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A Fast Adaptive Wavelet scheme in RBF Collocation for
nearly singular potential PDEs
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Abstract: We present a wavelet based adaptive scheme and investigate the effi-
ciency of this scheme for solving nearly singular potential PDEs. Multiresolution
wavelet analysis (MRWA) provides a firm mathematical foundation by projecting
the solution of PDE onto a nested sequence of approximation spaces. The wavelet
coefficients then were used as an estimation of the sensible regions for node adap-
tation. The proposed adaptation scheme requires negligible calculation time due to
the existence of the fast Discrete Wavelet Transform (DWT). Certain aspects of the
proposed adaptive scheme are discussed through numerical examples. It has been
shown that the proposed adaptive scheme can detect the singularities both in the
domain and near the boundaries. Moreover, the proposed adaptive scheme can be
utilized for capturing the regions with high gradient both in the solution and its spa-
tial derivatives. Due to the simplicity of the proposed method, it can be efficiently
applied to large scale nearly singular engineering problems.
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1 Introduction

Radial basis functions were introduced by Franke (1982) to mathematical com-
munity; these are effective tools in the numerical solution of linear and nonlinear
PDEs. In addition to a firm mathematical foundation provided of RBF methods, see
Micchelli (1986), and Schaback and Wendland (2000), RBFs are well known for
their accuracy and spectral convergence if the solution is sufficiently smooth and
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has a regular behavior. However, singularities and localized features often emerge
in many physical problems like crack front stress concentration, shock wave forma-
tion, temperature concentration and etc. Nonlinear hyperbolic PDEs can develop
true mathematical discontinuities, and the proper procedure requires enriching the
solution space to contain both continuous and discontinuous functions; in multi-
dimensional problems, the discontinuous solutions are products of the Heaviside
function in the normal propagation direction and piece-wise continuous functions
in the tangential directions, see Kansa, Aldredge, Ling (2008). Bernal and Kinde-
lan (2008) enriched the solution space of RBFs with the first few terms of the Motz
boundary singularity to achieve rapid convergence for the injection of molten plas-
tic in molds. This paper is restricted to the treatment of continuous, but nearly
singular problems that are also notoriously difficult.

Good representations of such nearly singular phenomena demand the use of non-
uniform node distributions that adapt to the changes in the sharp transition region.
One can track the position of the near singularity and increase the node density in
that region. Such strategies are often based on knowledge of the solution itself,
on empirical data or on front tracking adaptive scheme. In an automatic adaptive
scheme, more nodes are automatically added on those parts of the domain with
more detail and simultaneously a sufficient number of nodes is kept in the smooth
regions.

A number of papers have been published in the last several years describing the
adaptive strategy in RBF solution of PDEs. Schaback and Wendland (2000), Hon,
Schaback and Zhou (2003) developed an adaptive scheme based on the greedy al-
gorithm and achieved a linear convergence rate in interpolation and collocation
problems. Hon (1999) proposed an adaptive multiquadric scheme using an "a pos-
terior" indicator based on the weak formulation of the governing equation to detect
sharp transition regions and add more nodes where deemed necessary. Ling and
Trummer (2006) modified the Hon’s indicator to make it suitable for transformed
boundary value problems. Sarra (2005) developed an adaptive RBF distribution
based on simple equidistribution of an arclength algorithm and successfully ap-
plied it to the solution of nearly singular and time dependent Burger’s and Advec-
tion equation in 1D. A dynamic adaptive scheme was proposed by Wu (2004,2005)
for time-dependent PDEs. Bozzini, Lemardizzo, and Schaback (2002) have formu-
lated an adaptive RBFs interpolation based on combining B-spline techniques with
a scaled MQ. An adaptive algorithm with local TPS-RBFs interpolation was de-
veloped by Behrens and Iske (2002), Behrens, Iske, and Kaser (2003) successfully
applied it, in a semi-Lagrangian context, to linear evolutionary PDEs. The method
uses a local interpolation to evaluate an error indicator and to detect the regions
where the approximate solution requires more accuracy. Gomez, Casanova, and
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Gomez (2006) combined the former adaptive scheme with a quad-tree type algo-
rithm in two dimensions. More recently, Driscoll and Heryudono (2007) presented
an adaptive RBF scheme for time independent problems, specifically in interpola-
tion and also linear and non-linear boundary value problems; their indicator used
to refine the distribution in the region with a highly localized feature is based on
the residual sub-sampling technique.

Even though all these adaptive strategies are mainly based on utilizing an indicator
to detect the localized regions and adaptively allocate more nodes to those parts
of the domain, they differ on practical aspects such as the types of the indicator
used or the node refinement criteria. Many adaptive strategies mentioned above are
driven by a front tracking scheme that utilizes a posterior error indicator to detect
the regions that require refinement, see Lee, Im, Jung, Kim and Kim (2007) and
Iske and Käser (2005).

One of the biggest issues in adaptive mesh refinement based on a posterior error
indicator is that these adaptive schemes often dramatically penalize the simulation
speed. So, there is still a need for an efficient, fast and fully adaptive method for
solving nearly singular problems. That is where Multi Resolution Wavelet Analy-
sis (MRWA) plays a role. Recently, the wavelet analysis has been developed as a
potential adaptive approach for the construction of the optimum adaptive node dis-
tribution in nearly singular problems, see Cruz, Mendez, and Magallhaes (2001),
Mehra and Kevlahan (2008), De Marchi, Franze, Baravelli, and Speciale (2006),
Basilyev and Kevlajan (2005). The mathematical foundation of the algorithm is
the MRWA that provides a firm mathematical foundation by projecting the solution
of PDE onto a nested sequence of approximation spaces and examines the solution
at different levels of resolution.

In recent years some attempts have been made to relate the RBFs with wavelets.
The introduction of wavelets to RBFs analysis dates back to Micchelli, Rabut, and
Utreras (1991), Buhmann (1995). Chui, Stoeckler, and Ward (1996) who have
shown RBFs are wavelets that do not have orthogonality properties, i.e. they are
prewavelets. Fasshauer and Schumaker (1998) summarized some wavelets us-
ing spherical RBFs. Buhmann and Micchelli (1992) and Chui, Ward, Jetter, and
Stoeckler (1996) have shown that RBFs are prewavelets with dilatational, rota-
tional and translational properties and are very good for detecting near singularities.
For MQ-RBF, the term ||x− x j|| behaves as the wavelet translator, and the shape
parameter c j behaves as the dilator (scale) parameter. The non-orthogonality of
RBF pre-wavelets are discussed by Micchelli, Rabut, and Utreras (1991) and Chen
(2001) presented the orthonormal RBF wavelet series and transforms by using the
nonsingular general solution and singular fundamental solution of the differential
operator. The methodology presented by Chen (2001) can be generalized to RBF
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wavelets by means of orthogonal convolution kernel function of various integral
operators. However, to the best of our knowledge, the application of a wavelet
based adaptive scheme in RBF analysis is still absent from the literature. Very re-
cently, Libre, Emdadi, Kansa, Shekarchi, and Rahimian (2009) introduced an adap-
tive scheme based on MRWA decomposition for interpolation problems. Certain
aspects of an adaptive wavelet scheme in MQ-RBF approximations have been dis-
cussed, and it was demonstrated that the adaptive prewavelet scheme can be fairly
used for the detection of a boundary or an internal near singularity in interpolation
problems.

The main objective of the present work is to develop the modified adaptive wavelet
scheme presented in Libre, Emdadi, Kansa, Shekarchi, and Rahimian (2009) to
solve nearly singular potential PDEs. The main question is how we can utilize the
adaptive wavelet scheme for the solution of potential time independent PDEs and
how efficient is the method? The rest of this paper is organized as follows. A short
description of RBF collocation scheme for potential PDEs is presented in section
2. The adaptive wavelet scheme is briefly reviewed in section 3. The efficiency of
the adaptive wavelet scheme for the solution of nearly singular potential problems
is illustrated through several numerical examples in section 4. Finally, Conclusions
are drawn in section 5.

2 RBF collocation method

Let us consider the following linear second order PDE, given by

L(u) = A(x,y)
∂ 2u
∂x2 +2B(x,y)

∂ 2u
∂x∂y

+C(x,y)
∂ 2u
∂y2 +D(x,y)u− f (x,y) = 0 in Ω (1)

Together with the Neumann condition on natural boundary (∂Ωt) and Dirichlet
condition on essential boundary (∂Ωu)

g(u) = nT .∇u−g∗n = 0 on ∂Ωt (2a)

u−u∗ = 0 on ∂Ωu (2b)

Generally, the coefficients A, B, C and D may all depend upon the coordinates, x,y.
However, if A=C=1, B=0 and C=k2 then the PDE, Eq(1), will result in the well
known isotropic Helmholtz equation in a two-dimensional domain, Ω⊂ R2 that is
defined as

∆u(x,y)+ k2u(x,y) = f (x,y), (x,y) ∈Ω (3)

where k is the wave number when it is real and positive and f (x,y) represents a har-
monic source. When k=0 the equation is known as the Poisson equation and when
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both k=0 and f (x,y)=0 the well-known Laplace equation results. Helmholtz type
equations arise in a variety of important physical applications; see Boa, Wei, and
Zhao (2004), especially in acoustic and electromagnetic wave propagation. The
convergence of the numerical solution of the Helmholtz equation depends signif-
icantly on the singular behavior of the solution. Generally speaking, the nearly
singular regions should be analyzed at a high level of resolution. Consequently, the
node spacing must be sufficiently refined to capture the near singularity. Very fine
node spacing is required in the nearly singular problems, increases the total degree
of freedom, the memory required for the data storing and the CPU time needed
for the solution procedure. Moreover, the numerical instability arising from ill-
conditioning phenomenon is more likely to occur in the nearly singular problems
with more degrees of freedom. Therefore, alternative adaptive methods are urgently
needed to attack the problem with nearly singular features. Treatment schemes en-
counter with near singularity problems in Helmholtz type equations are discussed
in a series of papers, for example, see Marin, Lesnic, and Mantic (2004), Chen,
Kuhn, Li, and Mishuris (2003), Qian, Han and Atluri (2004) and Marin (2008).

We now briefly review the RBF direct collocation method which will be used for the
numerical solution of governing Helmholtz type PDEs. The RBF approximation is
initially employed for the meshfree approximation of the solution of PDEs. The
problem domain Ω is first discretized into a set of Nd nodes on the domain, Nu

nodes on the essential boundaries Ωu and Nt nodes on natural boundaries Ωt . The
solution u(x) of a PDE and its derivatives are then approximated in 2D domain by:

u(x,y) =
N

∑
i=1

αiφi(x,y), x,y ∈Ω (4a)

∂u
∂x

=
N

∑
i=1

αi
∂φi

∂x
,

∂ 2u
∂x2 =

N

∑
i=1

αi
∂ 2φi

∂x2 (4b)

∂u
∂y

=
N

∑
i=1

αi
∂φi

∂y
,

∂ 2u
∂y2 =

N

∑
i=1

αi
∂ 2φi

∂y2 (4c)

∂ 2u
∂x∂y

=
N

∑
i=1

αi
∂ 2φi

∂x∂y
(4d)

where N= Nd+ Nu+ Nt is the total number of collocation nodes, Φi are the shape
functions and αi are their associated unknown coefficients. Multiquadric (MQ) φ j

= (r2
j+ c2

j)
1/2, the Gaussian φ j =exp(-(r j/c j)2), and the thin plate spline (TPS) φ j =

r2
j log(r j) are the most widely used global radial basis functions.

The RBF collocation method, as introduced by Kansa (1990a, 1990b), is formu-
lated by introducing the above approximations of the solution and its derivatives
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into the strong form of the governing equation and the corresponding boundary
conditions. In this method, the governing PDE will be imposed at all Nd domain
nodes, the Neumann condition at Nt nodes on the essential boundaries and Dirichlet
condition at Nu nodes on Dirichlet boundaries. In general, the set of the collocation
nodes can be different from the set of approximation nodes. However, for the sake
of simplicity, collocation nodes are usually the same as the approximation nodes.
The discretization procedure for general form of Helmholtz equation results in an
N × N set of linear equations as follows:∂ 2φi/∂x2 +∂ 2φi/∂y2 + k2φi

n1∂φi/∂x+n2∂φi/∂y
φi

{αi}=


fi

g∗i
u∗i

 (5)

We solve the N×N linear algebraic system for the unknown coefficients αi and
obtain the approximate solution and its derivatives at any point in the domain.

3 Adaptive wavelet scheme

The concept of wavelet analysis was introduced in applied mathematics by the
end of the 1980s by Daubechies (1988) and Mallat (1989) and recently there is a
growing interest in developing wavelet-based numerical algorithms in both the uni-
form and adaptive node distribution schemes for the solution of PDEs, see Cruz,
Mendez, and Magallhaes (2001), Mehra and Kevlahan (2008), De Marchi, Franze,
Baravelli, and Speciale (2006), Basilyev and Kevlajan (2005), Mitra and Gopalakr-
ishnan (2006) and Xiang, Chen, Yang and He (2008). The wavelet based adaptation
procedure which yields in compressed node distribution is almost the same as the
well-known wavelet image compression method, for example, see Jun (2007).

The mathematical foundation of the adaptive wavelet algorithm is multi- resolu-
tion wavelet analysis, (MRWA). The MRWA projects a complicated function into a
nested sequence of approximation subspaces {Vj+1} j∈Z, Vj ⊂Vj+1 and establishes
a set of scaling function coefficients a jk and a set of wavelet coefficients d jk, struc-
tured over different levels of resolution. Each of these subspaces {Vj+1} j∈Z, can be
decomposed into an approximation space {Vj} j∈Z and its orthogonal complement
detail space {Wj} j∈Z. The space L2(R) can be expanded as an approximation space
plus a sum of detail spaces, i.e. L2(R) = Vj0 +∑ j= j0Wj. The solution of PDEs can
be expanded into the sum of its coarsest approximation u j0 and series of additional
detail functions, g j.

u = u j0 + ∑
j= j0

g j = u j0 + ∑
j= j0

∑
k

d j,kψ j,k (6)
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where ψ j,k are the bases of the detail space {Wj} j∈Z. In the MRWA, one can analyze
the highly localized regions of a function at high levels of resolution and at the same
time uses a low level of resolution for analyzing the function in flat regions. The
key ingredient of MRWA is the existence of the fast Discrete Wavelet Transform
(DWT) , see Mallat (1989), that provides a simple means of transforming data from
one level of resolution, j, to the next coarser level of resolution, j−1.

a j−1,k = ∑
l

h2k−la j,l (7a)

d j−1,k = ∑
l

g2k−la j,l (7b)

Each scaling function coefficient a jk and wavelet coefficient d jk is associated to a
certain node in a certain resolution level. The basic idea of the adaptive wavelet
scheme is the fact that the wavelet coefficients involved in the low resolution level
describe the smooth feature of the function while the wavelet coefficients at the
highest level are associated with the highly localized feature. The high values of
wavelet coefficients indicate an important fluctuation between the current level and
the next coarser level of resolution. It is then evident how this concept can be
applied in adaptive node distribution for the function with a highly localized phe-
nomenon. Specific wavelet coefficients that associate a certain node in the domain
can be appropriately identified or rejected, so that superfluous details are removed
from the smooth regions. After applying the adaptation procedure, the distribution
contains only the essentials nodes and this set tends to be the nearly optimal node
distribution.

In the adaptive wavelet scheme, the solution, u, is decomposed into two parts u1,
u2 so that u1 contains those terms whose wavelet coefficients amplitudes that are
above some prescribed threshold ε and u2 consists of those terms whose wavelet
coefficients that are below the prescribed threshold ε .

u(x) = u1(x)+u2(x) (8)

u1(x) = ∑
k

a j0,kϕ j0,k + ∑
j= j0

∑
k

d j,kψ j,k d j,k ≥ ε (9a)

u2(x) = ∑
j= j0

∑
k

d j,kψ j,k d j,k < ε (9b)

The low values of wavelet coefficients indicate that the resolution level can be ap-
propriately decreased, avoiding unnecessary dense node distributions. That means
the u2 and the corresponding node distribution may be neglected from the solution
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Figure 1: Schematic adaptation procedure and the node distribution, (a) coarse
evenly spaced node distribution, (b) adaptive collocation node distribution, (c)
adaptive collocation and base node distribution

without losing important information. On the other hand, high level wavelet coeffi-
cients that appear in the localized region cannot be neglected and the detailed local
information should be included in the solution.

In the wavelet based adaptive scheme, an initial PDE solution is calculated on a
coarse evenly spaced collocation nodes (Figure 1-a). The values of the solution at
the collocation nodes are used to compute the wavelet coefficients at the next finer
level of resolution. The node distribution is then refined only in the regions where
the wavelet coefficients are greater than a prescribed threshold ε . The schematic
figure of adaptive nodes is shown in Figure 1-b. In the next steps of the adaptation
procedure where the collocation nodes are not evenly distributed in the domain, a
slight revision is necessary. That is, the wavelet coefficients are calculated on the
base nodes instead of the collocation nodes. The base node at each step of adapta-
tion is defined as the coarsest evenly spaced distribution that includes all collocation
nodes (see Figure 1-c). The PDE solution is first approximated on the base node
and then the approximated values are used to compute the wavelet coefficients. The
rest of the procedure remains unchanged. The adaptation procedure continues until
the required level of accuracy is obtained.

The advantage of the adaptive wavelet scheme in comparison to the conventional
schemes is that the wavelet coefficients can be used to detect those regions with lo-
calized features and are simply computed by the fast DWT. In contrast, the other au-
tomatic adaptive schemes previously reviewed are usually based upon the posterior
error indicator in which the computation of the posterior indicator often dramati-
cally penalizes simulation speed. From the computational point of view, the fast
DWT algorithm requires only O(N) operations, where N is the number of nodes
in the base distribution. Another feature of the proposed wavelet based adaptive
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scheme is its ability to create a non-uniform node distribution starting from an ini-
tial coarse uniform one. Moreover, the proposed adaptive scheme allows for an
anisotropic node refinement in the vertical, horizontal or diagonal directions.

4 Numerical results

In this section, we show some numerical examples that demonstrate the efficiency
of the proposed wavelet adaptive scheme in RBF collocation for nearly singular
potential problems. In all the examples presented, we have used the MQ-RBFs
for approximating the solution of the governing PDEs. For the test problems, we
solve the Laplace, Poisson and Helmholtz potential equations with a near singular-
ity in the domain or near the boundaries subject to the Dirichlet boundary condi-
tion. We have used the improved truncated-singular value decomposition scheme
to find the expansion coefficients described in Emdadi, Kansa, Libre, Rahimian,
and Shekarchi (2008) and Libre, Emdadi, Kansa, Rahimian, and Shekarchi (2008)
as the condition number of the linear equation system becomes large. In each case,
a comparison between the adaptive and fixed scheme is presented. Two types of
norms were used to measure the error of approximation. The L∞ and RMS as de-
scribed below:

L∞ = max |uex(xi)−u(xi)| (10)

RMS =
√

1/N ∑ |uex(xi)−u(xi)|2 (11)

where u(x) is the approximate solution, uex(x) is the exact solution, and N is the
total number of collocation nodes. The results of the adaptive distribution are com-
pared with those obtained on fixed distributions. In both the fixed and adapted
distribution calculations, we have used a same number of nodes. The shape pa-
rameter was selected as c=1/10 and was kept constant for all nodes. The wavelet
threshold parameter was selected as ε = 10−3 in all cases.

Example 1. Consider the following potential boundary value problem in the rect-
angle domain Ω = [0, 1]2.

∂ 2u
∂x2 +

∂ 2u
∂y2 = 2a2(1+t2)sech2(a(υ +µx−y))tanh(a(υ +µx−y)) (x,y)∈Ω (12a)

u = tanh(a(y− (υ + µx))) (x,y) ∈ ∂Ω (12b)

The analytical solution is given by

uex(x,y) = tanh(a(y− (υ + µx)))
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Here we consider the case where a=15, υ=0.4 and µ=0.2. The profile of u(x,y) is
shown in Figure 2. The first example represents the localized feature along the line
l(x,y) = υ + µx− y that should be well suited to capture the near singularity. In
doing so, the adaptive scheme should allocate more nodes to those parts of domain
that exhibit sharp gradients. The adaptation procedure starts from a coarse base
node distribution that contains 13×13=169 evenly spaced nodes and then succes-
sively refines the nodes where required. Figure 2 shows how the adaptive schemes
distribute the nodes near the steep gradient. The numerical value of L∞ and RMS
norm errors of the first example at each level of resolution are shown in Table 1.

Figure 2: The base and adapted node distribution at different level of resolution.
Example 1

The convergence error of the proposed adaptive scheme and the conventional fixed
scheme are shown in Figure 3. After applying four steps of adaptation, the RMS
error became less than 3.00E-4 while the total number of collocation nodes is
N=1921. To obtain the same accuracy in the fixed node distribution, RMS≤ 3.00E-
4, we need N=3249 (57×57) nodes that are evenly distributed in the domain. The
efficiency of adaptive versus the fixed scheme may be quantitatively measured by
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Table 1: Error norms at the each step of the adaptive scheme, Example 1

Level N L∞ RMS
1 169 3.62E-02 1.93E-02
2 340 1.32E-02 5.40E-03
3 728 4.40E-03 1.49E-03
4 1921 7.12E-04 2.96E-04

defining the compression index Ic=Na/Nu, where Na is the total number of adapted
nodes and Nu is total number of nodes in the fixed distribution that is required to
achieve the same accuracy level as the adaptive distribution. The lower the com-
pression index, the more efficient is the adaptive algorithm. The Ic=1 indicates that
there is no compression over the base fixed distribution while the Ic→0 shows the
ability of adaptive scheme to remove the negligible nodes and compress the fine
evenly spaced nodes. The compression index of the first example is Ic=0.59 for the
RMS error =3.00E-4; this means the number of nodes of the adaptive distribution
required to reach the RMS error =3.00E-4 is 59% of the fixed distribution.

Figure 3: Error Convergence of adaptive scheme compared to fixed scheme, Ex-
ample 1
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Example 2. The second example is a typical boundary layer problem in potential
PDEs. Consider the following Poisson type PDEs defined in rectangle domain Ω =
[0, 1]2

∂ 2u
∂x2 +

∂ 2u
∂y2 = (4m2x2−2m)exp(−mx2)+(4m2y2−2m)exp(−my2) (x,y) ∈Ω

(13a)

subject to the following Dirichlet boundary condition

u = exp(−mx2)+ exp(−my2) (x,y) ∈ ∂Ω (13b)

We observe that there are two sharp regions near the boundaries x=0 and y=0. The
localized features are sharpened by increasing the value of parameter m. In this
example we consider the case with m=200. The node distributions must be refined
near the boundaries with the sharp gradient so that the localized features can be
captured properly. The refined node distribution shown in Figure 4 reveals that the
proposed adaptive scheme is able to detect the regions with a sharp gradient and
allocates more nodes where deemed necessary. At the fourth step of the adaptation
procedure, total number of collocation points and the corresponding RMS norm are
N=1823 and RMS=4.29E-4, respectively (see Table 2).

Table 2: Error norms at the each step of the adaptive scheme, Example 2

Level N L∞ RMS
1 169 1.27E-01 4.98E-02
2 280 5.01E-02 1.69E-02
3 558 1.31E-02 4.61E-03
4 1823 1.06E-03 4.29E-04

Figure 5 shows the RMS norm versus the number of collocation nodes in both
the adaptive and fixed schemes. Considering the vertical lines in the Figure 5,
the conventional fixed scheme will result in RMS=1.62E-3 when N=1823. This
means while the total number of collocation points was kept constant at N=1823,
the adaptive scheme improves accuracy of the solution up to about four orders of
magnitude. However, a more in-depth understanding of efficiency of the adaptive
scheme may be gained if one considers the horizontal lines on the graphs, instead
of the vertical lines. If RMS≤4.30E-4 is the acceptable accuracy level, it is clear
from the horizontal line in Figure 5 that the number of required collocation nodes
in the fixed and adaptive scheme are N=1823 and N=3249, respectively. In other
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Figure 4: The base and adapted node distribution at different level of resolution.
Example 2

words, the compression index is Ic=56% where the acceptable accuracy level is
RMS≤4.30E-4. The reduced number of collocation nodes also reduces the condi-
tion number of coefficient matrix and mitigates the ill-conditioning problem. The
total number of collocation nodes plays a crucial role in RBF analysis not only
through the well-known ill-conditioning phenomenon in large scale problems, but
also through the fact that more collocation nodes significantly increase the required
memory and CPU time. For instance, the CPU time required for achieving the ac-
curacy of RMS≤4.30E-4 using the proposed adaptive scheme is about 35 seconds.
This computational time includes both the CPU time required for the adaptation
procedure and the RBF solution procedure. On the other hand, the CPU time for
achieving the accuracy level RMS≤4.30E-4 using the conventional fixed scheme
is about 765 seconds that includes only the CPU time needed for the RBF solution
procedure; the wavelet adaptive scheme is about 22 times faster. Therefore, the
proposed adaptive scheme is well suited for nearly singular large scale problems,
due to the significant savings of the memory and CPU time.

Example 3. The third example being investigated is the function with an internal
point wise near singularity. The problem is to find a function u(x,y), that satisfies
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Figure 5: Error Convergence of adaptive scheme compared to fixed scheme, Ex-
ample 2

the Poisson equation in a rectangle domain Ω = [0, 1]2.

∂
2u/∂x2 +∂

2u/∂y2 = 6(x+ y)/m− (4/a2−4(x−b)2/a4−4(y−b)2/a4)

exp(−(x−b)2/a2− (y−b)2/a2) (x,y) ∈ Ω (14a)

and satisfies the Dirichlet boundary condition

u = (x3 + y3)/m+ exp(−(x−b)2/a2− (y−b)2/a2) (x,y) ∈ ∂Ω (14b)

Note that the exact solution has a near singular point at (x,y) = (b,b). Let us con-
sider m=2, a=0.05 and b=0.5. The profile of the function and the nodes distribution
at each step of adaptation procedure are shown in Figure 6. It is evident that the
node distribution is dense in the center where the function has a strong point wise
gradient as well as near the boundaries where the solution is prone to oscillations.
The results clearly show that the adaptive procedure is able to detect the internal
region with high spatial gradients and refine the distribution where required.

Applying the proposed adaptive scheme will result in N=1507 nodes and RMS error
less than 8.50E-3 after four steps of adaptation. The RMS and L∞ error norms are
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summarized in Table 3. The number of evenly spaced nodes required for achieving
the RMS≤8.50E-3 in the conventional fixed scheme is N=47×47=2209. So the
compression index in the third problem is Ic=1507/2209=0.68.

Figure 6: The exact solution and the base and adapted node distribution at different
level of resolution. Example 3

Table 3: Error norms at the each step of the adaptive scheme, Example 3

Level N L∞ RMS
1 169 1.27E-01 4.98E-02
2 280 5.01E-02 1.69E-02
3 558 1.31E-02 4.61E-03
4 1823 1.06E-03 4.29E-04

The examples presented in this work reveal that the proposed adaptive scheme is
able to detect any type of near singularity near the boundary (e.g. example 2) or
inside the domain (e.g. example 1 and 3) and refine the nodes where required. This
is not the case with some other adaptive schemes that are able to detect only bound-
ary singularities, see Hon (1999) and Ling and Trummer (2006). Another attractive
feature of the proposed adaptive scheme is the automatic node clustering near the
boundaries. It is well known that the largest errors in RBF methods occur near
boundaries, see Libre, Emdadi, Kansa, Rahimian, and Shekarchi (2008) and Forn-
berg, Driscoll, Wright, and Charles (2002).. The reduction of the boundary error
is usually performed by clustering the nodes near or slightly outside the boundary,
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see Fedoseyev, Friedman, and Kansa (2002), or by using the pseudospectral meth-
ods, see Sarra (2005). The refined distributions of the third problem show that the
proposed adaptive scheme automatically assigns more nodes to the boundary layer.

Example 4. In this example, the proposed adaptive scheme is generalized in or-
der to obtain the near singular solutions of Helmholtz-type equations containing
an approximate singularity both in the solution and its derivatives. Let the polar
coordinate system (r,θ ) be defined in the usual way with respect to the Cartesian
coordinates (x,y) = (r cosθ ,r sinθ ). The Helmholtz equation, written in polar co-
ordinates takes the following form:

∂
2u/∂ r2 + r−1

∂u/∂ r + r−2
∂

2u/∂θ
2 + k2u = 0 (x,y) ∈Ω (15a)

Let Ω = [0, 1]2 be a rectangular domain, k2 =−1 and consider the following Dirich-
let boundary condition for the Helmholtz equation in polar coordinate system.

u(x,y) = r−1/2sinh(r)cos(θ/2) (x,y) ∈ ∂Ω (15b)

The solution of this problem is weakly singular at the origin (x,y) = (0, 0) but the
limit of r→0, the solution exists in the vicinity of the origin.

uex(r, θ) = r−1/2sinh(r)cos(θ/2){
u(r = 0,θ) = ∞

limr→0 u(r,θ) = 0
∀θ ∈Ω

On the other hand, the derivative of the solution is strongly singular at the origin
that means both the derivatives and its limit is singular at the origin.

∂u
∂ r

=
cosh(r) cos(θ)

r1/2 − sinh(r) cos(θ)
2r3/2{

∂u(r=0,θ)
∂ r = ∞

limr→0
∂u
∂ r = ∞

∀θ ∈Ω

The profiles of the exact solution and its derivative are depicted in Figure 7. The
adaptation procedure is applied to this example, but in contrast to the previous
examples, no significant difference between the adaptive and fixed scheme is ob-
served. The convergence rate observed in both the adaptive and fixed scheme is
almost the same. This is due to the fact that the solution u(r, θ ) is smooth enough
in the vicinity of the origin and the adaptation procedure has little effect on the
overall accuracy. On the other hand, the derivative of the solution is strongly sin-
gular at the origin but the proposed adaptive scheme can not detect the singularity
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Figure 7: The exact solution (left) and its derivative (right), Example 4

in the solution derivative. Therefore, the adaptation procedure must be generalized
in order that the adaptation scheme can detect the singularity in the derivatives. For
this goal, the wavelet coefficients in the adaptation procedure are simply computed
using the values of derivative of the solution at each level of resolution, instead of
values of the solution. In this way, the adaptive scheme will be able to detect the
singularity of the solution derivative. The generalized adaptive scheme is applied to
this example and the adaptive node distributions are shown in Figure 8. The figure
clearly shows that the generalized adaptive scheme is able to detect the singularity
in the derivatives of the solution and refine the nodes where the derivatives exhibit
sharp gradients.

Figure 8: The solution of fourth example and its derivative at different levels of
resolution

The L∞ and RMS error norms are computed using the function derivatives and the
results are summarized in Table 4. The adaptation procedure starts from a coarse-
based mesh containing 169 nodes that are evenly distributed in the domain and after
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Table 4: Error norms of function derivatives at the each step of the adaptive scheme,
Example 4

Level N L∞ RMS
1 169 1.34E-01 1.26E-01
2 286 9.37E-02 7.57E-02
3 459 7.69E-02 4.31E-02

three steps, there are 459 nodes primarily distributed around the origin. The conver-
gence error of the solution derivative, ∂u/∂ r, using the adaptive scheme and fixed
schemes are shown in Figure 9. The RMS error at the third step is RMS=4.31E-
02. The conventional fixed scheme requires N=28×28=784 nodes to obtain the
same level of accuracy. That means the compression index in the fourth example
is Ic=0.59. The fourth example clearly shows the ability of the proposed adaptive
scheme to capture the singularity both in the solution and its derivatives.

Figure 9: Error Convergence of derivative of the solution using adaptive scheme
compared to fixed scheme, Example 4
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5 Conclusion

In this paper, we have shown that the adaptive wavelet scheme is able to detect
the localized features of PDE solutions in the domain or near the boundary and to
allocate more nodes to the essential regions. In the framework of the adaptation
scheme, the wavelet coefficients were used as the parameters that indicate the ac-
curacy of the solution and determine where the node distribution can be coarsened
or refined. Therefore, the number of collocation nodes is optimized without dete-
riorating the accuracy of the solution. Certain aspects of the convergence of the
proposed adaptive wavelet scheme have been discussed through numerical exam-
ples. It has been shown that the proposed adaptive scheme is able to detect the
near singularity both in the function and its derivatives. The examples investigated
reveal that this method achieves very good performance in terms of convergence
rate and CPU time saving. The adaptation algorithm complexity O(N) is consid-
erably lower than the computational cost of other automatic adaptation strategies
proposed in the literature. The wavelet based adaptive scheme is a relatively new
technique, still under study and development within different areas of mathematics
and physics. Work is in progress to generalize the proposed adaptive scheme both
to nonlinear and time dependent PDEs.
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