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Analysis of rectangular square plates by the mixed
Meshless Local Petrov-Galerkin (MLPG) approach

T. Jarak1 and J. Sorić1

Abstract: A new mixed meshless formulation based on the interpolation of both
strains and displacements has been proposed for the analysis of plate deformation
responses. Kinematics of a three dimensional solid is adopted and discretization is
performed by the nodes located on the upper and lower plate surfaces. The govern-
ing equations are derived by employing the local Petrov-Galerkin approach. The
approximation of all unknown field variables is carried out by using the same Mov-
ing Least Squares functions in the in-plane directions, while linear polynomials are
applied in the transversal direction. The shear locking effect is efficiently mini-
mized by interpolating the strain field independently from the displacements. The
Poisson’s thickness locking phenomenon is eliminated by introducing a new proce-
dure based on the modification of the nodal values for the normal transversal strain
component. The numerical efficiency of the derived algorithm is demonstrated by
the numerical examples.
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1 Introduction

In recent years, a new class of numerical approaches commonly known as mesh-
less methods has attracted a considerable attention due to its potential to overcome
some difficulties associated with the mesh-based numerical methods, such as the
Finite Element Method (FEM). Using these new numerical procedures, a compu-
tational model may be discretized only by a set of the nodes which do not need to
be connected into elements. Therefore, some issues associated with FEM, such as
time-consuming mesh generation or element distortion problems, may be resolved
by using meshless formulations.

Furthermore, it has been found out that meshless methods can also successfully
deal with various locking phenomena in the thin-walled structure analysis. There-

1 Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5,
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fore, a number of different meshless formulations were proposed. However, some
of these approaches still require certain meshes. For example, in the Element-Free
Galerkin (EFG) method [Krysl and Belytschko (1995, 1996); Noguchi, Kawashima
and Miyamura (2000)], background cells are needed to integrate weak forms, while
in the formulations based on a nodal integration [Wang and Chen (2004); Chen and
Wang (2006)], a solution domain has to be discretized by employing the Delaunay
triangulation. In contrast, the Meshless Local Petrov-Galerkin (MLPG) method
[Atluri (2004)] does not require any kind of element mesh or background cells
for either interpolation or integration and therefore represents a truly meshless ap-
proach. So far, the MLPG mathod has been successfully applied for solving various
problems involving thin-walled structures, such as elasto-statics of homogenous
plates [Long and Atluri (2002), Sorić, Li, Jarak and Atluri (2004); Sladek, Sladek,
Mang (2002)], the analysis of composite plates [Gilhooley, Batra, Xiao, McCarthy
and Gillespie (2007)] or elasto-dynamics of plate structures [Sladek, Sladek and
Mang (2003), Qian, Batra and Chen (2004)]. Recently, the MLPG formulations for
the analysis of shear-deformable shells [Sladek, Sladek, Wen and Aliabadi (2006);
Sladek, Sladek, Krivacek and Aliabadi (2007)] as well as a 3-D continuum based
MLPG shell algorithm [Jarak, Sorić and Hoster (2007)], have been developed.

However, most of the mentioned meshless formulations are based on some of the
classical shell theories, e.g. Kirchhoff-Love theory [Krysl and Belytschko (1995,
1996); Long and Atluri (2002)] or Reissner-Mindlin theory [Donning and Liu
(1998); Noguchi, Kawashima and Miyamura (2000); Chen and Wang (2006); Sladek,
Sladek, Wen and Aliabadi (2006)]. The common drawback of such approaches is
that they don’t allow the implementation of a general three-dimensional (3-D) ma-
terial law, which may be important in the modeling of shell-like structural compo-
nents, especially in case of material nonlinearities. On the other hand, algorithms
based on the higher order shell theories [Qian, Batra and Chen (2003); Qian, Batra
and Chen (2004); Ferreira, Roque and Jorge (2006); Gilhooley, Batra, Xiao, Mc-
Carthy and Gillespie (2007)] are time-consuming and demand a large computation
effort. Similary, in the direct 3-D meshless continuum formulation presented in
[Li, Hao and Liu (2000)], at least three node layers in the structure thickness di-
rection are necessary to successfully analyze shell structures, which considerably
decreases the numerical efficiency. In addition, various locking effects still present
serious obstacles in meshless methods, especially if derived formulations are based
only on the approximation of the displacement field. Therefore, a more efficient
meshless approach for the modeling of shell-like structures is desirable.

In the present contribution a new MLPG formulation, which is based on the mixed
approach proposed in [Atluri, Han and Rajendran (2004)], is developed for the plate
analysis. This new strategy has so far been applied to solve the 4th order ordinary
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differential equations [Atluri and Shen (2005), as well as complicated nonlinear
dynamic problems [Han, Rajendran and Atluri (2005)]. The discretized system of
equations is derived by independently approximating both the strain and displace-
ment field. The formulation presented in this work is based on the concept of a
3-D solid, allowing the implementation of complete 3-D material models. The dis-
cretization of the plate continuum is carried out by the couples of nodes, where
the nodes are located on the upper and lower plate surfaces. According to the
MLPG method, for each node couple a Local Weak Form (LWF) of the standard
3-D equilibrium equations is written in terms of the strain components over a small
area surrounding the node couple, which is called a local sub-domain. Thereby,
the test functions that are linear through the plate thickness are employed. Since
LWF contains more nodal unknowns than available equations, the standard 3-D
strain-displacement relations are enforced only at the nodes in order to eliminate
the nodal strain values from the equations. In this way, the closed global system of
equations is obtained with only the nodal displacements as the unknown variables.
Analogous to the solid-shell finite element formulations, such as those presented
in [Tan and Vu-Quoc (2005); Klinkel, Gruttmann and Wagner (2006)] and the ref-
erences therein, the approximation of the field variables are performed separately
in the transversal and in the in-plane directions. Simple polynomials are utilized
in the transversal direction, while the Moving Least Squares (MLS) approxima-
tion scheme is employed in the in-plane directions. Since the MLS functions don’t
posses the Kronecker delta property, the essential boundary conditions are enforced
by using the penalty method.

It is known from the FEM literature that the solid-shell finite elements based only
on the approximation of displacements are plagued by Poisson’s thickness lock-
ing if the transversal displacement component is linear through the structure thick-
ness. In that case, the normal transversal strain component computed directly from
displacements does not vary through the thickness and locking arises if the Pois-
son’s coefficient is different from zero. In the framework of meshless methods, this
thickness locking effect has been eliminated by applying the hierarchical quadratic
displacement interpolation through the thickness for the transversal displacement
component in [Sorić, Li, Jarak and Atluri (2004); Jarak, Sorić and Hoster (2007)].
Although such procedure is efficient, the additional unknowns appear due to the
quadratic interpolation, which have to be eliminated by employing the costly static
condensation. On the other hand, the formulations based on the higher order shell
theories, such as [Qian, Batra and Chen (2003)] are not plagued by the Poisson’s
thickness locking effect, but they are computationally and time-consuming. In
the proposed mixed formulation, the Poisson’s thickness locking phenomenon is
avoided by applying a new procedure, where the linear distribution through the
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thickness for the normal transversal strain component is enforced by modifying the
kinematically compatible nodal strain values.

Furthermore, the meshless methods based only on the approximation of the dis-
placement field generally exhibit the severe locking effects in the thin plate limit,
especially if the approximation functions of the low order are used. In [Krysl and
Belytschko (1996)] the membrane locking effect has been alleviated by employing
the approximation functions of a sufficiently high order. The similar technique is
used for dealing with the shear locking phenomenon in the formulations presented
in [Garcia, Fancello de Barcellos and Duarte (1998); Noguchi, Kawashima, Miya-
mura (2000), Liu, Chua and Ghista (2006); Jarak, Sorić and Hoster (2007)]. In
[Donning and Liu (1998); Kanok-Nukulchai, Barry, Saran-Yasoontorn and Bouil-
lard (2001)] it has been proposed to construct the rotation field shape functions by
the differentiation of the displacement field so as to eliminate the field incompati-
bility. However, it has been proved in [Tiago and Leitão (2007)] that such approach
may yield a singular global system of equations within the Galerkin method be-
cause the approximation functions for the rotation field are linearly dependent. In
contrast to those approaches, in the EFG formulations based on the stabilized nodal
conforming integration [Wang and Chen (2004); Chen and Wang (2006)], a mixed
concept has been adopted. Although such approach is numerically efficient due
to the nature of the nodal integration, the employed approximation functions have
to satisfy special requirements such as the Kirchhoff mode reproducing conditions
under pure bending and the integration constraints needed for achieving the bend-
ing exactness. Consequently, the curvature smoothing stabilization procedure for
the integration of the bending energy has to be applied in order to eliminate shear
locking.

In the MLPG framework, a mixed approach for the analysis of plate structures has
been proposed in [Li, Sorić, Jarak and Atluri (2005)], where shear locking is alle-
viated by properly choosing the field variables, which include the transversal shear
strains and some of the displacement components. In the present work, the shear
locking effect is eliminated simply by approximating the strain components inde-
pendently from the displacement field. Thereby, the same low-order MLS functions
are used for the interpolation of both the strains and displacements without setting
any additional constraints on the trial functions.

The proposed mixed algorithm is computationally superior to the MLPG approach
based only on the approximation of displacements, usually called the primal MLPG
method [Atluri, Han and Rajendran (2004)]. In contrast to the primal meshless
formulations, the shear locking effect in the thin plate limit may be efficiently al-
leviated without increasing the order of the MLS approximation functions. Conse-
quently, the lower order of the MLS functions enables the use of smaller support
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domains, and fewer quadrature points are needed for the numerical integration of
LWF than in the primal MLPG formulation. Numerical efficiency and stability
are further increased because the differentiation of the MLS functions over the lo-
cal sub-domains is avoided, since their derivatives are needed only at the nodes.
Finally, the accuracy and numerical efficiency of the proposed mixed meshless ap-
proach are demonstrated by the numerical examples.

2 MLPG mixed approach for plate analysis

In order to derive the governing equations for the proposed formulation, a homo-
geneous plate of uniform thickness is considered. The 3-D Cartesian co-ordinate
system with the X1-X2 plane lying on the plate middle surface is used, as shown in
Fig. 1.

Figure 1: Discretization of plate continuum

The well known equilibrium equations referring to such coordinate system may be
written for a global 3-D plate domain Ω bounded by a global surface Γ as

σi j, j +bi = 0, in Ω, (1)

where σi j is the stress tensor and bi denotes the body force vector. On the surface
Γ the following boundary conditions are given

ui = ūi, on Γu, (2)

ti = σi jn j = t̄i, on Γt . (3)
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Herein, Γu and Γt are the parts of the global boundary Γ with the prescribed dis-
placements ūi and tractions t̄i, respectively. n j denotes direction cosines of the
outward normal vector on Γ.

The plate continuum is discretized by a set of node couples, where the nodes are
positioned on the upper and lower plate surface as shown in Fig. 1. According to
the Local Petrov-Galerkin approach [Atluri 2004], the equilibrium equations (1)
may be written in a weak form over the local sub-domain ΩI

s, which surrounds the
Ith node couple and is bounded by the local boundary surface ∂ΩI

s, as∫
Ω I

s

vik
(
σk j, j +bk

)
dΩ−α

∫
Γ I

su

vik(u
(h)
k − ūk) dΓ = 0; I = 1,2, ...,N, (4)

where N stands for the total number of node couples used for the plate discretiza-
tion. u(h)

k denotes the trial function describing the displacement field, and vik rep-
resents the applied test functions. Since the trial functions used in this work don’t
posses the interpolation property at the nodes, the essential boundary conditions
are imposed by employing the penalty method with α >> 1 as a penalty parame-
ter. ΓI

su is the part of ∂ΩI
s with the prescribed displacements ūk. It is to note that

ΩI
s could theoretically be of any geometric shape and size. Furthermore, accord-

ing to the Petrov-Galerkin principle, the test and trial functions may be taken from
different functional spaces. According to [Atluri and Zhu 2000], the test functions
are chosen such that vik = δikv, where v is a kinematically admissible test function
and δik denotes the Kronecker delta. In the present contribution, cylindrical local
sub-domains as shown in Fig. 1 are used and v is assumed to be linear over the plate
thickness

v
(
X j)= c0 + c1X3, (5)

with c0 and c1 as arbitrary real constants.

By inserting Eq. (5) in Eq. (4), using the divergence theorem and taking t i = n jσi j

on ∂ΩI
s into account, LWF may be rewritten in the following form

−
∫

∂ΩI
s

tidΓ−
∫

Ω I
s

bi dΩ+α

∫
Γ I

su

(
u(h)

i − ūi

)
dΓ = 0, (6)

∫
∂ΩI

s

(
X3) , j σ i j dΩ−

∫
Γ I

s

X3 tidΓ−
∫

Ω I
s

X3 bi dΩ+α

∫
Γ I

su

X3
(

u(h)
i − ūi

)
dΓ = 0, I = 1,2, ...,N.

(7)
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Herein, Eqs. (6) and (7) relate to the constant and linear term of the test function
(5), respectively. More details can be found in [Sorić, Li, Jarak and Atluri (2004)].

The stress tensor σi j and the tractions ti may be obtained by employing the standard
3-D constitutive relations

σi j = Ci jkl εkl (8)

with Ci jkl as the material tensor for the linear elastic isotropic homogeneous mate-
rials defined in the global Cartesian coordinates as

Ci jkl = λ δ i j δkl + µ
(

δ ik δ jl +δ il δ jk
)
, (9)

where λ = E ν

(1+ν)(1−2ν) and µ = E
2(1+ν) are Lame’s elastic constants.

After applying the constitutive relations (8) and imposing the natural boundary
conditions (3) on the local boundary ∂ΩI

s, the following form of LWF is obtained

−
∫
LI

S

Ci jkl ε
(h)
kl n jdΓ−

∫
ΓI

Su

Ci jkl ε
(h)
kl n jdΓ+α

∫
Γ I

su

u(h)
i dΓ

=
∫

LI
St

t̄ idΓ +
∫

Ω I
s

bi dΩ + α

∫
Γ I

su

ūi dΓ, (10)

∫
Ω I

s

(
X3 ) , j Ci jkl ε

(h)
kl dΩ−

∫
LI

S

X3Ci jkl ε
(h)
kl n jdΓ−

∫
ΓI

Su

X3Ci jkl ε
(h)
kl n jdΓ

+α

∫
Γ I

su

X3 u(h)
i dΓ =

∫
LI

St

X3 t̄ idΓ+
∫

Ω I
s

X3 bi dΩ+α

∫
Γ I

su

X3 ūi dΓ,

I = 1,2, ...,N, (11)

where both the strains ε
(h)
kl and the displacements u(h)

i are considered as inde-
pendent variables. The local boundary ∂ΩI

s is divided into three parts, ∂ΩI
s =

LI
s∪ΓI

st ∪ΓI
su, where LI

s is the part of ∂ΩI
s inside the global domain Γ, while ΓI

st and
ΓI

su coincide with the parts of Γ with the prescribed natural and essential boundary
conditions, respectively.

Linear distribution over the plate thickness is assumed for all displacement and
strain components, which may be written as

u(h)
i

(
Xk
)

= α
(
X3) u(h)

i(u) (X
α) +β

(
X3) u(h)

i(l) (X
α) , (12)
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ε
(h)
i j

(
Xk
)

= α
(
X3)

ε
(h)
i j(u) (X

α) +β
(
X3)

ε
(h)
i j(l) (X

α) , (13)

α
(
X3)=

1
2

+
X3

h
, β

(
X3)=

1
2
− X3

h
. (14)

In the above equations, α
(
X3
)

and β
(
X3
)

describe a linear distribution of the

strain and displacement components, while ε
(h)
i j(u) (X

α), ε
(h)
i j(l) (X

α) and u(h)
i(u) (X

α),

u(h)
i(l) (X

α) denote the strains and displacements on the upper and lower plate surface,
respectively. h stands for the plate thickness.

It is to note that Eqs. (10) and (11) represent a system of 6 equations for each
local sub-domain ΩI

s, while in Eqs. (12) and (13) there are altogether 18 unknown
variables, including the 6 strain and 3 displacement components on the upper and
lower surfaces. Therefore, in order to derive a closed system of equations on the
structural level, the following kinematics constraints are imposed for each ΩI

s∫
ΩI

S

v(ε)
(i j)

[
ε

(h)
i j

(
Xk
)
− εi j

(
Xk
)]

dΩ = 0, I = 1,2, ...,N, (15)

where ε
(h)
i j

(
Xk
)

denotes the assumed strains, while εi j
(
Xk
)

stands for the strains
calculated from the approximated displacements by means of the standard linear
3-D strain-displacement relations

εi j

(
Xk
)

=
1
2

(
u(h)

i, j

(
Xk
)

+u(h)
j,i

(
Xk
))

. (16)

For the purpose of generalization the kinematics constraints in Eq. (15) are written
in the local weak form with v(ε)

(i j) as appropriate test functions. By conveniently
choosing the test functions, the additional 12 equations, which are needed for clos-
ing the global system of equations, may be obtained for each ΩI

s.

3 Discretization

Various numerical schemes for the approximation of the data for randomly scat-
tered points are currently used in meshless methods [Liu (2003), Atluri (2004)],
one of the most popular being the Moving Least Squares (MLS) method. In the
present work, all displacement and strain components on the upper and lower plate
surfaces are approximated in the in-plane directions by employing the same MLS
shape functions, leading to

u(h)
i(u)

(
Xδ

)
=

n

∑
J=1

φ
J
(

Xδ

)
ûJ

i(u), u(h)
i(l)

(
Xδ

)
=

n

∑
J=1

φ
J
(

Xδ

)
ûJ

i(l), (17)
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ε
(h)
i j(u)

(
Xδ

)
=

n

∑
J=1

φ
J
(

Xδ

)
ε̂

J
i j(u), ε

(h)
i j(l)

(
Xδ

)
=

n

∑
J=1

φ
J
(

Xδ

)
ε̂

J
i j(l). (18)

Here, φ J
(
Xδ
)

is the in-plane MLS shape function associated with the Jth node
couple inside the domain of definition of the current point Xδ . Thereby, the domain
of definition is a region that includes all nodes whose nodal MLS shape functions
do not vanish at the current point, as defined in [Atluri and Zhu (1998)]. n stands
for the total number of node couples inside the domain of definition.

The well-known MLS nodal shape function φ J
(
Xδ
)

is defined as

φ
J
(

Xδ

)
=

m

∑
i=1

pi(X̄δ )
[
A−1B

]
i J (19)

with A as a momentum matrix

A =
n

∑
J=1

WJ(Xδ )p(X̄δ
J )pT (X̄δ

J ), (20)

and the matrix B defined as

B =
[
W1(Xδ )p(X̄δ

1 ) W2(Xδ )p(X̄δ
2 ) · · · WJ(Xδ )p(X̄δ

J ) · · · Wn(Xδ )p(X̄δ
n )
]
.

(21)

The complete monomial basis p
(
X̄δ
)

is expressed in terms of the local normalized
coordinates X̄δ in order to improve the conditioning of the matrix A, as explained
in [Jarak, Sorić and Hoster (2007)]. WJ(Xδ ) is a weight function associated with
the Jth node couple, which is chosen as the 4th order spline function

WJ(Xδ ) =

1−6
(

dJ
rJ

)2
+8

(
dJ
rJ

)3
−3

(
dJ
rJ

)4
; 0≤ dJ ≤ rJ

0; dJ > rJ

, (22)

where dJ =
∣∣Xδ −Xδ

J

∣∣ is the in-plane distance between the node couple J and the
current sample point. The detailed mathematical description of the MLS approxi-
mation strategies can be found in [Fasshauer (2007)], and the references therein.

Eqs. (12) and (13) for the displacement and strain fields may be written in the
discretized forms as

u(h) =
n

∑
J=1

ΦΦΦ
J
u ûJ, (23)

εεε
(h) =

n

∑
J=1

ΦΦΦ
J
ε ε̂εε

J. (24)
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Matrices ΦΦΦJ
u and ΦΦΦJ

ε contain the 3-D displacement and strain nodal shape functions
defined as

ΦΦΦ
J
u = φ

J [
α I3 β I3

]
, (25)

ΦΦΦ
J
ε = φ

J [
α I6 β I6

]
. (26)

In the above relations φ J = φ J
(
X1,X2

)
represents the in-plane MLS approximation

defined in Eq. (19), α = α
(
X3
)

and β = β
(
X3
)

describe the linear interpolation
over the thickness, while I3 and I6 stand for the 3x3 and 6x6 identity matrices,
respectively. ûJ and ε̂εε

J are the vectors containing the unknown fictitious nodal
displacement and strain values(
ûJ)T =

[(
ûJ

(u)

)T (
ûJ

(l)

)T]
,
(

ε̂εε
J
)T

=
[(

ε̂εε
J
(u)

)T (
ε̂εε

J
(l)

)T]
. (27)

Herein, ûJ
(u) and ûJ

(l) are the vectors of the nodal displacements associated with the
upper and lower nodes(

ûJ
(u)

)T
=
[
ûJ

1(u) ûJ
2(u) ûJ

3(u)

]
,
(

ûJ
(l)

)T
=
[
ûJ

1(l) ûJ
2(l) ûJ

3(l)

]
, (28)

and ε̂εε
J
(u) and ε̂εε

J
(l) denote the corresponding nodal strain vectors(

ε̂εε
J
(u)

)T
=
[
ε̂J

11(u) ε̂J
22(u) ε̂J

33(u) γ̂J
12(u) γ̂J

23(u) γ̂J
13(u)

]
,(

ε̂εε
J
(l)

)T
=
[
ε̂J

11(l) ε̂J
22(l) ε̂J

33(l) γ̂J
12(l) γ̂J

23(l) γ̂J
13(l)

]
.

(29)

Employing the strain field approximation (24) and the constitutive relations (8) and
(9), the stress and traction may be calculated in terms of the nodal strains as

σσσ = D
n

∑
J=1

ΦΦΦ
J
ε ε̂εε

J, (30)

t = ND
n

∑
J=1

ΦΦΦ
J
ε ε̂εε

J, (31)

where D is the 3-D elasticity stress-strain matrix and σσσ is the complete stress vector

σσσ
T =

[
σ11 σ22 σ33 τ12 τ23 τ13

]
. (32)

In Eq. (31) t = ti ei denotes the traction vector and the matrix N is defined as

N =

n1 0 0 n2 0 n3
0 n2 0 n1 n3 0
0 0 n3 0 n2 n1

 , (33)
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where ni denotes the components of the outward unit normal vector on ∂ΩI
s, n =

ni ei.

By means of Eqs. (23)-(33), LWFs (10) and (11) are transformed into the following
discretized system of linear equations on the domain of influence level related to
the Ith node couple

NI

∑
J=1

−∫
LI

S

NDΦΦΦ
J
εdΓ−

∫
ΓI

Su

NDΦΦΦ
J
εdΓ

 ε̂εε
J +α

NI

∑
J=1

∫
Γ I

su

ΦΦΦ
J
udΓ

 ûJ

=
∫

ΓI
St

t̄dΓ +
∫

Ω I
s

bdΩ + α

∫
Γ I

su

ūdΓ, (34)

NI

∑
J=1

∫
Ω I

s

grad(v1)DΦΦΦ
J
εdΩ−

∫
LI

S

X3NDΦΦΦ
J
ε dΓ−

∫
ΓI

Su

X3NDΦΦΦ
J
εdΓ

ε̂εε
J

+α

NI

∑
J=1

∫
Γ I

su

X3
ΦΦΦ

J
u dΓ

 ûJ =
∫

ΓI
St

X3 tdΓ+
∫

Ω I
s

X3 bdΩ+α

∫
Γ I

su

X3 ūdΓ,

I = 1,2, ...,N. (35)

Thereby the domain of influence is a region that covers all nodes whose weight
functions do not vanish in the local sub-domain surrounding the current node cou-
ple, as defined in [Atluri and Zhu (1998)]. In Eqs. (34) and (35), NI denotes the
total number of nodes inside the domain of influence of the Ith node couple and
grad(v1) describes the gradient of the linear part of the test function (5)

grad(v1) =

X3,1 0 0 X3,2 0 X3,3
0 X3,2 0 X3,1 X3,3 0
0 0 X3,3 0 X3,2 X3,1

=

0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0

 .

(36)

As already mentioned, in the discretized LWFs (34) and (35) more unknown vari-
ables appear then there are available equations. Therefore, the additional kinemat-
ics constraints (15) are employed by means of the collocation approach in order to
reduce the overall number of unknowns.
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By using the Dirac delta functions δ

(
X−XI

(u)

)
and δ

(
X−XI

(l)

)
as the test func-

tions v(ε)
(i j) in Eq. (15), the kinematics relations (16) are imposed directly at the

upper and lower nodes

ε
(h)
i j

(
XI

(u)

)
=

1
2

[
ui, j

(
XI

(u)

)
+u j,i

(
XI

(u)

)]
,

ε
(h)
i j

(
XI

(l)

)
=

1
2

[
ui, j

(
XI

(l)

)
+u j,i

(
XI

(l)

)]
, I = 1,2, ...,N

(37)

with XI
(u) =

[
X1

I X2
I X3 = 0,5h

]T and XI
(l) =

[
X1

I X2
I X3 =−0,5h

]T being
the global Cartesian coordinates of the upper and lower node of the Ith node couple,
respectively. The kinematic equations (37) are numerically implemented under the
assumption that the nodal strain values are exactly interpolated, and it holds

ε
(h)
i j

(
XI

(u)

)
≈ ε̂

I
i j(u), ε

(h)
i j

(
XI

(l)

)
≈ ε̂

I
i j(l), I = 1,2, ...,N. (38)

By applying the displacement interpolation (23) and the assumption (38) in Eq.
(37), it is possible to express the nodal strain components in terms of the indepen-
dently approximated displacements in a relatively simple and numerically efficient
manner as

ε̂εε
I
(u) =

nI

∑
J=1

BJI
(u) ûJ, ε̂εε

I
(l) =

nI

∑
J=1

BJI
(l) ûJ, I = 1,2, ...,N. (39)

Herein, BJI
(u) = BJ

(
XI

(u)

)
and BJI

(l) = BJ
(

XI
(l)

)
stand for the 3D strain-displacement

matrices calculated at the upper and lower node of the Ith node couple by the rela-
tion

BJ =



α φ J,1 0 0 β φ J,1 0 0
0 α φ J,2 0 0 β φ J,2 0
0 0 α,3 φ J 0 0 β ,3 φ J

α φ J,2 α φ J,1 0 β φ J,2 β φ J,1 0
0 α,3 φ J α φ J,2 0 β ,3 φ J β φ J,2

α,3 φ J 0 αφ J,1 β ,3 φ J 0 β φ J,1

 . (40)

Furthermore, in Eqs. (39) nI is the total number of the nodes in the MLS domain
of definition of the Ith node couple. As evident, by using the described collocation
approach numerical integration in Eq. (15) is avoided, resulting in the reduction of
computation time. If Eqs. (39) are inserted into the discretized LWFs (34) and (35),
the closed system of linear algebraic equations with only the nodal displacements
as unknowns may be obtained.
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4 Poisson’s thickness locking effect

It is well known that the undesired Poisson’s thickness locking effect arises in the
3-D continuum based numerical formulations for plate and shell analyses if the nor-
mal transversal strain component ε33 does not vary through the structure thickness
[Hauptmann and Schweizerhof (1998), Sze (2002)].

In our formulation the strain component ε33 is initially assumed to be linear through
the thickness according to (13). Nevertheless, it can be shown that the linear dis-
tribution of the displacement component u3 over the plate thickness leads to the
appearance of the Poisson’s thickness locking effect. Using Eqs. (39) and (40), it
can be easily shown that

ε̂
I
33(u) = ε̂

I
33(l) =

1
h

nI

∑
J=1

φ
JI ûK

3(u)−
1
h

nI

∑
J=1

φ
JI ûJ

3(l) 6= f
(
X3) , I = 1,2, ...,N, (41)

where φ JI = φ J
(
X1

I ,X2
I
)

are the in-plane MLS nodal shape functions calculated at
the location of the Ith node couple. If these values for ε̂ I

33(u) and ε̂ I
33(l) are employed

in Eq. (24) for the calculation of the strain field distribution, it is clear that the nor-
mal strain ε

(h)
33 is constant over the thickness, and the system locks if the Poisson’s

ratio is not equal to zero. Therefore, the condition ε̂ I
33(u) 6= ε̂ I

33(l) has to be fulfilled
in order to avoid the Poisson’s thickness locking phenomenon.

For the elimination of this undesired locking effect, a new procedure based on the
modification of the nodal strain component values ε̂ I

33(u) and ε̂ I
33(l) is proposed. For

that purpose, the linear distribution over the thickness for ε33 may be written at the
position of the node couples as

ε
(h)
33

(
X1

I ,X2
I ,X3)=

(
ε

(h)
33

)I0
+X3

(
ε

(h)
33,3

)I0
, I = 1,2, ...,N. (42)

Here,
(

ε
(h)
33

)I0
and

(
ε

(h)
33,3

)I0
are the values of ε33 and its derivative with respect to

X3 calculated at the point XI
(0), respectively. The point XI

(0) is positioned on the
plate middle surface between the nodes of the Ith node couple, as shown in Fig. 2.

The constant term
(

ε
(h)
33

)I0
is computed directly from the approximated displace-

ments by using Eq. (41), and the following statement holds,

(ε33)
I0 = ε̂

I
33(u) = ε̂

I
33(l) = u(h)

3,3

(
XI

(0)

)
. (43)

By taking into account the assumption (38), the normal transversal nodal strains at
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Figure 2: Discretization points with belonging variables used for the elimination of
the Poisson’s thickness locking effect

the upper and lower nodes may be written as

ˆ̃ε I
33(u) ≈ ε

(h)
33

(
XI

(u)

)
= ε̂ I

33(u) +
h
2

(
ε

(h)
33,3

)I0
,

ˆ̃ε I
33(l) ≈ ε

(h)
33

(
XI

(l)

)
= ε̂ I

33(l)−
h
2

(
ε

(h)
33.3

)I0
,

I = 1,2, ...,N

(44)

with ˆ̃ε I
33(u) and ˆ̃ε I

33(l) as the new modified nodal values, which are not kinematically

compatible with the displacement field. The derivative ε
(h)
33,3 is expressed by en-

forcing the additional equilibrium equation in the normal direction at the mid-point
XI

(0)

σ3 j, j

(
XI

(0)

)
+b3

(
XI

(0)

)
= 0, I = 1,2, ...,N. (45)

Accordingly, employing the constitutive equation for σ33 from Eq. (8), ε
(h)
33 ,3 may

be calculated as(
ε

(h)
33,3

)I0
=− 1

C3333

(
b3 +C3311

(
ε

(h)
11,3

)I0

+C3322

(
ε

(h)
22,3

)I0
+C13132

(
ε

(h)
13,1

)I0
+C23232

(
ε

(h)
23,2

)I0
)

,

I = 1,2, ...,N, (46)
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where ( )I0 denotes the values at XI
(0). By means of the strain approximation (24),

the derivatives of the strain components on the right-hand side of Eq. (46) are
discretized as(

ε
(h)
11,3

)I0
=

nI

∑
J=1

[
1
h

φ
JI

ε̂
J
11(u)−

1
h

φ
JI

ε̂
J
11(l)

]
,

(
ε

(h)
22,3

)I0
=

nI

∑
J=1

[
1
h

φ
JI

ε̂
J
22(u)−

1
h

φ
JI

ε̂
J
22(l)

]
,

(
ε

(h)
13,1

)I0
=

1
2

nI

∑
J=1

[
φ ,JI

1 ε̂
J
13(u) +φ ,JI

1 ε̂
J
13(l)

]
,

(
ε

(h)
23,2

)I0
=

1
2

nI

∑
J=1

[
φ ,JI

2 ε̂
J
23(u) +φ ,JI

2 ε̂
J
23(l)

]
.

(47)

Using Eq. (47) and neglecting the body forces, the nodal values ˆ̃ε I
33(u) and ˆ̃ε I

33(l) are
expressed in terms of the nodal strains calculated directly from the displacements
as follows

ˆ̃ε I
33(u) = ε̂

I
33(u) +

h
2

nI

∑
J=1

ΨΨΨ
JI
(0) ε̂εε

J, ˆ̃ε I
33(l) = ε̂

I
33(l)−

h
2

nI

∑
J=1

ΨΨΨ
JI
(0) ε̂εε

J, I = 1,2, ...,N, (48)

where ΨΨΨJI
(0) is defined as

ΨΨΨ
JI
(0) =− 1

C3333

[1
hC3311φ JI 1

hC3322φ JI 0 0 1
2C2323φ ,JI

2
1
2C1313φ ,JI

1 · · ·

· · · −1
hC3311φ JI −1

hC3322φ JI 0 0 1
2C2323φ ,JI

2
1
2C1313φ ,JI

1

]
. (49)

If Eqs. (39) and (43) are employed in Eqs. (48), the nodal strains on the right-hand
sides of relations (48) are computed in dependence of the nodal displacements as

ˆ̃ε I
33(u) =

nI

∑
J=1

(
BT

3
)JI
(0) ûJ +

h
2

nI

∑
J=1

[
ΨΨΨ

JI
(0)

nJ

∑
K=1

BKJûK

]
,

ˆ̃ε I
33(l) =

nI

∑
J=1

(
BT

3
)JI
(0) ûJ− h

2

nI

∑
J=1

[
ΨΨΨ

JI
(0)

nJ

∑
K=1

BKJûK

]
, I = 1,2, ...,N.

(50)

Herein,
(
BT

3
)JI
(0) stands for the third row of the 3D strain-displacement matrix calcu-

lated at the point XI
(0) by means of Eq. (40), and the strain-displacement matrix in

the second term on the right-hand side is defined as BKJ =
[(

BKJ
(u)

)T (
BKJ

(l)

)T]T
.
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Finally, the nodal strain vector may be written in the following well-known dis-
cretized strain-displacement form as

ˆ̃εεε I =
ñ I

∑
M=1

B̃MI ûM, I = 1,2, ...,N, (51)

where B̃MI, M = 1,2, ..., ñ I, are the strain-displacement matrices calculated at XI
(0)

using Eq. (40), except for the terms associated with ε33, which are derived from
Eqs. (50). ñ I stands for the total number of the nodes influencing the nodal strain
values ˆ̃ε I

33(u) and ˆ̃ε I
33(l).

After inserting (51) into the discretized LWF of equilibrium equations (34) and
(35), the following system of equations with only the nodal displacements as un-
knowns is obtained for each local sub-domain

NI

∑
J=1

∫
LI

S

NDΦΦΦ
J
εdΓ+

∫
ΓI

Su

NDΦΦΦ
J
εdΓ

 ñ J

∑
M=1

B̃MJ ûM−α

n I

∑
J=1

∫
Γ I

su

ΦΦΦ
J
u dΓ

 ûJ

= −
∫

LI
St

tdΓ−
∫

Ω I
s

bdΩ−α

∫
Γ I

su

ūdΓ, (52)

NI
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S
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Ω I
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∇vT
1 DΦΦΦ

J
εdΩ

 ñ J

∑
M=1

B̃MJ ûM

−α

n I

∑
J=1

∫
Γ I

su

X3
ΦΦΦ

J
u dΓ

 ûJ =−
∫

LI
St

X3 tdΓ−
∫

Ω I
s

X3 bdΩ−α

∫
Γ I

su

X3 ūdΓ,

I = 1,2, ...,N. (53)

In the plate analysis, the body forces may usually by neglected in engineering com-
putations, and therefore the domain integrals on the right-hand sides may be omit-
ted. Using a node-by-node numerical assemblage procedure, the global equations
on the structural level are derived.

5 Numerical examples

In the following, deformation responses of rectangular plates with various boundary
conditions are considered as numerical examples. The plates are discretized by
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uniform grids, and LWFs are calculated over the cylindrical local sub-domains.
The essential boundary conditions are imposed by applying the penalty method,
where the penalty parameter is set to α = 109.

The MLS functions with the first, second and fourth order complete polynomial
basis, labeled as MLS1, MLS2 and MLS4, are used. For all MLS functions the
4th order spline weighting functions are employed. In all examples, both the test
domain radius Rtr and the support domain radius Rt are normalized by the nodal
distance d defined in Fig. 3. Thereby, the test domain is defined as the supporting
domain of the test function and the support domain denotes the supporting domain
of the nodal MLS shape function.

Figure 3: Discretization and the essential boundary conditions for the clamped plate
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Figure 4: The influence of the circular
number of Gaussian points nc on the so-
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Figure 8: The influence of the test and support domain sizes on the solution accu-
racy for 81 nodes (clamped thick plate with ν = 0.0)

The meshless results are compared with the finite elements solutions obtained by
using the Msc.NASTRAN program package. The hexahedral finite elements are
employed, in which the reduced integration is applied for the alleviation of shear
locking.

5.1 Clamped thick square plate

In order to better expose some inherent numerical features of the proposed mixed
approach, such as the efficiency of numerical integration or the absence of the Pois-
son’s thickness locking effect, deformation responses of a clamped square plate are
investigated in the first numerical example. In addition, the aim of the following
numerical experiments is to demonstrate the numerical superiority of the presented



Analysis of rectangular square plates 249

0.020

0.022

0.024

0.026

0.028

0.030

0.032

0.034

0.036

0.038

0.040

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

support domain radius / nodal distance ( R tr  / d  )

c
e
n
tr

a
l 
d
e
fl
e
c
ti
o
n

Rt = 0.5d mixed MLPG Rt = 0.5d primal MLPG

Rt = 0.65d mixed MLPG Rt = 0.65d primal MLPG

Rt = 0.8d mixed MLPG Rt = 0.8d primal MLPG

Figure 9: The influence of the test and support domain sizes on the solution accu-
racy for 289 nodes (clamped thick plate with ν = 0.0)

Figure 10: Convergence of the plate central deflection for the linear and constant
distribution of ε33 through the thickness (clamped thick plate with ν = 0.3)

mixed formulation over the primal MLPG method. Since it is well known that the
primal MLPG formulations are prone to locking in the thin plate limit, a thick plate
is analyzed so as to circumvent the difficulties associated with the shear locking
phenomena. Information on the applied primal MLPG formulation may be found
in [Sorić, Li, Jarak and Atluri (2004)] and the references therein.

The plate is clamped along the outer edges, and it is subjected to the uniformly
distributed load q = 200 acting over the upper surface. The plate span to thickness
ratio is set to a/h = 10 with the thickness being h = 1. The Young’s modulus of the
material is E = 10.92 ·105. Due to symmetry, only one quarter of the plate is dis-
cretized by uniform grids. Fig. 3 shows the applied essential boundary conditions
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Figure 11: Convergence study in comparison with the primal MLPG formulation
(clamped plate thick with ν = 0.3)
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Figure 12: Convergence study in comparison with the solid finite elements
(clamped thick plate with ν = 0.3)

and the grid consisting of 5×5 node couples.

5.1.1 Numerical integration of the LWF

It is well known that numerical integration is one of the problematic issues in the
meshless methods. Therefore, the performance of the proposed mixed approach
considering the numerical cubature of the LWF is inspected first. In order to con-
centrate only on the integration of the weak forms itself, the Poisson’s ratio of the
material is set to zero, ν = 0, avoiding the appearance of the Poisson’s locking
effect. Accordingly, the procedure for the elimination of the Poisson’s thickness
locking effect described in section 4 is not used in the mixed formulation. In the
primal MLPG formulation LWF (6) and (7) is discretized by approximating only
the displacement field, where the linear distribution over the thickness is assumed.
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The plate is discretized by 81 (9x9) and 289 (17x17) node couples. All calculations
are performed by using MLS2, while the test and the support domain radii are set
to Rt = 0,7d and Rtr = 2,2d, respectively.

The accuracy of the solution for the plate central deflection is checked for different
numbers of integration points. In both the mixed and primal formulations the sim-
ple Gaussian numerical integration scheme is employed, where 2 integration points
are used over the thickness. The numbers of points in the circular and radial direc-
tion of the local sub-domain are varied, and are labeled as nc and nr, respectively.
The results of the tests are shown in Figs. 4 to 7. The relative error is defined as
(w−wr)/wr, where w is a meshless solution obtained for some particular choice
of nc and nr, and wr is a referent value calculated by using the sufficiently large
values for nc and nr, nc = nr = 20.

It is obvious from Figs. 4 and 5 that in the primal MLPG method the number of the
quadrature points in the circular direction affects the stability of the solution more
severely than in the proposed mixed algorithm. In the primal MLPG method, the
oscillation of the solution values is clearly visible, and the solution accuracy is not
significantly improved even if the finer nodal grid is used. On the other hand, in
the mixed approach nc = 7 provides acceptable solution accuracy and the results
are stabilized if more points are used. From Figs. 6 and 7 it can be observed that
for both approaches the solution values don’t depend significantly on the number
of quadrature points in the radial direction and that 2 points are sufficient for ob-
taining stable results. However, higher accuracy is obtained if the mixed approach
is applied.

5.1.2 Effects of the sizes of test and support domains on the solution accuracy

The sizes of the test and the support domains may significantly affect the solu-
tion accuracy in the MLPG method. Hence, the influences of these parameters on
the solution for the plate central deflection has been investigated, and the results
are plotted in Figs. 8 and 9. Again, discretization is performed by using 9x9 and
17x17 node couples. All results are obtained by applying 9 quadrature points in
the circular direction, nc = 9, and 2 points in the radial direction, nr = 2, in each
local sub-domain. Furthermore, the Poisson’s ratio is set to zero, ν = 0, and there-
fore no procedures for the elimination of the Poisson’s thickness locking effect are
employed.

Evidently, in the mixed approach the influence of the support domain size on the
solution values is not as pronounced as in the primal MLPG formulation and it
becomes almost negligible if the finer nodal grid is used. Therefore, the values
that are close to the minimum necessary support domain size may be chosen for
numerical calculations so as to increase the numerical efficiency. However, the size
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of the test domain influences the solution accuracy significantly, although not as
much as in the primal MLPG method. Nevertheless, this effect again diminishes
remarkably if more nodes are applied for discretization.

5.1.3 The Poisson’s thickness locking effect

In order to demonstrate the efficiency of the procedure for the elimination of the
Poisson’s thickness locking effect, the Poisson’s ratio is set to ν = 0.3. In the primal
formulation the hierarchical quadratic interpolation over the thickness is assumed
for u3 to avoid the Poisson’s thickness locking [Sorić, Li, Jarak and Atluri (2004)].
All calculations are performed by using 2 quadrature points in the radial direction,
nr = 2. For the mixed approach 7 Gaussian points are employed in the circular
direction, nc = 7, while for the primal MLPG formulation nc = 11.

The efficiency of the proposed procedure for the elimination of the thickness lock-
ing effect is displayed in Fig. 10, where the convergence rate is compared with
the result obtained by using the algorithm in which the nodal strains are calcu-
lated by means of the unmodified strain-displacement relations (39). The values
for the central plate deflection are normalized by the analytical solution [Srinivas
and Rao (1973)]. Obviously, the convergence to the referent analytical solution is
achieved if the proposed approach with the linear distribution over the thickness
for ε33 is employed, indicating that the Poisson’s thickness locking phenomenon is
efficiently eliminated.

In addition, the convergence rates of the mixed meshless formulation are compared
with the results obtained by means of the primal MLPG formulation [Sorić, Li,
Jarak and Atluri (2004)], as well as the brick-type solid finite elements from NAS-
TRAN, and the results are presented in Figs. 11 and 12.

In the mixed formulation both the MLS1 and MLS2 functions have been used. In
both cases the test domain radius is Rt = 0.65d, while the support domain radius
has been set to Rtr = 1.25d for MLS1 and Rtr = 2.15d for MLS2. On the other
hand, in the primal MLPG method only MLS2 with Rt = 0.8d and Rtr = 2.4d is
applied. It is to note that no convergence could be achieved in the primal method if
MLS1 is applied.

As may be seen, the mixed formulation demonstrates better convergence rates than
the primal method even if MLS1 is used. Moreover, Fig. 12 portrays that the con-
vergence rates are also higher than that obtained by using the NASTRAN hexahe-
dral finite elements.
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5.2 Clamped thin square plate

As the next example, a clamped thin square plate with the thickness h = 1 and the
side length a = 100 is subjected to the uniformly distributed load q = 0.1 over the
upper surface. The material data are the Poisson’s ratio ν = 0.3 and the Young’s
modulus E = 10.92 · 105. Again, only one quadrant of the plate is discretized by
uniform grids.

The influence of the test and support domain sizes on the solution accuracy is dis-
played in Figs. 13 and 14 for the mixed formulation if MLS1 and MLS2 are em-
ployed. Discretization is performed by using 289 (17x17) node couples. All results
are normalized by using the analytic solution [Timoshenko and Voinowsky-Krieger
(1985)]. As evident, the considerable oscillations around the analytic value are ex-
hibited, especially for the higher values of the support domain radius Rtr. However,
for both MLS functions stabilization is achieved for Rt = 0.65d. Hence, in order to
increase numerical efficiency, the support domain radii Rtr = 1.25d for MLS1 and
Rtr = 2.15d for MLS2, which are close to the minimum necessary values for Rtr,
are used in combination with Rt = 0.65d in the subsequent numerical tests.
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Figure 13: The influence of the test and support domain sizes on the solution accu-
racy for MLS1 (clamped thin plate)

In addition, the convergence rates for the plate central deflections computed by the
proposed mixed approach are compared with the solid hexagonal finite elements
and the primal MLPG formulation solutions in Figs. 15 and 16. MLS1 and MLS2
are used in the mixed approach, while MLS4 is applied in the primal formulation.

As may be observed in Fig. 15, the mixed formulation demonstrates better accuracy
and higher convergence rates in comparison to the finite element solutions, indicat-
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Figure 14: The influence of the test and support domain sizes on the solution accu-
racy for MLS2 (clamped thin plate)
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Figure 15: Convergence study in comparison with the solid finite elements
(clamped thin plate)

ing that the undesirable shear locking effect is efficiently overcome. Fig. 16 shows
that the convergence rate is higher than that of the primal MLPG formulation even
though the low-order MLS functions are used. Moreover, it should also be noted
that the lower order of the MLS functions increases the numerical efficiency of the
mixed formulation by allowing the use of the smaller sizes of the support domains,
as well as fewer quadrature points.

The sensitivity of the proposed mixed approach on the shear locking effect has
further been tested by increasing the plate span to thickness ratio, as shown in Fig.
17. As evident, shear locking is completely eliminated even for the very thin plates
if MLS2 is used.
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Figure 16: Convergence study in comparison with the primal MLPG formulation
(clamped thin plate)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 500 1000

span to thickness ratio

n
o

rm
a

li
z
e

d
 d

e
fl
e

c
ti
o

n

mixed MLPG - MLS1

mixed MLPG - MLS2

Figure 17: Central deflection vs. plate span to thickness ratio (clamped thin plate)

5.3 Simply supported thin square plate

Finally, a thin simply supported plate under uniformly distributed load is analyzed.
The geometry, load value and material properties are the same as in the previous
example. Again, symmetry conditions are applied and only one quadrant of the
plate is discretized by uniform grids. The applied essential boundary conditions
and the discretization grid consisting of 5x5 node couples are shown in Fig. 18.

The results of the convergence tests are presented in Figs. 19 and 20, where the
central deflection is again normalized by using the analytic solution [Timoshenko
and Voinowsky-Krieger (1985)]. The computations have been performed by using
the same values of the test and support domain radii as in the example considering
the thin clamped plate. MLS1 and MLS2 are used in the mixed algorithm, while
MLS4 is again applied in the primal MLPG formulation.

From Fig. 19 it can be concluded that for this problem the convergence rates are
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Figure 18: Discretization and the essential boundary conditions for the simply sup-
ported plate
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Figure 19: Convergence study in comparison with the solid finite elements (simply
supported thin plate)

comparable to those obtained by FEM. However, it is evident that the proposed
formulation achieves high accuracy even if coarse discretization grids are applied.
Fig. 20 shows that the mixed formulation is again superior to the primal MLPG
method, as expected. The sensitivity of the proposed mixed approach on the shear
locking effect has again been tested by increasing the plate span to thickness ratio.
The results in Fig. 21 display that shear locking is completely eliminated for this
problem even if MLS1 is used.
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Figure 20: Convergence study in comparison with the primal MLPG formulation
(simply supported thin plate)
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Figure 21: Central deflection vs. plate span to thickness ratio (simply supported
thin plate)

6 Conclusion

A new mixed MLPG formulation based on the interpolation of both strains and dis-
placements has been proposed for the analysis of plate structures. The kinematics
of a 3-D solid is applied, allowing the use of complete 3-D constitutive equations.
Discretization is performed only by the nodes located on the upper and lower struc-
ture surfaces. The governing equations are derived by approximating the strains
directly as independent variables in the local weak forms of the equilibrium equa-
tions. The nodal strains are then eliminated from the equations by enforcing the
standard strain-displacement relations only at the nodes, and the closed system of
equations with only the nodal displacements as unknown variables is obtained. The
approximation of all field variables is performed by employing the same MLS func-
tions in the in-plane directions, while linear polynomials are used in the thickness
direction. The shear locking phenomenon in the thin plate limit is successfully sup-
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pressed and a new efficient procedure for the elimination of the Poisson’s thickness
locking effect is developed.

The proposed formulation is numerically more efficient that the primal MLPG
method, where only displacements are approximated. The mixed approach de-
creases the continuity requirements for the trial functions and allows the use of the
lower–order MLS functions than in the primal method, even in the thin plate limit.
Therefore, the smaller support and test domains may be used and fewer Gaussian
points are needed for numerical integration than in the primal MLPG formulations.
Moreover, the differentiation of the MLS functions at each quadrature point in the
local sub-domains is avoided. Consequently, the influence of the support and test
domain sizes on solution accuracy is not as pronounced as in the primal MLPG
method and numerical costs are further reduced. As demonstrated by the presented
numerical examples, the new formulation possesses very good convergence rate
and solution accuracy.
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