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Richardson Extrapolation Method for Singularly
Perturbed Coupled System of Convection-Diffusion

Boundary-Value Problems

Briti Sundar Deb1 and Srinivasan Natesan2

Abstract: This paper presents an almost second–order uniformly convergent
Richardson extrapolation method for convection- dominated coupled system of
boundary value problems. First, we solve the system by using the classical finite
difference scheme on the layer resolving Shishkin mesh, and then we construct the
Richardson approximation solution using the solutions obtained on N and 2N mesh
intervals. Second-order parameter–uniform error estimate is derived. The proposed
method is applied to a test example for verification of the theoretical results for the
case ε ≤ N−1.
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1 Introduction

Singular perturbation problems (SPPs) are of common occurrence in many applied
areas which include fluid dynamics, chemical reaction theory, gas porous electrodes
theory, control theory and so on. The well-known examples of SPPs are the lin-
earized Navier-Stokes equations at high Reynolds number, heat transport problems
with large Pećlet numbers, magneto-hydrodynamic duct problems at Hartman num-
bers, etc. The principal characteristic of SPPs is that its solution has a multi-scale
character. That is, there are thin layers, known as boundary layers, where the so-
lutions have steep gradients. SPPs can be solved analytically through asymptotic
expansion, for details one can see the books of Eckhaus (1979), Lagerstrom (1988)
and O’Malley (1991).
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Because of the presence of boundary layers, the classical numerical methods fail to
yield satisfactory numerical approximate solution on uniform grids. To overcome
these numerical difficulties, one has to seek some special schemes on uniform or
nonuniform meshes. One can refer the following books for more details about
the numerical treatments of SPPs: Doolan, Miller, and Schildres (1980), Farrell,
Hegarty, Miller, O’Riordan, and Shishkin (2000) and Roos, Stynes, and Tobiska
(1996). The numerical methods for SPPs are classified into two categories: one
is the fitted operator method, i.e., exponentially fitted finite difference schemes on
uniform mesh (Doolan, Miller, and Schildres (1980)); and the second approach is
fitted mesh method, i.e., classical finite difference schemes will be used on nonuni-
form grids (Farrell, Hegarty, Miller, O’Riordan, and Shishkin (2000), Roos, Stynes,
and Tobiska (1996)).

There are several articles deal with the solution technique for singularly perturbed
two-point boundary-value problems (SPTPBVP). For example, Liu (2006a) pro-
posed shooting methods for second-order ordinary differential equations, and also
he developed Lie-group shooting technique for SPPs in (Liu (2006b)). Natesan
et. al. developed higher-order numerical methods by incorporating the asymp-
totic expansion for self-adjoint SPPs in (Natesan and Ramanujam (1999a)), and
for nonself-adjoint SPPs in (Natesan and Ramanujam (1999b)). Bawa and Natesan
(2005) proposed a domain decomposition method using quintic spline for singu-
larly perturbed reaction-diffusion problems.

In this article, we consider the following coupled system of convection-dominated
boundary-value problem (BVP):

L1~u≡−εu′′1(x)−a1(x)u′1(x)+b11(x)u1(x)+b12(x)u2(x) = f1(x), x ∈Ω = (0,1),

L2~u≡−εu′′2(x)−a2(x)u′2(x)+b21(x)u1(x)+b22(x)u2(x) = f2(x),

u1(0) = u2(0) = u1(1) = u2(1) = 0,

(1)
where 0 < ε � 1, and ~u = (u1,u2)T . We assume that B = [bi j]2i, j=1 is an L0-matrix
(i.e., whose diagonal entries are positive and off-diagonal entries are nonnegative)
with

min
x∈[0,1]

[ b11(x)+b12(x), b21(x)+b22(x) ] > β > 0.

Also, we assume that

a1(x) > 2α > 0, a2(x) > 2α > 0,∀x ∈Ω = [0,1].

Under these assumptions, the system of BVPs (1) admits a unique solution, which
exhibits a boundary layer of width O(ε lnε) at x = 0.
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Richardson extrapolation is a well-known classical postprocessing procedure where
two computed solutions approximating a particular quantity are averaged to pro-
vide higher-order approximation. Keller (1969) used this technique to improve
the accuracy of computed solution to non-singularly perturbed BVP. Vulanović,
Herceg, and Petrović (1986) applied this technique to singularly perturbed reaction-
diffusion BVPs on the Bakhvalov mesh. Natividad and Stynes (2003) used the
Richardson extrapolation technique on a layer resolving Shishkin mesh for solving
singularly perturbed convection-diffusion equation.

In this article, to obtain second-order ε-uniform convergence results of the BVP (1),
we apply the Richardson extrapolation on the piecewise-uniform Shishkin mesh.
First, we solve the system (1) on Shishkin mesh using the classical finite difference
scheme and then we construct the Richardson extrapolation solution by using the
numerical solutions obtained on N and 2N mesh intervals. To estimate the error, we
determine the error of the smooth and singular components separately, and obtain
the ε-uniform error estimate.

Recently, Natesan and Deb (2007) developed a numerical method consists of cu-
bic spline and classical finite difference scheme for reaction-diffusion systems and
obtained ε-uniform second-order error estimates. The classical finite difference
scheme is applied to system of convection-diffusion equations on Shishkin mesh
by Cen (2005).

The paper is organized in the following way: Section 2 presents bounds on the
solution and its derivatives of the continuous problem (1). The difference scheme,
Shishkin mesh, the Richardson extrapolation method, and error estimates are ob-
tained in Section 3. A test problem is experimented numerically in Section 4. The
paper ends with conclusions.

Throughout the paper, C will denote a generic positive constant that is independent
of ε and of the mesh. Note that C does not necessarily assume the same value
everywhere. We define the maximum norm by

‖ψ(x)‖= max
Ω

|ψ(x)|, ‖−→ψ ‖= max
1≤i≤2

(‖ψi(x)‖), −→
ψ (x) = (ψ1(x),ψ2(x)).

Further, we assume that ε ≤ N−1, as is generally the case.

2 The Continuous Problem

In this section, we obtain bounds for the solution and its smooth and singular com-
ponents of the continuous problem (1), which will be used in the subsequent sec-
tions to obtain ε–uniform error estimate.
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Lemma 1 Let ~u be the solution of the system of BVPs (1). Then, we have the
following bound:

||~u(k)(x)|| ≤Cε
−k, for k = 1,2,3.

Proof. This lemma can be proved by following the technique used by Cen in (Cen
(2005)).

The solution ~u of the problem (1) is decomposed in the following manner:

~u(x) =~v(x)+~w(x), x ∈Ω.

The functions ~v(x) and ~w(x) are respectively called the smooth and singular com-
ponents of ~u. Here~v(x) is the solution of the following problem:

L1~v(x) = f1(x), x ∈Ω,

L2~v(x) = f2(x),

v1(0) = v1,0(0)+ εv1,1(0)+ ε2v1,2(0),

v2(0) = v2,0(0)+ εv2,1(0)+ ε2v2,2(0), ~v(1) =~u(1),

where, v1,i,v2,i f or i = 0,1,2 satisfies
−a1(x)v′1,0(x)+b11(x)v1,0(x)+b12(x)v2,0(x) = f1(x),

−a2(x)v′2,0(x)+b21(x)v1,0(x)+b22(x)v2,0(x) = f2(x),

v1,0(1) = u1(1), v2,0(1) = u2(1),
−a1(x)v′1,1(x)+b11(x)v1,1(x)+b12(x)v2,1(x) = v′′1,0(x),

−a2(x)v′2,1(x)+b21(x)v1,1(x)+b22(x)v2,1(x) = v′′2,0(x),

v1,1(1) = v2,1(1) = 0,

and
−εv′′1,0−a1(x)(v1,0 + εv1,1)′+b11(x)(v1,0 + εv1,1)+b12(x)(v2,0 + εv2,1) = f1(x),

−εv′′2,0−a2(x)(v2,0 + εv2,1)′+b21(x)(v1,0 + εv1,1)+b22(x)(v2,0 + εv2,1) = f2(x),

v1,1(1) = v2,1(1) = 0.

Also ~w(x) satisfies the BVP:
L1~w(x) = 0, x ∈Ω,

L2~w(x) = 0,

~w(0) =~u(0)−~v(0), ~w(1) =~0.
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Theorem 2 The following bounds hold for the derivatives of the smooth compo-
nent~v,

‖~v(k)(x)‖ ≤C, k = 1,2,3. (2)

And the bounds for the singular component ~w is given by

‖~w(k)(x)‖ ≤Cε
−k exp

(
−αx

ε

)
, k = 0,1,2,3. (3)

Proof. Using the asymptotic expansion ~v = ~v0 + ε~v1 + ε2~v2 the theorem easily
follows from Cen (2005).

3 The Discrete Problem

In this section, we present the finite difference scheme, Shishkin mesh for singu-
larly perturbed convection-diffusion system of BVPs (1). We also provide the nec-
essary error estimates for the smooth and singular components of the Richardson
extrapolated solution.

Let Ω = [0,1] = {xi}N
i=0 be an arbitrary mesh with 0 = x0 < x1 < x2 < .. . < xN = 1.

Set hi = xi− xi−1 for each i. We use an upwind difference scheme for the problem
(1) on the mesh Ω which is given by

LN
1
~UN

i =−εδ 2UN
1,i−a1,iD+UN

1,i +b11UN
1,i +b12UN

2,i = f1,i, 1≤ i≤ N−1

LN
2
~UN

i =−εδ 2UN
2,i−a2,iD+UN

2,i +b21UN
1,i +b22UN

2,i = f2,i,

UN
1,0 = UN

1,N = UN
2,0 = UN

2,N = 0,
(4)

where

D+zi =
zi+1− zi

hi+1
, D−zi =

zi− zi−1

hi
and δ

2zi =
(D+−D−)zi

h̄i
, h̄i =

hi +hi+1

2
.

The transition parameter τ is defined as

τ = min
{

1
2
,
2ε

α
lnN

}
. (5)

A piecewise-uniform mesh SN,τ = {xi}N
0 is constructed by dividing Ω into two

subdomains [0,τ] and [τ,1]. Then we subdivide each of these two subdomains into
N/2 mesh intervals. Also the step sizes of the mesh SN,τ satisfy

hi :=


h =

2τ

N
=

4ε lnN
αN

, for 1≤ i≤ N
2

,

H =
2(1− τ)

N
, for

N
2

< i≤ N.

(6)
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Lemma 3 (Discrete Maximum Principle) Let {~zi}N
i=0 be any discrete vector func-

tion such that~z0 ≥~0 and~zN ≥~0. Suppose that LN
1~zi ≥ 0 and LN

2~zi ≥ 0 for 1≤ i≤
N−1. Then~zi ≥~0 for all 0≤ i≤ N.

Proof. Following the method of proof given by Cen (2005), one can prove this
lemma.

Lemma 4 For i = 0, . . . ,N define the mesh function

Sε,i =
i

∏
j=1

(
1+

αh j

ε

)−1

with the usual convention that for i = 0, Sε,0 = 1. Then, there exist a positive
constant C, such that for i = 1, . . . ,N−1, we have

LN
1
~Sε,i ≥

CSε,i

max{ε,hi+1}
, and LN

2
~Sε,i ≥

CSε,i

max{ε,hi+1}
,

where ~Sε,i = (Sε,i, Sε,i)T with the assumption that

min
x∈[0,1]

[a1(x), a2(x)]≥ 2α > 0.

Proof. We have

Sε,i+1−Sε,i =
i+1

∏
j=1

(
1+

αh j

ε

)−1

−
i

∏
j=1

(
1+

αh j

ε

)−1

=− αhi+1

ε +αhi+1
Sε,i.

Therefore,

D+Sε,i =− α

ε +αhi+1
Sε,i, and D−Sε,i =− α

ε +αhi
Sε,i−1.

Now,

δ
2Sε,i =

2
hi +hi+1

(D+−D−)Sε,i =
2α

hi +hi+1

(
− Sε,i

ε +αhi+1
+

Sε,i−1

ε +αhi

)
= 2α

2 hi+1

hi +hi+1

Sε,i

ε +αhi+1
.

Applying the difference operator LN
1 to ~Sε,i, we obtain

LN
1
~Sε,i =− 2α

2 hi+1

hi +hi+1

Sε,i

ε +αhi+1
+α

a1(xi)
ε +αhi+1

Sε,i +( b11(xi)+b12(xi) )Sε,i.



Richardson Extrapolation for System of SPPs 185

Using the fact that min
x∈[0,1]

[a1(x), a2(x)]≥ 2α > 0, we get

LN
1
~Sε,i ≥

2α2

ε +αhi+1
Sε,i− 2α

2 hi+1

hi +hi+1

Sε,i

ε +αhi+1

≥
[

1− hi+1

hi +hi+1

]
2α2

ε +αhi+1
Sε,i.

Thus, we can always find a positive constant C1 such that

LN
1
~Sε,i ≥

C1α2

ε +αhi+1
Sε,i ≥

CSε,i

max{ε,hi+1}
.

In a similar manner, one can prove the required estimate for LN
2
~Sε,i.

Lemma 5 Let SN,τ = {xi}N
0 with hi = xi−xi−1, for all i. Then, we have the follow-

ing inequalities:

N−2 ≤
N/2

∏
j=1

(
1+

αh j

ε

)−1

≤ CN−2. (7)

Proof. Using the inequality ln(1+ x)≤ x− x2/4 for 0≤ x≤ 1, one can express

ln
N/2

∏
j=1

(
1+

αh j

ε

)−1

= −
N/2

∑
j=1

ln
(

1+
αh j

ε

)
≥−αN

2ε
h≥−α

ε
τ = lnN−2.

Thus the first part of the inequality is proved.

For the second part, we use the inequality x− x2/2≤ ln(1+ x), and obtain

ln
N/2

∏
j=1

(
1+

αh j

ε

)
=

N/2

∑
j=1

ln
(

1+
αh j

ε

)
≥

N/2

∑
j=1

(
αh j

ε
− α2

2ε2 h2
j

)

=
αN
2ε

h− α2

2ε2

N/2

∑
j=1

h2
j .

i.e., we have

ln
N/2

∏
j=1

(
1+

αh j

ε

)−1

≤ α2

2ε2

N/2

∑
j=1

h2
j − 2lnN.

The second inequality follows from the above result.

The following theorem provides the ε–uniform first-order convergence result for
the classical finite difference scheme (4) applied on the Shishkin mesh for the sys-
tem of BVPs (1).
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Theorem 6 Let~u be the solution of the system of BVPs (1) and ~UN be the solution
of the discrete problem (4) on the piecewise-uniform Shishkin mesh. Then, we have
the error estimate

‖~u−~UN‖ ≤CN−1 lnN.

Proof. Following the similar lines of proof given in Cen (2005), one can prove this
theorem.

3.1 Extrapolation of the Discrete Solution ~UN

The important goal of this article is to use the Richardson extrapolation technique
to increase the order of convergence of the solution ~UN which is already computed
on the mesh SN,τ . For this we solve the BVP again on the mesh S2N,τ , which has 2N
number of subintervals by keeping the transition parameter τ fixed as in the case of
N mesh intervals. The solution in the later case is denoted by ~U2N . Since τ is fixed
and N is doubled so step sizes hi in SN,τ is twice as that of the step size in S2N,τ .

We know that lnN = ατ/2ε , and from Theorem 6, we have

~UN(xi)−~u(xi) = CN−1 lnN +RN(xi) = CN−1(ατ/2ε)+RN(xi), ∀ xi ∈ SN,τ ,

RN is of o(N−1 lnN). Since we have computed ~U2N by keeping τ fixed, so we can
write

~U2N(xi)−~u(xi) = C(2N)−1(ατ/2ε)+R2N(xi), ∀ xi ∈ SN,τ ,

where R2N is also of o(N−1 lnN).
We can eliminate the O(N−1) terms from the above two expressions to obtain

~u(xi)− (2~U2N(xi)−~UN(xi)) = o(N−1 lnN), ∀ xi ∈ SN,τ .

Therefore, we look for the extrapolation formula in the following way:

2~U2N(xi)−~UN(xi), ∀xi ∈ SN,τ ,

which will provide an approximation to ~u with better accuracy than ~UN and ~U2N .

As like in the continuous case, here also we decompose the solution ~UN into smooth
and singular components as ~UN =~V N + ~W N , such that

LN
1
~V N = f1, LN

2
~V N = f2, ~V N(0) =~vN(0), ~V N(1) =~vN(1),

LN
1
~W N = 0, LN

2
~W N = 0, ~W N(0) = ~wN(0), ~W N(1) = ~wN(1).

A similar decomposition holds true for ~U2N .
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3.2 Extrapolation of the Discrete Smooth Component ~V N

Lemma 7 Assume that ε ≤ N−1. Then for all xi ∈ (0,1), we have

LN
1 (~V N−~v)(xi) = O(H2)+

1
2

a1(xi)(xi+1− xi)v′′1(xi),

LN
2 (~V N−~v)(xi) = O(H2)+

1
2

a2(xi)(xi+1− xi)v′′2(xi).

Proof. By modifying the proof given in page 21 of Miller, O’Riordan, and Shishkin
(1996) and using the fact that ‖~v(k)(x)‖, k = 1,2,3 is bounded by a constant, one
can obtain the required estimate on the truncation error.

Let us assume that ~E = (E1,E2)T be the solution of the following system of BVPs

L1~E(x) = ξ1(x), L2~E(x) = ξ2(x), ∀x ∈ (0,1),

~E(0) = ~E(1) = 0,

where ξ1(x) and ξ2(x) are given by

ξ1(x) =
1
2

a1(x)v′′1(x), ξ2(x) =
1
2

a2(x)v′′2(x).

We decompose ~E into smooth and layer parts by ~E = ~F + ~G such that

L1~F(x) = ξ1(x), L2~F(x) = ξ2(x),

L1~G(x) = 0, L2~G(x) = 0,

~F(0) =− ~G(0), ~F(1) = ~G(1) = 0.

(8)

One can easily prove that

‖ ~F(k) ‖≤ C, k = 1,2,3. (9)

and
‖ ~G(k) ‖≤ Cε

−k exp
(
−αx

ε

)
, k = 0,1,2,3. (10)

Lemma 8 For all xi ∈ (0,1), we have

(LN
1 −L1)~F(xi) = O(H) and (LN

2 −L2)~F(xi) = O(H).

Proof. We know from the truncation error estimate that

|(LN
1 −L1)~F(xi)| ≤

ε

3
(xi+1− xi−1)|F1|3 +

a1(xi)
2

(xi+1− xi)|F1|2.



188 Copyright © 2008 Tech Science Press CMES, vol.38, no.2, pp.179-199, 2008

Now it follows from equation (9) that

|(LN
1 −L1)~F(xi)| ≤

ε

3
C(xi+1− xi−1)+C

a1(xi)
2

(xi+1− xi)

≤ C(xi+1− xi−1)+C(xi+1− xi)

≤ CH.

Hence, we obtain
(LN

1 −L1)~F(xi) = O(H).

Proceeding in the same way, one can prove for (LN
2 −L2)~F .

Theorem 9 For all xi ∈ [τ,1) one has the following

~V N(xi)−~v(xi) = H~E(xi)+O(N−2).

Proof. From Lemma 8, we have

LN
1
~F(xi) = L1~F(xi)+LN

1
~F(xi)−L1~F(xi) = L1~F(xi)+O(H).

Now, from (8) that
HLN

1
~F(xi) = Hξ1(xi)+O(H2).

Similarly, for LN
2 , one can obtain

HLN
2
~F(xi) = Hξ2(xi)+O(H2).

From Lemma 7, it follows that

LN
1 (~V N−~v)(xi)−HLN

1
~F(xi) = O(H2)+

1
2

a1(xi)(xi+1−xi)v′′1(xi)−Hξ1(xi)−O(H2),

therefore,

LN
1 {(~V N−~v)(xi)−H~F(xi)}= O(H2)+{(xi+1− xi)−H}ξ1(xi).

And for xi ∈ [τ,1), we have

LN
1 {(~V N−~v)(xi)−H~F(xi)}= O(H2) in [τ,1),

LN
2 {(~V N−~v)(xi)−H~F(xi)}= O(H2) in [τ,1).

Proceeding in the same way for xi ∈ (0,τ), we obtain

LN
1 (~V N−~v)(xi)−HLN

1
~F(xi) = O(H2)+{h−H}ξ1(xi).
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Therefore, we have

LN
1 (~V N−~v)(xi)−HLN

1
~F(xi) = O(H) in (0,τ),

and
LN

2 (~V N−~v)(xi)−HLN
2
~F(xi) = O(H) in (0,τ).

Now consider the discrete function

~zi = CN−2(1,1)T +~Sε,i, for i = 0, . . . ,N,

where ~Sε,i = (Sε,i,Sε,i)T . Then applying the difference operators on~zi, we obtain
that

LN
1~zi ≥CN−2 +C

Sε,i

max(ε,hi+1)
, for i = 1, . . . ,N−1

LN
2~zi ≥CN−2 +C

Sε,i

max(ε,hi+1)
, for i = 1, . . . ,N−1.

Hence, for N/2 < i < N−1,

LN
1~zi ≥CN−2,

LN
2~zi ≥CN−2.

Using the fact that N−1 ≤ H ≤ 2N−1, we obtain

LN
1~zi ≥CN−2 ≥CH2 in [τ,1)

LN
2~zi ≥CN−2 ≥CH2 in [τ,1).

From Lemma 5, for i = 1, . . . ,(N/2−1), we have

LN
1~zi ≥ C

Sε,i

max(ε,hi+1)
≥Cε

−1Sε,i

≥ Cε
−1Sε,N/2 ≥Cε

−1N−2 ≥CH.

In a similar fashion one can show that LN
2~zi ≥CH.

At xi = 0, we have

‖~V N(0)−~v(0)−H~F(0) ‖≤CH ≤~z0,

and at xi = 1,
‖~V N(1)−~v(1)−H~F(1) ‖= 0≤~zN .
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Now using the discrete maximum principle (Lemma 3), we can show that ~zi is a
barrier function for ±(~V N−~v−H~F)(xi). Thus, we have for all i

‖ (~V N−~v−H~F)(xi) ‖ ≤~zi.

But, for all i = N/2, . . . ,N

~zi ≤ CN−2 +
N/2

∏
j=1

(
1+

αh j

ε

)−1

≤ CN−2.

Hence, for N/2≤ i≤ N, we have

‖ (~V N−~v−H~E)(xi) ‖ ≤ ‖ (~V N−~v−H~F)(xi) ‖+H ‖ ~G(xi) ‖

≤ CN−2 +CH exp
(
−αxi

ε

)
≤ CN−2.

Here we have used the fact that ~E = ~F + ~G. Thus,

~V N(xi)−~v(xi) = H~E(xi)+O(N−2).

Theorem 10 For all xi ∈ [τ,1), we have the second-order convergent result for the
smooth component

‖~v(xi)− [2~V 2N(xi)−~V N(xi)] ‖≤ CN−2.

Proof. Let xi ∈ [τ,1). Then from Theorem 9 on the mesh SN,τ we have

~V N(xi)−~v(xi) = H~E(xi)+O(N−2).

Similarly, by keeping τ fixed on the mesh S2N,τ , it follows that

~V 2N(xi)−~v(xi) =
H
2

~E(xi)+O(N−2).

From the above two expressions, we can obtain that

~v(xi)− (2~V 2N(xi)−~V N(xi)) = O(N−2).

Theorem 11 For all xi ∈ (0,τ), we have the following estimate

‖~v(xi)− [2~V 2N(xi)−~V N(xi)] ‖≤ CN−2 lnN.
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Proof. Define the function~Y on [0,τ] such that~Y (0) = 0,~Y (τ) = 1 and

L1~Y (x) = 0, L2~Y (x) = 0 in 0 < x < τ.

Define the discrete approximation~Y N of~Y by~Y N(0) = 0,~Y N(τ) = 1, and

LN
1
~Y N(xi) = 0, LN

2
~Y N(xi) = 0, 1 < i < N/2.

Then it can be easy to prove that

‖~Y N(xi)−~Y (xi) ‖≤ CN−1 lnN, 0≤ i≤ N/2.

Again we set for 0≤ i≤ N/2

~Φi =~V N(xi)−~v(xi)−H~E(τ)~Y N(xi).

Then, ~Φ0 = 0, and

~Φτ =~V N(τ)−~v(τ)−H~E(τ)~Y N(τ) = O(N−2).

Now from Theorem 9, we have

LN
1
~Φ(xi) = LN

1 (~V N−~v)(xi) = O(H2)+
1
2

a1(xi)(xi+1− xi)v′′1(xi),

LN
2
~Φ(xi) = LN

2 (~V N−~v)(xi) = O(H2)+
1
2

a2(xi)(xi+1− xi)v′′2(xi).

Using these truncation errors in (0,τ) and the relation ε ≤ N−1, we have

| LN
1
~Φ(xi) |≤ Ch+CH2 ≤ Cε(N−1 lnN)+CN−2 ≤ CN−2 lnN.

Similarly, one can show that | LN
2
~Φ(xi) |≤ CN−2 lnN.

Consequently, we can use the barrier function ~Ψi = CN−2 lnN(1,1)T to obtain

‖ ~Φ(xi) ‖≤CN−2 lnN, for 0≤ i≤ N/2.

Now bounding ~E(τ) by a constant and using the fact that~Y N(xi)−~Y (xi)= O(N−1 lnN).
We have, for 0≤ i≤ N/2

~V N(xi)−~v(xi) = H~E(τ)~Y (xi)+O(N−2 lnN).

Now by making N double and keeping τ fixed, we obtain

~V 2N(xi)−~v(xi) =
H
2

~E(τ)~Y (xi)+O(N−2 lnN).

Hence, we have the following result

~v(xi)− [2~V 2N(xi)−~V N(xi)] = O(N−2 lnN).
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3.3 Extrapolation of the Discrete Singular Component ~W N

Theorem 12 For all xi ∈ [τ,1], we have

‖ ~w(xi)− [2~W 2N(xi)− ~W N(xi)] ‖≤ CN−2.

Proof. From [Theorem 1 of Cen (2005)], we have

‖ ~wi− ~W N
i ‖≤‖ ~wi ‖+ ‖ ~W N

i ‖≤ C exp
(
−αxi

ε

)
+CSε,i.

Now using Lemma 5, one can easily prove that for N/2≤ i≤ N,

‖ ~wi− ~W N
i ‖≤CN−2.

The statement of this theorem is an immediate consequence of the above result.

Let ~M = (M1,M2)T be the solution of the following BVP:
L1 ~M(x) =

2ε

α
a1(x)w′′1(x), (0,τ)

L2 ~M(x) =
2ε

α
a2(x)w′′2(x),

~M(0) = ~M(τ) = 0.

(11)

Then, ~M depends upon τ and is independent of N. Now using the fact that
‖ ~M′(0) ‖≤Cε−1, we have for 0 < x < τ

‖ ~M(k)(x) ‖≤ Cε
−k exp

(
−αx

ε

)
, for k = 1,2,3. (12)

Theorem 13 For all xi ∈ [0,τ], we have the estimate

‖ ~w(xi)− [2~W 2N(xi)− ~W N(xi)] ‖≤ CN−2 ln2 N.

Proof. It is easy to prove from Taylor’s series expansion in (0,τ) that

LN
1 (~W N−~w)(xi) =

a1(xi)
2

hw′′1(xi)+
a1(xi)

3!
h2w

′′′
1 (xi)+{2ε +a1(xi)h}

h2

4!
wiv

1 (ξi),

LN
2 (~W N−~w)(xi) =

a2(xi)
2

hw′′2(xi)+
a2(xi)

3!
h2w

′′′
2 (xi)+{2ε +a2(xi)h}

h2

4!
wiv

2 (ξi),
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where ξi ∈ [xi−1,xi+1]. Now using equation (3) and on simple calculation, we obtain
that

| LN
1 (~W N−~w)(xi)−

a1(xi)
2

hw′′1(xi) | ≤ Cε
−1 exp

(
−αxi

ε

)
(N−2 ln2 N).

Thus, we have

LN
1 (~W N−~w)(xi)=

2ε

α
a1(xi) w′′1(xi)(N−1 lnN)+O

(
ε
−1 exp

(
−αxi

ε

)
(N−2 ln2 N)

)
.

Proceeding in the same way, we can have

LN
2 (~W N−~w)(xi)=

2ε

α
a2(xi) w′′2(xi)(N−1 lnN)+O

(
ε
−1 exp

(
−αxi

ε

)
(N−2 ln2 N)

)
.

Again, for all xi ∈ (0,τ)

| (LN
1 −L1)~M(xi) | ≤ Cε

−1 exp
(
−αxi

ε

)
(N−1 lnN).

So, we have

(N−1 lnN)LN
1

~M(xi) =
2ε

α
a1(xi)w′′1(xi)(N−1 lnN)+O

(
ε
−1 exp

(
−αxi

ε

)
(N−2 ln2 N)

)
.

Similarly, for LN
2

(N−1 lnN)LN
2

~M(xi) =
2ε

α
a2(xi)w′′2(xi)(N−1 lnN)+O

(
ε
−1 exp

(
−αxi

ε

)
(N−2 ln2 N)

)
.

Therefore,

|LN
1 {~W N−~w− (N−1 lnN)~M}(xi)| ≤ Cε

−1 exp
(
−αxi

ε

)
(N−2 ln2 N),

|LN
2 {~W N−~w− (N−1 lnN)~M}(xi)| ≤ Cε

−1 exp
(
−αxi

ε

)
(N−2 ln2 N).

Now, for i = 0, . . . ,N/2 we define the discrete function

~Γi = CN−2(1,1)T +CN−2~Sε,i ln2 N.

Then, for all i = 1, . . . ,N/2−1

LN
1
~Γi ≥ CN−2 ln2 N(LN

1
~Sε,i) ≥ CN−2

ε
−1Sε,i ln2 N ≥ CN−2

ε
−1 exp

(
αxi

ε

)
ln2 N.
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Similarly, we can prove that

LN
2
~Γi ≥ CN−2

ε
−1 exp

(
αxi

ε

)
ln2 N.

Again at xi = 0,

‖ (~W N−~w)(xi)− (N−1 lnN)~M(xi) ‖= 0≤~Γ0,

at xi = τ ,
‖ (~W N−~w)(xi)− (N−1 lnN)~M(xi) ‖≤CN−2 ≤~ΓN/2.

Therefore, for i = 0, . . . ,N/2, we can use ~Γi as a barrier function for
‖ (~W N−~w)(xi)− (N−1 lnN)~M(xi) ‖. But, we know that

‖~Γi ‖≤ CN−2 ln2 N for i = 0, . . . ,N/2.

Hence, we have for i = 0, . . . ,N/2

‖ (~W N−~w)(xi)− (N−1 lnN)~M(xi) ‖≤CN−2 ln2 N.

It follows that for all xi ∈ [0,τ]

(~W N−~w)(xi) = (N−1 lnN)~M(xi)+O(N−2 ln2 N),

that is,
(~W N−~w)(xi) = N−1(ατ/2ε)~M(xi)+O(N−2 ln2 N). (13)

Now ~W 2N is computed on the mesh S2N,τ keeping τ fixed. Then, we have

(~W 2N−~w)(xi) = (2N)−1(ατ/2ε)~M(xi)+O(N−2 ln2 N). (14)

From equations (13) and (14), we obtain the following:

‖ ~w(xi)− [2~W 2N(xi)− ~W N(xi)] ‖≤ CN−2 ln2 N.

The following theorem is the main result of this paper, which proves the ε–uniform
second-order error estimate for the Richardson extrapolation solution.

Theorem 14 For all xi ∈ SN,τ , we have the following second-order ε-uniform error
estimate

‖~u(xi)− [2~U2N(xi)−~UN(xi)] ‖≤ CN−2 ln2 N.
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Proof. For all xi ∈ SN,τ , we have

‖~u(xi)− [2~U2N(xi)−~UN(xi)] ‖ ≤
[
‖~v(xi)− [2~V 2N(xi)−~V N(xi)] ‖+

‖ ~w(xi)− [2~W 2N(xi)− ~W N(xi)] ‖
]

Using Theorems 10, 11 and 12, 13 respectively for the first and second terms on the
RHS of the above inequality, one can obtain the required ε–uniform second-order
error estimate.

4 Numerical Example

In this section, to validate the theoretical results, we apply the Richardson extrap-
olation method to a test problem which was studied by many researchers. The
results are presented in the form of tables with maximum point-wise errors and
rates of convergence before and after extrapolation. Also, the maximum errors are
plotted in loglog scale.

Table 1: Maximum point-wise errors and rates of convergence for u1 before and
after extrapolation.

ε Number of intervals N
64 128 256 512 1024 2048

10−3 before 3.1679e-1 2.0338e-1 1.3183e-1 8.0379e-2 4.6604e-2 2.6318e-2
rate 0.63937 0.62546 0.71379 0.78638 0.82437 0.85143
after 5.3699e-2 2.8312e-2 1.1183e-2 4.1536e-3 1.4178e-3 4.7184e-4
rate 0.92350 1.3401 1.4288 1.5507 1.5873 1.4983

10−4 before 3.1728e-1 2.0367e-1 1.3199e-1 8.0453e-2 4.6631e-2 2.6318e-2
rate 0.63956 0.62580 0.71418 0.78687 0.82525 0.85299
after 5.3711e-2 2.8314e-2 1.1165e-2 4.1300e-3 1.3922e-3 4.4527e-4
rate 0.92372 1.3426 1.4347 1.5688 1.6446 1.6844

10−5 before 3.1734e-1 2.0370e-1 1.3201e-1 8.0462e-2 4.6634e-2 2.6318e-2
rate 0.63957 0.62583 0.71423 0.78692 0.82533 0.85315
after 5.3712e-2 2.8314e-2 1.1163e-2 4.1277e-3 1.3897e-3 4.4262e-4
rate 0.92374 1.3428 1.4353 1.5706 1.6506 1.7047

10−6 before 3.1734e-1 2.0370e-1 1.3201e-1 8.0463e-2 4.6635e-2 2.6318e-2
rate 0.63958 0.62584 0.71423 0.78692 0.82534 0.85317
after 5.3713e-2 2.8314e-2 1.1163e-2 4.1275e-3 1.3894e-3 4.4235e-4
rate 0.92374 1.3428 1.4353 1.5708 1.6512 1.7068

10−7 before 3.1734e-1 2.0370e-1 1.3201e-1 8.0463e-2 4.6635e-2 2.6318e-2
to rate 0.63958 0.62584 0.71423 0.78692 0.82534 0.85317

10−14 after 5.3713e-2 2.8314e-2 1.1163e-2 4.1274e-3 1.3894e-3 4.4233e-4
rate 0.92375 1.3428 1.4354 1.5708 1.6513 1.7070
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Figure 1: Loglog plot of the error before and after extrapolation for ε = 10−4.
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Table 2: Maximum point-wise errors and rates of convergence for u2 before and
after extrapolation.

ε Number of intervals N
64 128 256 512 1024 2048

10−3 before 1.8427e-1 1.3152e-1 8.6982e-2 5.3404e-2 3.1356e-2 1.7935e-2
rate 0.48655 0.59644 0.70377 0.76820 0.80594 0.84092
after 3.6322e-2 2.4384e-2 1.0983e-2 4.2806e-3 1.5349e-3 5.4714e-4
rate 0.57494 1.1507 1.3594 1.4797 1.4882 1.3392

10−4 before 1.8486e-1 1.3181e-1 8.7148e-2 5.3469e-2 3.1361e-2 1.7905e-2
rate 0.48793 0.59694 0.70477 0.76973 0.80856 0.84571
after 3.6316e-2 2.4358e-2 1.0948e-2 4.2286e-3 1.4838e-3 4.9068e-4
rate 0.57618 1.1537 1.3725 1.5109 1.5964 1.6429

10−5 before 1.8492e-1 1.3184e-1 8.7166e-2 5.3476e-2 3.1362e-2 1.7903e-2
rate 0.48807 0.59698 0.70487 0.76988 0.80882 0.84618
after 3.6316e-2 2.4356e-2 1.0945e-2 4.2234e-3 1.4787e-3 4.8505e-4
rate 0.57631 1.1540 1.3738 1.5141 1.6081 1.6765

10−6 before 1.8492e-1 1.3185e-1 8.7168e-2 5.3477e-2 3.1362e-2 1.7903e-2
rate 0.48808 0.59699 0.70488 0.76990 0.80885 0.84623
after 3.6316e-2 2.4356e-2 1.0945e-2 4.2229e-3 1.4782e-3 4.8448e-4
rate 0.57632 1.1541 1.3739 1.5144 1.6093 1.6799

10−7 before 1.8492e-1 1.3185e-1 8.7168e-2 5.3477e-2 3.1362e-2 1.7903e-2
to rate 0.48808 0.59699 0.70488 0.76990 0.80885 0.84624

10−14 after 3.6316e-2 2.4356e-2 1.0944e-2 4.2228e-3 1.4781e-3 4.8443e-4
rate 0.57632 1.1541 1.3739 1.5145 1.6094 1.6803

Example 15 Consider the following system of convection-diffusion BVPs:
−εu′′1(x)−u′1(x)+2u1(x)−u2(x) = f1(x), x ∈ (0,1)

−εu′′2(x)−2u′2(x)−u1(x)+4u2(x) = f2(x),

u1(0) = u1(1) = u2(0) = u2(1) = 0,

where f1(x), f2(x) are chosen such that the exact solution is given by
u1(x) =

2−2exp(−x/ε)
1− exp(−1/ε)

−2sin
(

πx
2

)
,

u2(x) =
1− exp(−x/ε)
1− exp(−1/ε)

− xexp(x−1).

The maximum point-wise error is calculated as

EN =‖~u(xi)−~UN(xi) ‖,
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and the rate of convergence by

r = log2

(
EN

E2N

)
.

Tables 1 and 2 respectively show the maximum errors and rates of convergence
before, after Richardson extrapolation for u1 and u2.

The maximum error obtained before and after extrapolation is plotted in Figure 1
for ε = 10−4.

The numerical results shown in the tables and in the figures reveal the theoretical
claim of the ε-uniform second-order convergence.

5 Conclusions

In this paper, the Richardson extrapolation method is applied to the coupled system
of convection–dominated boundary-value problems of the form (1). First, we dis-
cretize the domain by the piecewise-uniform Shishkin mesh and then we apply the
classical finite difference scheme to solve the system. Finally, we combine the so-
lutions obtained on N and 2N-mesh intervals to have the Richardson extrapolation
solution, which provides the second-order ε–uniform convergent approximation.
ε–uniform error estimate is derived, and the present method is applied to a test
problem for verification of the theoretical results.
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