxg(node)+Subgrid_list(subnode,patch)%Pxg
Fxg(node)=Fxg(node)+Subgrid_list(subnode,patch)%Fxg
end do



132 Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.119-147, 2008

end do

where the function globalnode(s, j) returns the global ID of the node with local ID
sin patch j. Therefore, the nodal variables can be caculated in a parallel manner
using the code presented in this section.

4.2 Parallelization of particle variable updates

After solving the momentum equations at grid nodes, the nodal variables are mapped
back to particles to update their state variables. This stage is completed over three
steps:

(1) Update the position and velocity for each particle.

(2) Update the nodal velocity again.

(3) Update the density and stress for each particle.

The position and velocity of each particle are updated according to Eqs. (7)∼ (10).
There are no data races in this step, so that this step can be parallelized directly
using the loop splitting method as

!$omp parallel do &
!$omp private (state variables of particles) &
!$omp default(shared)
do p =1, number_ particles
update the position of particle p
update the velocity of particle p
end do

where number_ particles is the total number of particles. To obtain accurate values
of nodal velocities, the updated velocities of particles are mapped back to the grid
nodes again according to Eq. (11). Data races occur in this step, so that the array
expansion method or domain decomposition method need to be used to parallelize
this step (see Section 4.1).

The particle strain and stress are updated according to Eqs. (12) ∼ (15). There are
no data races in this step, so that this step can be parallelized directly using the loop
splitting method as

!$omp parallel do &
!$omp private (state variables of particles) &
!$omp default(shared)



Shared Memory OpenMP Parallelization 133

do p =1, number_particles
calculate the incremental strain of particle p
calculate the incremental vorticity of particle p
calculate stress of particle p
End do

The total kinetic energy is the sum of kinetic energy of all particles. Different
particle loops may read and write the value of the total kinetic energy at the same
time, so that data races occur. The data races can be avoided using the reduction
clause as

!$omp parallel do &
!$omp private (state variables of particles) &
!$omp reduction(+: kinetic_energy) &
!$omp reduction(+: internal_energy)
do p =1, number_particles
update kinetic_energy
update internal_energy
end do

where kinetic_energy and internal_energy are the total kinetic energy and internal
energy of all particles, respectively.

4.3 Load balance

In the domain decomposition method, particles may move from their original patch
to a new patch after some time steps. The number of particles in different patches
may have a significant difference, and some patches may have no particles in some
time steps. Consequently, a load balance algorithm is required to enhance the par-
allel efficiency.

A simple load balance algorithm is adopted here. An adaptive background grid is
proposed to avoid void patches. In each time step, the size of the background grid
is recalculated to fit the new positions of all particles. For example, in Taylor bar
impact simulation shown in Fig.6, many cells are not occupied by any particles at
time t (see Fig.6(b)). If the traditional background grid is used, the load imbalance
between threads is significant. The adaptive background grid shown in Fig.6(c) not
only improves the load balance, but also reduces the number of grid nodes. In the
future, the better and sophisticated algorithms need to be developed to improve the
load balance much more.



134 Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.119-147, 2008

5 Numerical examples

Based on aforementioned parallel methods, a parallel 3D MPM code, MPM3DMP,
is developed to solve impact dynamics problems. This parallel code is tested on a
HP DL140G3 server with two Quad-Core Intel Xeon 5355 processors (2.66GHz)
and 8 GB memory. The operating system is Red Hat Enterprise Linux AS release
4. The parallel code is compiled using the Intel FORTRAN 10.0 compiler with
OpenMP option.

5.1 Description of benchmark tests

The impact of Taylor bar is taken as a standard benchmark to compare the per-
formance of two parallel methods. The cylinder’s material is oxygen-free high-
conductivity (OFHC) copper. The initial dimensions of the cylinder are a length
of 25.4 mm and a diameter of 7.6 mm. The cylinder impacts against a rigid planar
surface with an initial velocity of 40 m/s. In this simulation, the deviatoric stress is
updated by the elastic-plastic constitutive model with isotropic hardening,

σy = A+Bε̄
n
p (17)

where A, B and n are the material constants, σy is the flow stress, and ε̄p is the
effective plastic strain. The pressure is updated by the Mie-Grüneisen EOS

p =


ρ0c2

0µ(1+µ)
[1−(s−1)µ]2

(
1− γµ

2

)
+ γ0En µ > 0

ρ0c2
0µ + γ0En µ < 0

(18)

where ρ0, c0, s and γ0 are the material constants, p is the pressure, µ is the compres-
sion ratio of relative volume, γ is the Grüneisen coefficient, and En is the internal
energy per initial volume. The material constants of the copper are given by John-
son and Holmquist (1988), and listed in Table 1.To compare the performance of
two parallel methods, different models of Taylor bar are simulated with different
number of threads. The number of particles, cells and grid nodes in each model are
listed in Table 2.

5.2 Parallel performance

5.2.1 Performance of the array expansion method

The termination time of Taylor bar simulation is set to 40 µs. The results obtained
by MPM3DMP agree well with those by LS-DYNA software. The speedup sp is
defined as

sp =
Ts

Tm
(19)



Shared Memory OpenMP Parallelization 135

          (a) Initial background grid             (b)  Traditional background grid at t            (c) Adaptive background grid at t

Figure 6: Adaptive background grid for load balance.

Table 1: Material constants of copper

Copper
Density(kg/m3) 8930

Young’s Modulus (GPa) 117.0
Poisson’s Ratio 0.35

Constitutive Model Constants
A(MPa) 157.0
B(MPa) 425.0

n 1.0
Equation of State Constants

c0(m/s) 3940
s 1.49
γ0 1.96

Table 2: The parameters of different MPM models

Particles Cells Nodes
Model1 56056 49152 53361
Model2 244524 165888 175273
Model3 1155192 1022208 1053493
Model4 12416320 8177664 8302185



136 Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.119-147, 2008

where Ts is the CPU time using single thread, and Tm is the CPU time using multiple
threads. The parallel efficiency e f is defined as

e f =
sp

n
(20)

where n is the total number of threads used in the parallel computation. To investi-
gate the effects of compiler optimization on parallel performance, the parallel code
is compiled by Intel FORTRAN 10.0 compiler with O3 optimization and without
using any optimization options, respectively.

The speedup and parallel efficiency of the array expansion parallel method with O3
compiler optimization are shown in Fig.7 and Fig.8, respectively. Meanwhile, the
speedup and parallel efficiency without using any optimization compiler options
are shown in Fig.9 and Fig.10, respectively. Fig.9 and Fig.10 show that the parallel
performance without using any compiler optimization is higher than that with O3
compiler option.

In the array expansion method, the sizes of auxiliary arrays Mg_list, Pxg_list and
Fxg_list increase significantly with increasing threads, which will lead to a signifi-
cant increase in computational effort and memory requirement. Consequently, the
parallel performance of the array expansion method becomes poor with the increase
of model size, as shown in Fig.9 (a) and Fig. 10 (a).

0 1 2 3 4 5 6 7 8 9

1

2

3

S
p
ee
d
u
p

Threads

Model1

Model2

Model3

0 1 2 3 4 5 6 7 8 9

1

2

3

S
p
e
e
d
u
p

Threads

Model1

Model2

Model3

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

S
p
ee
d
u
p

Threads

Model1

Model2

Model3

0 1 2 3 4 5 6 7 8 9

1

2

3

S
p
ee
d
u
p

Threads

Model1

Model2

Model3

0 1 2 3 4 5 6 7 8 9

1

2

3

S
p
e
e
d
u
p

Threads

Model1

Model2

Model3

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

S
p
ee
d
u
p

Threads

Model1

Model2

Model3

                    (a) Total computation           (b) Stage for updating grid nodes         (c) Stage for updating particles 

Figure 7: Speedup of the array expansion method with O3 compiler optimization.

To investigate the parallel performance of different stages in MPM, the speedup and
parallel efficiency for updating grid nodes and particles are also shown in Fig.9 and
Fig.10, respectively. Fig.9 (b) and Fig.9 (c) show that the code for updating particle
has better parallel performance than the code for updating grid nodes. Thus, as a
bottleneck of the array expansion method, the grid nodes update stage may lead to
poor parallel performance, especially when many threads or large-scale models are
used.



Shared Memory OpenMP Parallelization 137

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

%

%

%

%

%

%

P
a

r
a

ll
el

 e
ff

ic
ie

n
c
y

Threads

Model1

Model2

Model3

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

P
a
ra

ll
el

 e
ff

ic
ie

n
cy

Threads

Model1

Model2

Model3

%

%

%

%

%

%

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

%

%

%

%

%

%

P
ar

a
ll
el

 e
ff

ic
ie

n
cy

Threads

Model1

Model2

Model3

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

%

%

%

%

%

%

P
a

r
a

ll
el

 e
ff

ic
ie

n
c
y

Threads

Model1

Model2

Model3

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

P
a
ra

ll
el

 e
ff

ic
ie

n
cy

Threads

Model1

Model2

Model3

%

%

%

%

%

%

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

%

%

%

%

%

%

P
a

r
a

ll
el

 e
ff

ic
ie

n
c
y

Threads

Model1

Model2

Model3

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

P
a
ra

ll
el

 e
ff

ic
ie

n
cy

Threads

Model1

Model2

Model3

%

%

%

%

%

%

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

%

%

%

%

%

%

P
ar

a
ll
el

 e
ff

ic
ie

n
cy

Threads

Model1

Model2

Model3

(a) Total computation                        (b) Stage for updating grid nodes           (c) Stage for updating particles 

Figure 8: Parallel efficiency of the array expansion method with O3 compiler opti-
mization.

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

S
p

ee
d

u
p

Threads

Model1

Model2

 Model3

0 1 2 3 4 5 6 7 8 9

1

2

3

4

S
p
ee

d
u
p

Threads

 Model1

 Model2

Model3

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

S
p
ee

d
u
p

Threads

Model1

Model2

Model3

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

S
p

ee
d

u
p

Threads

Model1

Model2

 Model3

0 1 2 3 4 5 6 7 8 9

1

2

3

4

S
p
ee

d
u
p

Threads

 Model1

 Model2

Model3

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

S
p
ee

d
u
p

Threads

Model1

Model2

Model3

(a) Total computation                    (b) Stage for updating grid nodes             (c) Stage for updating particles 

Figure 9: Speedup of the array expansion method without using compiler optimiza-
tion.

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

%

%

%

%

%

P
a
r
a
ll

el
 e

ff
ic

ie
n

cy

Threads

Model1

Model2

Model3

%

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

%

%

%

%

%

P
a
r
a
ll

el
 e

ff
ic

ie
n

cy

Threads

Model1

Model2

Model3

%

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

%

%

%

%

%

P
a
ra

ll
el

 e
ff

ic
ie

n
c
y

Threads

Model1

Model2

Model3

%

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

%

%

%

%

%

P
a
r
a
ll

el
 e

ff
ic

ie
n

cy

Threads

Model1

Model2

Model3

%

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

%

%

%

%

%

P
a
r
a
ll

el
 e

ff
ic

ie
n

cy

Threads

Model1

Model2

Model3

%

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

%

%

%

%

%

P
a
ra

ll
el

 e
ff

ic
ie

n
c
y

Threads

Model1

Model2

Model3

%

        (a) Total computation                         (b) Stage for updating grid nodes           (c) Stage for updating particles

Figure 10: Parallel efficiency of the array expansion method without using compiler
optimization.

In addition, the memory requirement increases significantly with increasing threads
in the array expansion method. Consequently, the results for model 4 with 12, 416,
320 particles are not available under 4 to 8 threads because there is no enough



138 Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.119-147, 2008

memory available in the server. This study shows that the array expansion method
is not well suitable for the large-scale MPM models.

5.2.2 Performance of the domain decomposition method

In the domain decomposition method, 1×1×1, 2×1×1, 2×2×1, 2×1×3 and 2×
2× 2 patches are used for 1, 2, 4, 6 and 8 threads, respectively. The speedup and
parallel efficiency of the domain decomposition method with O3 compiler opti-
mization are shown in Fig.11 and Fig.12, respectively. Meanwhile, the speedup
and parallel efficiency without using any compiler optimization options are shown
in Fig.13 and Fig.14, respectively. Fig.13 and Fig.14 also show that the parallel
performance without using any compiler optimization is higher than that with O3
compiler optimization.

In the domain decomposition method, the memory requirement almost keeps con-
stant with the increase of threads. For example, when the number of threads is
increased from 1 to 8, the memory requirement is only increased from 4.61 GB to
4.63 GB for the model 4.

Note that this test is conducted on a server with two quad-core processors, so
that communications between two processors are required if more than 4 threads
are used. Consequently, the parallel efficiency will decrease when the number of
threads exceeds 4, as shown in Fig.13 and Fig.14.

5.3 Application to hypervelocity impact

Due to the extreme mesh distortion, conventional finite element codes have been
proven inefficient in the simulation of hypervelocity impact problems like the de-
sign of orbital debris shielding. The hypervelocity impact problems were solved by
some new numerical methods such as SPH [Mehra and Chaturvedi (2006)], MLPG
[Han, Liu, Rajendran and Atluri (2006)], the generalized particle algorithm [Beis-
sel, Gerlach and Johnson (2006)] and the hybrid particle-finite element method
[Park and Fahrenthold (2005)]. To illustrate the capability of our code in the sim-
ulation of hypervelocity impact problems, the impact of a spherical lead projectile
with a velocity of 6.58 km/s on a thin lead plate is examined. The large-scale MPM
simulations for hypervelocity impact are performed using MPM3DMP code based
on the domain decomposition method.

The radius and mass of the projectile are 7.5 mm and 20 g, respectively. The thick-
ness of the plate is 6.35 mm. The deviatoric stress of each particle is updated by an
elastic-plastic constitutive model with isotropic hardening, which is described by
Eq.(17). The pressure of each particle is updated by the Mie-Grüneisen equation of
state, which is described by Eq.(18). A failure model is used to simulate the fail-



Shared Memory OpenMP Parallelization 139

ure of material. Failure is assumed to occur based on either or all of the following
conditions:

(1) The effective plastic strain reaches the plastic strain ε̄ f at fracture.

(2) The pressure is less than the failure pressure pmin.

where pmin and ε̄ f are user-defined parameters. Once failure has occurred, the
stress of the failure particle is set to zero. All material constants of lead are listed
in Table 3.

Table 3: Material constants of lead
Lead

Density(kg/m3) 11350
Young’s Modulus (GPa) 22.4

Poisson’s Ratio 0.42
Constitutive Model Constants

A(MPa) 12.0
B(MPa) 125.0

n 1.0
Equation of State Constants

c0(m/s) 2092
s 1.45
γ0 2.0

Failure Parameters
ε̄ f 3.0

pmin(MPa) -1500

Fig.15 shows the experimental radiograph of debris cloud at 30.6 µs [Anderson,
Trucano and Mullin (1990)]. A small-scale model is first used to investigate the
effect of grid cell sizes on computational results, which includes 847,888 particles
with an initial particle space of 0.53 mm. With the fixed number of particles, Fig.16
compares the debris cloud shapes at 30.6 µs obtained by using different cell sizes.
Fig.16 also shows that the results obtained by a cell length of 2.12 mm, namely
4×4×4 particles per cell, have better agreements with the experiment results.

Furthermore, a large-scale model is used to investigate the effect of the number
of particle on simulation results, which includes 13,542,030 particles with an ini-
tial particle space of 0.21 mm. The length of the grid cell is set to 1 mm in this
large-scale simulation, which approaches to the cell length of 1.06 mm used in the



140 Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.119-147, 2008

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

S
p
ee
d
u
p

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

S
p
ee
d
u
p

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

S
p
ee
d
u
p

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

S
p
ee
d
u
p

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

S
p
ee
d
u
p

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

S
p
ee
d
u
p

Threads

Model1

Model2

Model3

Model4

                (a) Total computation                  (b) Stage for updating grid nodes              (c) Stage for updating particles

Figure 11: Speedup of the domain decomposition method with O3 compiler opti-
mization.

0 1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

%

%

%

%

%

%

P
a
ra

ll
el

 e
ff

ic
ie

n
c
y

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

%

%

%

%

%

%

P
a
ra

ll
el

 e
ff

ic
ie

n
c
y

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

%

%

%

%

%

%

P
a
ra

ll
el

 e
ff

ic
ie

n
c
y

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

%

%

%

%

%

%

P
a
ra

ll
el

 e
ff

ic
ie

n
c
y

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

%

%

%

%

%

%

P
a
ra

ll
el

 e
ff

ic
ie

n
c
y

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

%

%

%

%

%

%

P
a
ra

ll
el

 e
ff

ic
ie

n
c
y

Threads

Model1

Model2

Model3

Model4

(a) Total computation                        (b) Stage for updating grid nodes           (c) Stage for updating particles 

Figure 12: Parallel efficiency of the domain decomposition method with O3 com-
piler optimization.

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

S
p
e
ed
u
p

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

S
p
ee
d
u
p

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

S
p
e
ed
u
p

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

S
p
e
ed
u
p

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

S
p
ee
d
u
p

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

S
p
e
ed
u
p

Threads

Model1

Model2

Model3

Model4

(a) Total computation                     (b) Stage for updating grid nodes               (c) Stage for updating particles 

Figure 13: Speedup of the domain decomposition method without using compiler
optimization.

small-scale simulation (see Fig.16(a)). The debris cloud at 30.6 µs obtained by the
large-scale model is shown in Fig.17. In the experimental radiograph (see Fig. 15),
the front of the debris cloud is approximately 200 mm away from the plate, and
the width of debris cloud is approximately 145 mm. From the large-scale computa-
tional results shown in Fig. 17, the front of the debris cloud is 198 mm away from



Shared Memory OpenMP Parallelization 141

0 1 2 3 4 5 6 7 8 9
50

60

70

80

90

100%

%

%

%

%

%P
a
r
a
ll

el
 e

ff
ic

ie
n
c
y

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

%

%

%

%

%

%

P
a
ra

ll
el

 e
ff

ic
ie

n
c
y

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

%

%

%

%

%

P
a
r
a
ll
el

 e
ff

ic
ie

n
cy

Threads

Model1

Model2

Model3

Model4

%

0 1 2 3 4 5 6 7 8 9
50

60

70

80

90

100%

%

%

%

%

%P
a
r
a
ll

el
 e

ff
ic

ie
n
c
y

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

%

%

%

%

%

%

P
a
ra

ll
el

 e
ff

ic
ie

n
c
y

Threads

Model1

Model2

Model3

Model4

0 1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

%

%

%

%

%

P
a
r
a
ll
el

 e
ff

ic
ie

n
cy

Threads

Model1

Model2

Model3

Model4

%

       (a) Total computation                          (b) Stage for updating grid nodes                (c) Stage for updating particles

Figure 14: Parallel efficiency of the domain decomposition method without using
compiler optimization.

Figure 15: Experimental radiograph at 30.6 µs.

the plate, and the width of debris cloud is 142 mm. Therefore, the profile and size of
debris cloud obtained by the large-scale model agree well with the experimental re-
sults. Fig.16 and Fig.17 show that the shapes of clouds obtained by the small-scale
and large-scale models are similar, but the large-scale model improves the results
accuracy significantly. This study shows that the large-scale MPM computation is
required to obtain the high-resolution debris cloud results for hypervelocity impact.

6 Discussions and conclusions

In many situations, the large-scale MPM computation is required to obtain high-
resolution results. A parallel MPM code, MPM3DMP, is developed using OpenMP
for solving impact dynamic problems. The particle update stage can be easily par-
allelized by using the loop splitting method, whereas the parallelization of the nodal
update stage is much more complicated due to data races. In this study, the array
expansion method and the domain decomposition method are used to avoid the data



142 Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.119-147, 2008

(a) Cell length =1.06 mm 

(b) Cell length =1.59 mm 

(c) Cell length =2.12 mm

Figure 16: Effect of grid cell sizes on the simulation results. The model includes
847,888 particles with an initial particle space of 0.53 mm.

races, respectively.

In the array expansion method, the sizes of auxiliary arrays for node variables will
increase with increasing threads, which result in poor parallel efficiency in large-
scale MPM computation. Moreover, the memory requirement will also increase
with increasing threads, so that the array expansion method is only effective in
small-scale MPM computation.

In the domain decomposition method, the background grid is decomposed to some



Shared Memory OpenMP Parallelization 143

Figure 17: Debris cloud at 30.6 µs obtained by the large-scale model, which in-
cludes 13,542,030 particles with an initial particle space of 0.21 mm. The cell
length is set to 1.0 mm.

uniform patches, and each thread computes one patch, so that the data races of
updating nodes are avoided. The numerical tests show that the domain decomposi-
tion method possesses much better scalability and higher efficiency than the array
expansion method.

The parallel code MPM3DMP is used to solve hypervelocity impact problems.
This study shows that large-scale MPM computation is essential to obtain the
high-resolution debris cloud results. Although the shapes of debris cloud obtained
by the small-scale and large-scale models are similar, the large-scale model im-
proves the results accuracy significantly. In near future, the parallel efficiency of
MPM3DMP will be further improved using a better load balance algorithm and the
hybrid OpenMP and MPI programming technique.

Acknowledgement: This project was supported by a grant from the National
Natural Science Foundation of China (10872107), and the Science Fundation of
Computational Physics, IAPCM,China. The authors gratefully acknowledge Ph.D
candidate Jie Cai of Australian National University, and Prof. Qingnan Huang of
China Academy of Engineering Physics (CAEP) for their helpful discussions of
parallel methods. The authors also acknowledge Dr. Xiaowei Chen of CAEP for
his helpful suggestions.

References

Ayguadea, E.; Gonzaleza, M.; Martorella, X.; Jostb, G. (2006): Employing
nested OpenMP for the parallelization of multi-zone computational fluid dynamics
applications. Journal of Parallel and Distributed Computing, vol. 66, pp. 686-697.

Anderson, C. E. J.; Trucano, T. G.; Mullin, S. A. (1990): Debris cloud dynamics.



144 Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.119-147, 2008

International Journal of Impact Engineering, vol. 9, pp. 89-113.

Bardenhagen, S. (2002): Energy conservation error in the material point method
for solid mechanics. Journal of Computational Physics, vol. 180, pp. 383-403.

Bardenhagen, S.; Kober, E. (2004): The generalized interpolation material point
method. CMES: Computer Modeling in Engineering and Sciences, vol. 5, pp.
477-495.

Bardenhagen, S. G.; Brackbill, J.U.; Sulsky, D. (2000): The material point
method for granular materials. Computer Methods in Applied Mechanics Engi-
neering, vol. 187, pp. 529-541.

Beissel, S. R.; Gerlach, C. A.; Johnson, G .R. (2006): Hypervelocity impact
computations with finite elements and meshfree particles. International Journal of
Impact Engineering, vol. 33, pp. 80-90.

Brackbill, J. U.; Kothe, D. B.; Ruppel, H. M. (1988): FLIP: a low-dissipation,
particle-in-cell method for fluid flow. Computer Physics Communications, vol. 48,
pp.25-38.

Candel, A. E.; Dehler, M. M.; Troyer, M. (2006): A massively parallel particle-
in-cell code for the simulation of field-emitter based electron sources, Nuclear In-
struments and Methods in Physics Research A, vol. 558, pp. 154-158.

Chandra, R.; Dagum, L.; Kohr, D.; Maydan, D.; McDonald, J.; Menon, R.
(2001): Parallel Programming in OpenMP, Morgan Kaufmann Publishers.

Chapman, B.; Jost, G.; VanderPas, R. (2007): Using OpenMP : portable shared
memory parallel programming, The MIT Press.

Chen, Z.; Brannon, R. (2002): An Evaluation of the Material Point Method. Tech-
nical Report SAND2002-0482, Sandia National Laboratory, Sandia, 2002.

Chen, Z.; Gan, Y.; Chen, J. K. (2008): A coupled thermo-mechanical model for
simulating the material failure evolution due to localized heating, CMES: Computer
Modeling in Engineering and Sciences, vol. 26, no. 2, pp. 123-137.

Couturier, R.; Chipot, C. (2000): Parallel molecular dynamics using OPENMP
on a shared memory machine. Computer Physics Communications, vol. 124, pp.
49-59.

Goedecker, S. (2002): Optimization and parallelization of a force field for silicon
using OpenMP. Computer Physics Communications, vol. 148, pp. 124-135.

Guilkey, J. E.; Harman, T. B.; Banerjee, B. (2007): An Eulerian-Lagrangian ap-
proach for simulating explosions of energetic devices. Computers and Structures,
vol. 85, pp. 660-674.

Guilkey, J. E.; Weiss, J. A. (2003): Implicit time integration for the material point



Shared Memory OpenMP Parallelization 145

method: quantitative and algorithmic comparisons with the finite element method.
International Journal for Numerical Methods in Engineering, vol. 57, pp. 1323-
1338.

Guo, Y.; Nairn, J. A. (2004): Calculation of J integral and stress intensity factors
using the material point method. CMES: Computer Modeling in Engineering and
Sciences, vol. 6, pp. 295-308.

Guo, Y.; Nairn, J. A. (2006): Three-Dimensional Dynamic Fracture Analysis Us-
ing the Material Point Method. CMES: Computer Modeling in Engineering and
Sciences, vol. 16, pp. 141-156.

Hallquist, J. O. (1998): LS-DYNA Theoretical Manual. Livermore Software
Technology Corporation, 1998.

Han, Z. D.; Liu, H. T.; Rajendran, A. M; Atluri, S. N. (2006): The applications
of Meshless Local Petrov-Galerkin (MLPG) approaches in high-speed impact, pen-
etration and perforation problems. CMES: Computer Modeling in Engineering and
Sciences, vol. 14, no. 2, pp. 119-128.

Harlow, F. H. (1963): The particle-in-cell computing method for fluid dynamics.
Methods in Computational Physics, vol. 3, pp. 319-343.

Hu, W.; Chen, Z. (2003): A multi-mesh MPM for simulating the meshing process
of spur gears. Computers and Structures, vol. 81, pp. 1991-2002.

Hu, W.; Chen, Z. (2006): Model-based simulation of the synergistic effects of
blast and fragmentation on a concrete wall using the MPM. International Journal
of Impact Engineering, vol. 32, pp. 2066-2096.

Johnson, G. R.; Holmquist, T. J. (1988): Evaluation of cylinder-impact test data
for constitutive model constants. Journal of Applied Physics, vol. 64, pp. 3901-
3910.

Ma, J.; Lu, H.; Komanduri, R. (2006): Structured mesh refinement in generalized
interpolation material point (GIMP) method for simulation of dynamic problems.
CMES: Computer Modeling in Engineering and Sciences, vol. 12, no. 3, pp. 213-
227.

Ma, J.; Lu, H.; Wang, B.; Roy, S.; Hornung, R.; Wissink, A.; Komanduri,
R. (2005): Multiscale simulations using generalized interpolation material Point
(GIMP) method and SAMRAI parallel processing. CMES: Computer Modeling in
Engineering and Sciences, vol. 8, no. 2, pp. 135-152.

Ma, S.; Zhang, X.; Qiu, X. M. (2009): Comparison study of MPM and SPH in
modeling hypervelocity impact problems. International Journal of Impact Engi-
neering, vol. 36, pp. 272-282.

Martin, M. J.; Papada, M.; Doallo, R. (2004): High Performance Air Pollution



146 Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.119-147, 2008

Simulation Using OpenMP. The Journal of Supercomputing, vol. 28, pp. 311-321.

Mehra, V.; Chaturvedi, S. (2006): High velocity impact of metal sphere on thin
metallic plates: a comparative smooth particle hydrodynamics study. Journal of
Computational Physics, vol. 212, pp. 318-337.

Nairn, J. A. (2003): Material Point Method Calculations with Explicit Cracks.
CMES: Computer Modeling in Engineering and Sciences, vol. 4, pp. 649-663.

Pan, X. F.; Xu, A. G.; Zhang, G. C.; Zhu, J. S.; Ma, S.; Zhang, X. (2008):
Three-dimensional multi-mesh material point method for solving collision prob-
lems. Communications in Theoretical Physics, vol. 49, pp. 1129-1138.

Pantalé, O. (2005): Parallelization of an object-oriented FEM dynamics code: in-
fluence of the strategies on the Speedup. Advances Engineering Software, vol. 36,
pp. 361-373.

Park, Y. K.; Fahrenthold, E. P. (2005): A kernel free particle-finite element
method for hypervelocity impact simulation. International Journal for Numerical
Methods in Engineering, vol. 63, pp. 737-759.

Parker, S. G. (2006): A component-based architecture for parallel multi-physics
PDE simulation. Future Generation Computer Systems, vol. 22, pp. 204-216.

Parker, S. G.; Guilkey, J.; Harman, T. (2006): A component-based parallel in-
frastructure for the simulation of fluid-structure interaction. Engineering with Com-
puters, vol. 22, pp. 277-292.

Quinn, M. J. (2004): Parallel Programming in c with MPI and OpenMP. McGraw-
Hill Companies, New York.

Reynders, J. V. W.; Hinker, P. J.; Cummings, J. C.; Atlas, S. R.; Banerjee, S.;
Humphrey, W. F.; Karmesin, S. R.; Keahey, K.; Srikant, M.; Tholburn, M.
(1996): POOMA: A framework for scientific simulations on parallel architectures,
In: G.V. Wilson and P. lu (ed). Parallel Programming using C++, MIT Press, pp.
553-594.

Schreyer, H. L.; Sulsky, D. L.; Zhou, S. J. (2002): Modeling delamination as a
strong discontinuity with the material point method. Computer Methods in Applied
Mechanics Engineering, vol. 191, pp. 2483-2507.

Shen, L.; Chen, Z. (2005): A silent boundary scheme with the material point
method for dynamic analyses. CMES: Computer Modeling in Engineering and
Sciences, vol. 7, no. 3, pp. 305-320.

Sosa, C. P.; Scalmani, G.; Gomperts, R.; Frisch, M. J. (2000): Ab initio quantum
chemistry on a ccNUMA architecture using openMP. III. Parallel Computing, vol.
26, pp. 843-856.

Steffen, M.; Wallstedt, P. C.; Guilkey, J. E.; Kirby, R. M.; Berzins, M. (2008):



Shared Memory OpenMP Parallelization 147

Examination and analysis of implementation choices within the material point method
(MPM). CMES: Computer Modeling in Engineering and Sciences, vol. 31, no. 2,
pp. 107-127.

Sulsky, D.; Chen, Z.; Schreyer, H. (1994): A particle method for history-dependent
materials. Computer Methods in Applied Mechanics Engineering, vol. 118, pp.
179-196.

Sulsky, D.; Kaul, A. (2004): Implicit dynamics in the material-point method.
Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 12-14,
pp. 1137-1170.

Sulsky, D.; Schreyer, H. (2004): MPM Simulation of Dynamic Material Failure
with a Decohesive Constitutive Model. European Journal of Mechanics A/Solids,
vol. 23, pp: 423-445.

Sulsky, D.; Schreyer, H. L. (1996): Axisymmetric form of the material point
method with applications to upsetting and Taylor impact problems. Computer
Methods in Applied Mechanics Engineering, vol. 139, pp. 409-429.

Sulsky, D.; Zhou, S.; Schreyer, H. (1995): Application of a particle-in-cell method
to solid mechanics. Computer Physics Communications, vol. 87, pp. 236-252.

Tan, H.; Nairn, J. A. (2002): Hierarchical Adaptive Material Point Method in Dy-
namic Energy Release Rate Calculations. Computer Methods in Applied Mechanics
and Engineering, vol. 191, pp. 2095-2109.

Thacker, R. J.; Couchman, H. M. P. (2006): A parallel adaptive P3M code with
hierarchical particle reordering. Computer Physics Communication, vol. 174, pp.
540-554.

York, A. R. II.; Sulsky, D.; Schreyer, H. L. (1999): The material point method
for simulation of thin membranes. International Journal for Numerical Methods in
Engineering, vol. 44, pp. 1429−1456.

Zhang, D. Z.; Zou, Q.; VanderHeyden, W. B.; Ma, X. (2008): Material point
method applied to multiphase flows. Journal of Computational Physics, vol. 227,
pp. 3159-3173.

Zhang, X.; Sze, K. Y.; Ma, S. (2006): An explicit material point finite element
method for hyper-velocity impact. International Journal for Numerical Methods in
Engineering, vol. 66, pp. 689-706.




