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A Fictitious Time Integration Method for Solving m-Point
Boundary Value Problems

Chein-Shan Liu1

Abstract: We propose a new numerical method for solving the boundary value
problems of ordinary differential equations (ODEs) under multipoint boundary
conditions specified at t = Ti, i = 1, . . . ,m, where T1 < .. . < Tm. The finite dif-
ference scheme is used to approximate the ODEs, which together with the m-point
boundary conditions constitute a system of nonlinear algebraic equations (NAEs).
Then a Fictitious Time Integration Method (FTIM) is used to solve these NAEs.
Numerical examples confirm that the new approach is highly accurate and efficient
with a fast convergence. The FTIM can also be used to find the periods of nonlin-
ear ODEs system and its corresponding periodic solutions, as the van der Pol and
Duffing equations are investigated here. The numerical examples also include a
vibration problem of the Euler-Bernoulli beam under three-point boundary condi-
tions. The present method has a number advantages of easy implementation, easily
to treat nonlinear multipoint boundary value problems, and easily to extend to a
higher-dimensional first-order ODEs.

Keywords: Multi-point boundary value problems, Periodic solution, Euler-Bernoulli
beam, Fictitious Time Integration Method (FTIM)

1 Introduction

The boundary value problems (BVPs) for differential equations appear in a variety
of different areas of applied mathematics, physics and engineering, to name a few,
Melnikov and Melnikov (2001), Ali Libre et al. (2008), Liu, Chang and Chang
(2008), Chang, Chang and Liu (2008). Multipoint BVPs of ordinary differential
equations (ODEs) arise, when the states of a dynamical system are measured at
many points, and thus they are fundamental in many areas of engineering and sci-
ence. For example, the determination of period and periodic solution of nonlinear
dynamical system is one of the most important fields in the nonlinear research.
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When the period is known, the finding of periodic solution can be achieved by
solving a two-point BVP; when the period is unknown, the finding of period and
periodic solution can be achieved by solving a multipoint BVP.

There are many computational methods that have been developed for solving two-
point BVPs; see, e.g., Kubicek and Hlavacek (1983), Cash (1986, 1988), Cash
and Wright (1998), Keller (1992), Ascher, Mattheij and Russell (1995), Deeba,
Khuri and Xie (2000), Garg (1980), Ha (2001), Ha and Lee (2002), and Cuomo
and Marasco (2008). However, for the m-point BVPs with m≥ 3 only a few com-
putational methods have been reported [Ojika and Kasue (1979); Agarwal (1979);
Cakir and Amiraliyev (2007); Marhoune (2006), Liu (2008a)]. Also, many numer-
ical methods to determine periodic solutions and periods of nonlinear dynamical
systems are classified into two main categories: frequency domain method and
time domain method [Li and Xu (2004)]. Upon comparing them with the present
approach of Fictitious Time Integration Method (FTIM), one may appreciate that
the FTIM has a great flexibility by applying it to the determination of periodic
solutions and periods for many nonlinear dynamical systems.

Multipoint BVPs have attracted much attention from researchers, e.g., Calvert and
Gupta (2005), Gao and Pei (2008), An and Ma (2008), Sun and Zhang (2007),
Jiang and Li (2007), Bai (2007), Luo and Ma (2005), and Henderson (2004).
Gupta (1992, 1994) was the first who studied the solvability of three-point BVPs of
second-order ODEs. The shooting technique was used by Kwong (2006) to study
a certain three-point BVP of second-order ODE. Quasilinearization method is also
used by Ahmad, Khan and Eloe (2002) to obtain a monotone sequence converging
quadratically to a solution of three-point BVP of second-order ODE.

In this paper a new method is proposed for the numerical solution of the following
second-order m-point BVP:

ẍ = f (t,x, ẋ), T1 < t < Tm, (1)

H1(x(T1), ẋ(T1), . . . ,x(Tm), ẋ(Tm)) = 0, (2)

H2(x(T1), ẋ(T1), . . . ,x(Tm), ẋ(Tm)) = 0, (3)

where x(T1), ẋ(T1), . . . ,x(Tm), ẋ(Tm) are respectively the values of x and ẋ at m
different temporal points T1 < .. . < Tm. Here, [T1,Tm] is a time interval of our
problem. Since the boundary conditions are specified at m distinct points, this
problem is called an m-point BVP.

For an easier explanation of the present strategy to approach the m-point BVP, we
first focus on the above Eqs. (1)-(3). Later, they will be written as a first-order
ODEs system in Section 4, of which our approach by using the new method is
delivered. Then, the calculation of the m-point BVPs for the higher-dimensional
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first-order ODEs is easily extended by a similar approach.

The group preserving scheme (GPS) was developed previously by Liu (2001) for
initial value problems of ODEs. Recently, Liu (2006a, 2006b, 2006c) has extended
the GPS technique to solve the two-point BVPs, and numerical results reveal that
the Lie group shooting method (LGSM) is a rather promising technique to effec-
tively solve the two-point BVPs. Chang, Liu and Chang (2007) have employed
the LGSM to solve a backward heat conduction problem with a high performance.
Liu (2008b, 2008c) has employed the LGSM technique to accurately solve the in-
verse heat conduction problems of identifying nonhomogeneous heat conductivity
functions and time-dependent heat conductivity functions. More interestingly, as
shown by Liu (2008d) the Lie-group method is also useful in the inverse Sturm-
Liouville problem. Liu (2008a) has developed a two-stage Lie-group shooting
method (TSLGSM) for the three-point BVP governed by Eqs. (1)-(3) with m = 3.
The extension to a more points BVP is possible; however, many nonlinear alge-
braic equations (NAEs) are required to solve iteratively, which is computational
expensive, as well as increases the complexity of such an extension.

This paper is arranged as follows. In Section 2 we transform the above m-point
BVP into the NAEs by using the finite difference approximations, and we explain
a mathematical basis of a ficititious time integration method (FTIM) for solving
NAEs. In Section 3 we use some numerical examples to demonstrate the efficiency
of the new method of FTIM. Then, in Section 4 we use the first-order differential
equations system and the FTIM to solve the m-point BVPs. Numerical examples
are given under this formulation and some computed results are shown. Periods
and periodic solutions of the van der Pol and Duffing equations are given there. We
also use a vibration problem of an Euler-Bernoulli beam under multipoint bound-
ary conditions to evaluate the performance of the FTIM, which is a very high-
dimensional multipoint BVP, as being a discretization of the fourth-order partial
differential equation of wave propagation. Finally, we draw conclusions in Section
5.

2 A fictitious time integration method

2.1 Finite difference equations

We divide the time interval of [T1,Tm] into n− 1 subintervals by using a constant
time-step length ∆t = (Tm−T1)/(n−1). At a temporal grid point ti = T1 +(i−1)∆t,
xi is used to approximate the true value of x(ti). Therefore, from Eqs. (1)-(3) by
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using a finite difference scheme we can derive the following NAEs:

xi+1−2xi + xi−1

(∆t)2 − f
(

ti,xi,
xi+1− xi−1

2∆t

)
= 0, 2≤ i≤ n−1, (4)

H1

(
x1,

x2− x1

∆t
, . . . ,xi,

xi+1− xi−1

2∆t
, . . . ,xn,

xn− xn−1

∆t

)
= 0, (5)

H2

(
x1,

x2− x1

∆t
, . . . ,xi,

xi+1− xi−1

2∆t
, . . . ,xn,

xn− xn−1

∆t

)
= 0. (6)

Here, for simplicity we assume that the interior point Tj, where the boundary value
is specified, is coincident with a certain discretized time-point ti. Otherwise, we
may need to interpolate the values of x and ẋ at Tj by using the values at its two
neighbour grid points.

2.2 Transformation into an ODEs system

Eqs. (4)-(6) constitute a system of n nonlinear algebraic equations (NAEs), which
can be used to solve the n unknowns of xi, i = 1, . . . ,n.

In order to apply our new method to solve the system of NAEs, let us demonstrate
it by using a single NAE:

F(x) = 0, (7)

where we only have an independent variable x. We transform it into a first-order
ODE by introducing a fictitious time-like variable τ into the following transforma-
tion of variables from x to y:

y(τ) = (1+ τ)x. (8)

Here, τ is a variable which is independent of x; hence, y′ = dy/dτ = x. If ν 6= 0,
Eq. (7) is equivalent to

0 =−νF(x). (9)

Adding the equation y′ = x to Eq. (9) we obtain:

y′ = x−νF(x). (10)

By using Eq. (8) we can derive

y′ =
y

1+ τ
−νF

(
y

1+ τ

)
. (11)
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This is a first-order ODE for y(τ). The initial condition for the above equation is
y(0) = x, which is however an unknown and requires a guess.

Multiplying Eq. (11) by an integrating factor of 1/(1+ τ) we can obtain

d
dτ

(
y

1+ τ

)
=− ν

1+ τ
F
(

y
1+ τ

)
. (12)

Further using y/(1+ τ) = x, leads to

x′ =− ν

1+ τ
F(x). (13)

Therefore, we have transformed the algebraic Eq. (7) into a first-order nonau-
tonomous ODE. Under certain condition we expect that the solution of Eq. (13)
starting from an initial guess of x(0) can approximate the true solution x of Eq. (7).

The above idea was first proposed by Liu (2008d) to treat an inverse Sturm-Liouville
problem by transforming an ODE into a PDE. Then, Liu (2008e, 2008f, 2008g),
and Liu, Chang, Chang and Chen (2008) extended this idea to develop new meth-
ods for estimating parameters in the inverse vibration problems. Liu and Atluri
(2008a) have employed the technique of FTIM to solve a large system of non-
linear algebraic equations, and showed that high performance can be achieved by
using the FTIM. More recently, Liu (2008h) has used the FTIM technique to solve
the nonlinear complementarity problems, whose numerical results are very well.
Then, Liu (2008i) used the FTIM to solve the boundary value problems of elliptic
type partial differential equations. Liu and Atluri (2008b) also employed this tech-
nique of FTIM to solve mixed-complementarity problems and optimization prob-
lems. Then, Liu and Atluri (2008c) using the technique of FTIM solved the inverse
Sturm-Liouville problem, for specified eigenvalues.

Now, applying Eq. (13) to Eqs. (4)-(6) we can obtain

x′i =− ν1

1+ τ

[
xi+1−2xi + xi−1

(∆t)2 − f
(

ti,xi,
xi+1− xi−1

2∆t

)]
, 2≤ i≤ n−1, (14)

x′1 =− ν2

1+ τ
H1

(
x1,

x2− x1

∆t
, . . . ,xi,

xi+1− xi−1

2∆t
, . . . ,xn,

xn− xn−1

∆t

)
, (15)

x′n =− ν3

1+ τ
H2

(
x1,

x2− x1

∆t
, . . . ,xi,

xi+1− xi−1

2∆t
, . . . ,xn,

xn− xn−1

∆t

)
. (16)

The different coefficients ν1, ν2 and ν3 can be used to enhance the stability of
numerical integrations of the above equations.
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2.3 The GPS for ODEs system

We can write Eqs. (14)-(16) as

x′ = f(x,τ), x ∈ Rn, (17)

where x = (x1, . . . ,xn)T.

Group-preserving scheme (GPS) can preserve the internal symmetry group of the
considered ODE system. Although we do not know previously the symmetry group
of differential equations system, Liu (2001) has embedded it into an augmented
differential system, which concerns with not only the evolution of state variables
themselves but also the evolution of the magnitude of the state variables vector. Let
us note that

‖x‖=
√

xTx =
√

x ·x, (18)

where the dot between two n-dimensional vectors denotes their inner product. Tak-
ing the derivatives of both the sides of Eq. (18) with respect to τ , we have

d‖x‖
dτ

=
ẋTx√
xTx

. (19)

Then, by using Eqs. (17) and (18) we can derive

d‖x‖
dτ

=
fTx
‖x‖

. (20)

It is interesting that Eqs. (17) and (20) can be combined together into a simple
matrix equation:

d
dτ

[
x
‖x‖

]
=

 0n×n
f(x,τ)
‖x‖

fT(x,τ)
‖x‖ 0

[ x
‖x‖

]
. (21)

It is obvious that the first row in Eq. (21) is the same as the original equation (17),
but the inclusion of the second row in Eq. (21) gives us a Minkowskian structure
of the augmented state variables of X := (xT,‖x‖)T, which satisfies the cone con-
dition:

XTgX = 0, (22)

where

g =
[

In 0n×1
01×n −1

]
(23)
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is a Minkowski metric, and In is the identity matrix of order n. In terms of (x,‖x‖),
Eq. (22) becomes

XTgX = x ·x−‖x‖2 = ‖x‖2−‖x‖2 = 0. (24)

It follows from the definition given in Eq. (18), and thus Eq. (22) is a natural result.

Consequently, we have an n+1-dimensional augmented system:

X′ = AX (25)

with a constraint (22), where

A :=

 0n×n
f(x,τ)
‖x‖

fT(x,τ)
‖x‖ 0

 , (26)

satisfying

ATg+gA = 0, (27)

is a Lie algebra so(n,1) of the proper orthochronous Lorentz group SOo(n,1). This
fact prompts us to devise the group-preserving scheme (GPS), whose discretized
mapping G must exactly preserve the following Lie-group properties:

GTgG = g, (28)

det G = 1, (29)

G0
0 > 0, (30)

where G0
0 is the 00-th component of G.

Although the dimension of the new system is raised one more, it has been shown
that the new system permits a GPS given as follows:

Xk+1 = G(k)Xk, (31)

where Xk denotes the numerical value of X at τk, and G(k)∈ SOo(n,1) is the group
value of G at τk. If G(k) satisfies the properties in Eqs. (28)-(30), then Xk satisfies
the cone condition in Eq. (22).

The Lie group can be generated from A ∈ so(n,1) by an exponential mapping,

G(k) = exp[hA(k)] =

 In + (ak−1)
‖fk‖2 fkfT

k
bkfk
‖fk‖

bkfTk
‖fk‖ ak

 , (32)
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where

ak := cosh
(

h‖fk‖
‖xk‖

)
, (33)

bk := sinh
(

h‖fk‖
‖xk‖

)
, (34)

and h = τk+1− τk is a constant step length of the fictitious time τ .

Substituting Eq. (32) for G(k) into Eq. (31), we obtain

xk+1 = xk +ηkfk, (35)

‖xk+1‖= ak‖xk‖+
bk

‖fk‖
fk ·xk, (36)

where

ηk :=
bk‖xk‖‖fk‖+(ak−1)fk ·xk

‖fk‖2 . (37)

This scheme is group properties preserved for all h > 0, and is called the group-
preserving scheme.

2.4 Numerical procedure

Starting from an initial value of x(0), we can employ the above GPS to integrate
Eqs. (14)-(16) from τ = 0 to a selected final time τ f . In the numerical integration
process we can check the convergence of xi at the k- and k +1-steps by

n

∑
i=1

(xk+1
i − xk

i )
2 ≤ ε

2, (38)

where ε is a selected criterion. If at a time τ0 ≤ τ f the above criterion is satisfied,
then the solution of xi is obtained. In practice, if a suitable τ f is selected we find
that the numerical solution also approaches very well to the true solution, even the
above convergent criterion is not satisfied.

3 Numerical examples

In order to assess the performance of the newly developed method let us investigate
the following examples. We first treat two linear cases but with different boundary
conditions at the last two points of time. Then we consider some nonlinear cases,
which are subjecting to complex boundary conditions. Numerical examples also
cover a coupled second-order ODEs system.
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3.1 Example 1

Let us consider the following three-point BVP [Ma (1998)]:

ẍ =−2, x(0) = 0, x(1) = αx(ξ ). (39)

The exact solution is

x(t) =
1−αξ 2

1−αξ
t− t2. (40)

By applying the FTIM we obtain

x′i =− ν1

1+ τ

[
xi+1−2xi + xi−1

(∆t)2 +2
]
, 2≤ i≤ n−1,

x′n =− ν2

1+ τ
[xn−αxk], (41)

where we do not need the governing equation for x1 because x1 = x(0) = 0 is given.
On the other hand, k = ξ/∆t +1 is given when ξ is specified.

We calculate this three-point BVP using the following parameters: α = 3, ξ = 0.5,
∆t = 0.02, h = 0.001, ν1 = −0.8, ν2 = 0.01 and ε = 10−6. The initial guess of
xi is given by xi = 1.5. Through 3908 steps the solution is obtained. Comparing
with the exact solution the numerical error of x is plotted in Fig. 1(a), of which the
maximum error is 9.782×10−4.

By using the exact solution (40) we form a nonlinear five-point BVP:

x(0) = 0, x(0.25)+ x2(0.5)− x2(0.75)+ x(1) = c, (42)

where the value of c can be obtained by inserting Eq. (40) for x(t) into the above
equation. Under the following parameters: α = 3, ξ = 0.5, ∆t = 0.02, h = 0.001,
ν1 =−0.8, ν2 = 0.001 and ε = 10−6, and with the initial guess of xi = 1.5, through
3870 steps the solution is obtained. The numerical error of x is plotted in Fig. 1(b),
of which the maximum error is 3.445×10−3.

3.2 Example 2

For the following three-point BVP [Zhao (2007)]:

ẍ =−cos t, x(0) = 0, 3x(1/3)+2ẋ(1) = 0, (43)

the exact solution is

x(t) =
2
3

t sin1− t cos
1
3

+ t + cos t−1. (44)
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Figure 1: Displaying the numerical errors of Example 1 under different boundary 
conditions. 
 
 
 
 
 
 
 
 
 

Figure 1: Displaying the numerical errors of Example 1 under different boundary
conditions.

By applying the FTIM we have

x′i =− ν1

1+ τ

[
xi+1−2xi + xi−1

(∆t)2 + cos ti

]
, 2≤ i≤ n−1,

x′n =− ν2

1+ τ
[1.5∆txk + xn− xn−1], (45)

where ∆t = 1/(3(k−1)) with k = 19 for this calculation.

We calculate this three-point BVP using the following parameters: h = 0.002, ν1 =
−0.2, ν2 =−3 and ε = 10−6. The initial guess of xi is given by xi = 0.15ti. Through
8342 steps the solution is obtained, whose numerical error is plotted in Fig. 2(a) by
the solid line, of which the maximum error is 7.68×10−4.

Next, we consider a more complex boundary condition with

x(0)+ x(1) = c, x(0)+3x(1/3)+2ẋ(1) = 0, (46)

where c can be calculated from the exact solution. The governing equations are
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Figure 2: Displaying the numerical errors of Example 2 under different boundary 
conditions. 
 
 
 
 
 
 
 

Figure 2: Displaying the numerical errors of Example 2 under different boundary
conditions.

read as

x′i =− ν1

1+ τ

[
xi+1−2xi + xi−1

(∆t)2 + cos ti

]
, 2≤ i≤ n−1,

x′1 =− ν2

1+ τ
[x1 + xn− c],

x′n =− ν3

1+ τ
[0.5∆tx1 +1.5∆txk + xn− xn−1]. (47)

We calculate this case using the following parameters: h = 0.002, ν1 =−0.2, ν2 =
−0.1, ν3 =−1 and ε = 10−5. The initial guess of xi is given by xi = 0.15ti. Through
3175 steps the solution is obtained, whose numerical error is plotted in Fig. 2(b),
of which the maximum error is 6.53×10−3.
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3.3 Example 3

For the following three-point BVP:

ẍ =
1
8
(32+2t3− xẋ),

x(1) = 17, ẋ(2)+ x(3) =
43
3

, (48)

the exact solution is

x(t) = t2 +
16
t

. (49)

The FTIM is given by

x′i =− ν1

1+ τ

[
8(xi+1−2xi + xi−1)

(∆t)2 −32−2t3
i + xi

xi+1− xi−1

2∆t

]
, 2≤ i≤ n−1,

x′n =− ν2

1+ τ

[
xk+1− xk−1

2∆t
+ xn−

43
3

]
, (50)

where ∆t = 1/(k−1) with k = 31.

We calculate this case using the following parameters: h = 3× 10−5, ν1 = −3,
ν2 = 100, and ε = 10−6. The initial guess of xi is given by xi = ti. Through 16993
steps the solution is obtained. In Fig. 3(a) we plot the numerical error of x, which
is in the order of 10−4.

Next, we consider a more complex boundary condition:

x(1)+ x(2) = 29, x(2)+ x(3)+ ẋ(3) =
275

9
. (51)

In addition the first equation in Eq. (50) the FTIM is given by

x′1 =− ν2

1+ τ
[x1 + xk−29],

x′n =− ν2

1+ τ

[
xk + xn +

xn− xn−1

∆t
− 275

9

]
. (52)

We calculate this case using the following parameters: h = 2× 10−6, ν1 = −8,
ν2 = 2000, and ε = 10−6. The initial guess of xi is given by xi = 5ti. In Fig. 3(b)
we plot the numerical error of x by the solid line, which is in the order of 10−2.
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Figure 3: Displaying the numerical errors of Example 3 under different boundary 
conditions. 
 
 
 
 
 
 
 

Figure 3: Displaying the numerical errors of Example 3 under different boundary
conditions.

3.4 Example 4

We adopt an example from Kwong and Wong (2007):

ẍ+
x2

1+ x
= 0, (53)

under the following boundary conditions:

x(0)− ẋ(0) = 0, x(1)− 1
3

x(0.5) = 1. (54)

When applying the FTIM we can get

x′i =− ν1

1+ τ

[
xi+1−2xi + xi−1

(∆t)2 +
x2

i

1+ xi

]
, 2≤ i≤ n−1,

x′1 =− ν2

1+ τ

[
x1−

x2− x1

∆t

]
,

x′n =− ν3

1+ τ

[
xn−

xk

3
−1
]
, (55)
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where k = 1/(2∆t)+1.

We calculate this case using the following parameters: ∆t = 1/60, h = 10−5, ν1 =
−10, ν2 = 20, ν3 = 25 and ε = 10−6. The initial guess of xi is given by xi = 1.2.
The solution is compared with the solution obtained from Liu (2008a) by using
the two-stage Lie-group shooting method (TSLGSM) in Fig. 4. It can be seen that
these two solutions are very close.
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Figure 4: Comparing numerical solutions of Example 4 by using different numerical 
methods. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Comparing numerical solutions of Example 4 by using different numeri-
cal methods.

3.5 Example 5

As an application of FTIM to the two coupled second-order ODEs, we adopt an
example from Bellman, Kagiwada and Kalaba (1962) by determining the orbit of a
heavenly body:

ẍ+
x

3
√

x2 + y2
= 0, ÿ+

y
3
√

x2 + y2
= 0. (56)

At times ti, i = 1, . . . ,4 we are given that

y(ti) = [x(ti)−1] tanθ(ti). (57)

Consider the observational data:

θ(0.5) = 0.251297, θ(1) = 0.51024, θ(1.5) = 0.78369, θ(2) = 1.07654, (58)

which are obtained by assuming that at the zero time we have x(0) = 2, ẋ(0) = 0,
y(0) = 0 and ẏ(0) = 0.5.
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When applying the FTIM we can get

x′i =− ν1

1+ τ

xi+1−2xi + xi−1

(∆t)2 +
xi

3
√

x2
i + y2

i

 , 2≤ i≤ n−1,

y′i =− ν1

1+ τ

yi+1−2yi + yi−1

(∆t)2 +
yi

3
√

x2
i + y2

i

 , 2≤ i≤ n−1,

x′1 =− ν2

1+ τ
[yk1− xk1 tanθ1] ,

y′1 =− ν2

1+ τ
[yk3− xk3 tanθ3] ,

x′n =− ν3

1+ τ
[yk2− xk2 tanθ2] ,

y′n =− ν3

1+ τ
[yk4− xk4 tanθ4] , (59)

where k1 = 1/(2∆t)+1 with ∆t = 0.05, k2 = 2k1, k3 = 3k1, k4 = 4k1, n = 5k1, and
θi = θ(ti).
We calculate this case using the following parameters: h = 0.01, ν1 = −0.2, ν2 =
0.15, ν3 = 0.08 and ε = 10−4. Through 1826 steps the solution is obtained, of
which the values of x(0), y(0), x(2.5) and y(2.5) are listed in Table 1 to compare
with that obtained by Bellman, Kagiwada and Kalaba (1962).

Table 1: For Example 5 comparing the numerical results with that of Bellman,
Kagiwada and Kalaba (1962), shortened as BKK.

x(0) y(0) x(2.5) y(2.5)
BKK × × 1.193610 1.060700

present paper 2.000748 -0.01683 1.196662 1.061995

4 The FTIM for the first-order ODEs system

The above Examples 2-4 show that the boundary conditions may include the differ-
ential terms of x. In order to directly apply the FTIM to these problems and easily
extend to the higher-dimensional ODEs systems, let us return to Eqs. (4)-(6) and
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use ẋ = y to obtain:

ẋ = y, (60)

ẏ = f (t,x,y), (61)

H1(x(T1),y(T1), . . . ,x(Tm),y(Tm)) = 0, (62)

H2(x(T1),y(T1), . . . ,x(Tm),y(Tm)) = 0. (63)

Then we propose the following governing equations of FTIM:

x′i =− ν1

1+ τ

[
xi− xi−1

∆t
− yi

]
, i = 2, . . . ,n, (64)

y′i =− ν2

1+ τ

[
yi+1− yi

∆t
− f (ti,xi,yi)

]
, i = 2, . . . ,n−1, (65)

x′1 =− ν3

1+ τ
H1(x1,y1, . . . ,xn,yn), (66)

y′n =− ν4

1+ τ
H2(x1,y1, . . . ,xn,yn). (67)

Sometimes, it may be convenient by using

x′i =− ν1

1+ τ

[
xi− xi−1

∆t
− yi

]
, i = 2, . . . ,n−1, (68)

y′i =− ν2

1+ τ

[
yi− yi−1

∆t
− f (ti,xi,yi)

]
, i = 2, . . . ,n−1, (69)

x′1 =− ν3

1+ τ
H1(x1,y1, . . . ,xn,yn), (70)

y′1 =− ν4

1+ τ
H2(x1,y1, . . . ,xn,yn). (71)

This formulation is used when the initial conditions are absent, which imposes the
evolutions on both the initial conditions of x and y. Numerical examples will be
given below to employ the above two different formulations.

4.1 Example 6

We revisit Example 2 in Section 3.2 again, but use

x′i =− ν1

1+ τ

[
xi− xi−1

∆t
− yi

]
, i = 2, . . . ,n,

y′i =− ν2

1+ τ

[
yi+1− yi

∆t
+ cos ti

]
, i = 2, . . . ,n−1,

y′n =− ν3

1+ τ
[3xk +2yn], (72)
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where we do not need x′1 because x1 is given, and ∆t = 1/(3(k−1)) with k = 31.

We calculate this case using the following parameters: h = 0.02, ν1 = 2, ν2 =−2,
ν3 = 0.4, and ε = 10−5. The initial guesses of xi and yi are given by xi = yi = 0.1.
Through 2748 steps the solution is obtained. In Fig. 2(a) we plot the numerical
error of x by the dashed line, which is in the order of 10−5. It can be seen that the
accuracy of the present formulation is better than that in Section 2.

4.2 Example 7

We consider again Example 3 in Section 3.3 under condition (51), of which we
have

x′i =− ν1

1+ τ

[
xi− xi−1

∆t
− yi

]
, i = 2, . . . ,n,

y′i =− ν2

1+ τ

[
yi+1− yi

∆t
+4− t3

i
4

+
xiyi

8

]
, i = 2, . . . ,n−1,

x′1 =− ν3

1+ τ
[x1 + xk−29],

y′n =− ν3

1+ τ

[
xk + xn + yn−

275
9

]
. (73)

We calculate this case using the following parameters: h = 0.01, ν1 = 2, ν2 =
−0.06, ν3 = 10, and ε = 10−4. Through 11894 steps the solution is obtained. In
Fig. 3(b) we plot the numerical error of x by the dashed line, which is better than
the result given in Section 3.3.

4.3 Example 8

We consider again Example 4 in Section 3.4 by

x′i =− ν1

1+ τ

[
xi− xi−1

∆t
− yi

]
, i = 2, . . . ,n,

y′i =− ν1

1+ τ

[
yi− yi−1

∆t
+

x2
i

1+ xi

]
, i = 2, . . . ,n,

x′1 =− ν2

1+ τ
[x1− y1],

y′1 =− ν2

1+ τ

[
xn−

xk

3
−1
]
. (74)

We calculate this case using the following parameters: h = 0.01, ν1 = 5, ν2 = 0.5,
and ε = 10−5. Starting from the initial guesses of xi = yi = 0.83, through 1987
steps the solution is obtained. In Fig. 4 we plot the numerical solution of x by the
dashed-dotted line, which is very close to other two solutions.
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4.4 Example 9

For the unforced van der Pol equation:

ẋ = y,

ẏ = 0.01(1− x2)y− x, (75)

we subject it to the initial condition of (x(0),y(0)) = (1,2). By using the fourth-
order Runge-Kutta method we can calculate the solutions in the interval of [0,2],
and the following relations are denoted:

g1 = x(0)+ax(0.5)+ y2(1)−b = 0,

g2 = cx2(0)+ y(1)−d = 0, (76)

where a =−0.712710841715850, b =−0.258887329600159, c = 0.427909747385296,
and d = 0.648930342563872.

The FTIM for this example is

x′i =− ν1

1+ τ

[
xi− xi−1

∆t
− yi

]
, i = 2, . . . ,n,

y′i =− ν2

1+ τ

[
yi− yi−1

∆t
−0.01(1− x2

i )yi + xi

]
, i = 2, . . . ,n,

x′1 =− ν3

1+ τ
g1,

y′1 =− ν4

1+ τ
g2. (77)

We calculate this case using the following parameters: h = 0.01, ν1 = 1.5, ν2 = 2.5,
ν3 = 0.001, ν4 = 3 and ε = 10−5. Through 2592 steps the solution is obtained, of
which the values of x(0), y(0), x(0.5), y(0.5), x(1) and y(1) are listed in Table 2,
which are compared with the solutions obtained by Ojika (1987).

Table 2: For Example 9 comparing the numerical results with that of Ojika (1987).

x(0) y(0) x(0.5) y(0.5) x(1) y(1)
Ojika (1987) 0.999999 2.000000 1.834878 1.267030 2.214366 0.221021
present paper 0.999186 2.002273 1.829238 1.265275 2.200455 0.221721
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4.5 Example 10

We calculate some periodic solutions of the periodically forced van der Pol equa-
tion:

ẍ+ µ(x2−1)ẋ+ x = p0 cos(ωt), (78)

where we fix p0 = 9, ω = π and µ = 5.25, and the period T of periodic solution is
unknown; however, we have

x(0) = x(T ),
ẋ(0) = ẋ(T ). (79)

For the above case, Xu and Jiang (1996) had proven its periodic solution theoreti-
cally.

Let s = t/T ; we have

x′′(s)+ µT (x2−1)x′(s)+T 2x = T 2 p0 cos(ωT s),
x(0) = x(1),
x′(0) = x′(1). (80)

Furthermore, by using Ty = x′ we have the following system:

x′(s) = Ty,

y′(s)+ µT (x2−1)y+T x−T p0 cos(ωT s) = 0,

x(0) = x(1),
y(0) = y(1). (81)

Because T is an unknown, we require a governing equation of T . From Eq. (80) by
integrating the first equation one period from s = 0 to s = 1, we can get

p0 sin(ωT )
ωT

=
∫ 1

0
x(ξ )dξ . (82)

Suppose that the interval of s ∈ [0,1] is discretized into n− 1 subintervals with
∆s = 1/(n−1) and that we use xi = x(si) and yi = y(si) where si = (i−1)∆s, then
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from Eqs. (81) and (82) it follows that

xi− xi−1

∆s
−Tyi = 0, i = 2, . . . ,n,

yi− yi−1

∆s
+ µT (x2

i −1)yi +T xi−T p0 cos(ωT si) = 0, i = 2, . . . ,n,

∆s
n−1

∑
i=1

xi−
p0 sin(ωT )

ωT
= 0,

x1 = xn,

y1 = yn. (83)

The above equations constitute a nonlinear system with dimensions 2n+1 to solve
the 2n+1 unknowns of xi,yi, i = 1, . . . ,n, and T .

By applying the FTIM to the above equations we can get

x′i(τ) =
−ν1

1+ τ

[
xi− xi−1

∆s
−Tyi

]
, i = 2, . . . ,n,

y′i(τ) =
−ν2

1+ τ

[
yi− yi−1

∆s
+ µT (x2

i −1)yi +T xi−T p0 cos(ωT si)
]
, i = 2, . . . ,n,

T ′(τ) =
−ν3

1+ τ

[
∆s

n−1

∑
i=1

xi−
p0 sin(ωT )

ωT

]
,

x′1(τ) =
−ν4

1+ t
[x1− xn],

y′1(τ) =
−ν4

1+ t
[y1− yn]. (84)

Under the following parameters: ∆s = 10−3, h = 10−3, ν1 = 0.34, ν2 = 0.1, ν3 =
−30 and ν4 = 1500, we obtain a numerical solution where the values of T , x1,
xn, y1 and yn are recorded in Table 3. We also obtain another solution by using
ν1 = ν2 = 0.1 and ν3 =−4, when other parameters are kept unchanged.

Table 3: For Example 10 comparing the numerical results with different ν ′s.

T x1 xn y1 yn

19.99983 1.45345 1.45418 0.960997 0.961413
9.99924 1.73801 1.73970 0.62296 0.62161

When the initial values and period are available, we go back to Eq. (81) by inte-
grating the first two equations to obtain the periodic orbit. These two solutions are
plotted in Fig. 5, which are different periodic solutions.
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Figure 5: Comparing two different periodic solutions of Example 10. 
 
 
 
 

Figure 5: Comparing two different periodic solutions of Example 10.

4.6 Example 11

Then, we calculate periodic solutions of the periodically forced Duffing equation:

ẍ+ γ ẋ+αx+βx3 = p0 cos(ωt), (85)

where we fix p0 = 0.2, ω = 1.2, α =−0.2, β = 0.1 and γ = 0.3.
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Figure 6: Two periodic solutions of Example 11. 
 
 
 
 
 

Figure 6: Two periodic solutions of Example 11.

By applying the FTIM to the above equation we can get

x′i(τ) =
−ν1

1+ τ

[
xi− xi−1

∆s
−Tyi

]
, i = 2, . . . ,n,

y′i(τ) =
−ν2

1+ τ

[
yi− yi−1

∆s
+ γTyi +αT xi +βT x3

i −T p0 cos(ωT si)
]
, i = 2, . . . ,n,

T ′(τ) =
−ν3

1+ τ

[
α∆s

n−1

∑
i=1

xi +β∆s
n−1

∑
i=1

x3
i −

p0 sin(ωT )
ωT

]
,

x′1(τ) =
−ν4

1+ t
[x1− xn],

y′1(τ) =
−ν4

1+ t
[y1− yn]. (86)
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Under the following parameters: ∆s = 2× 10−3, h = 10−3, ν1 = 0.31, ν2 = 0.05,
ν3 = 15 and ν4 = 1000, we obtain a numerical solution with the values of T =
11.07718, x1 = 1.4189, xn = 1.41925, y1 = 0.2053151 and yn = 0.2053637 and the
periodic orbit is plotted in Fig. 6(a).

Similarly, under the following parameters: ∆s = 10−3, h = 10−3, ν1 = 0.3295,
ν2 = 0.1, ν3 = 15 and ν4 = 1000, we obtain a numerical solution with the values
of T = 6.5994, x1 = 1.317459, xn = 1.317812, y1 = 0.203511 and yn = 0.203517
and the periodic orbit is plotted in Fig. 6(b).

4.7 Example 12

In this example we consider a higher-dimensional first-order ODEs system, ob-
tained from the dimensionless formulation of the Euler-Bernoulli beam:
∂ 4y(x, t)

∂x4 +
∂ 2y(x, t)

∂ t2 = 0, (87)

where we subject it to a three-point boundary conditions with

y(0, t) =
∂y(0, t)

∂x
= 0,

∂ 2y(x0, t)
∂x2 = M(t),

∂ 3y(1, t)
∂x3 = F(t). (88)

0 < x0 < 1 is an internal point wherein a time-varying moment M(t) is applied. For
simplicity, the initial conditions are given by

y(x,0) =
∂y(x,0)

∂ t
= 0. (89)

Let yi, j be the discretized value of y(xi, t j), where xi = (i− 1)/(m1− 1) and t j =
( j− 1)t f /(m2− 1) are respectively the discretized coordinates of 0 < x < 1 and
0 < t < t f . A fully discretization of Eq. (87) by using the new variables u1 = y,
u2 = yx, u3 = yxx and u4 = yxxx is

ui, j
1 −ui−1, j

1
∆x

−ui, j
2 = 0,

ui, j
2 −ui−1, j

2
∆x

−ui, j
3 = 0,

ui+1, j
3 −ui, j

3
∆x

−ui, j
4 = 0,

−
ui, j+1

1 −2ui, j
1 +ui, j−1

1
∆t

−
ui+1, j

4 −ui, j
4

∆x
= 0. (90)
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By applying the FTIM to the above equations we can get

dui, j
1

dτ
= ν

[
ui, j

2 −
ui, j

1 −ui−1, j
2

∆x

]
,

dui, j
2

dτ
= ν

[
ui, j

3 −
ui, j

2 −ui−1, j
3

∆x

]
,

dui, j
3

dτ
= ν

[
ui, j

4 −
ui+1, j

3 −ui, j
4

∆x

]
,

dui, j
4

dτ
= ν

[
ui, j+1

1 −2ui, j
1 +ui, j−1

1
∆t

+
ui+1, j

4 −ui, j
4

∆x

]
. (91)

Because ui,1
1 = ui,2

1 = 0, u1, j
1 = u2, j

1 = 0, um3, j
3 = M(t j), where m3 = (m1−1)x0 +1,

and um1, j
4 = F(t j) are given, the differentials of these terms with respect to τ are

set equal to zeros. Under the following parameters: m1 = 51, m2 = 101, x0 = 0.9,
ν = 0.01, and h = 0.005 we integrate the above equations by the FTIM with an
initial guess of all ui, j

k , k = 1, . . . ,4 to be 0.01. Through 1000 steps the results are
obtained, which is plotted in Fig. 7(a), where we use

F(t) = 50000sin
(

πt
t f

)
,

M(t) =−
[

sin
(

πt
t f

)
+0.5sin

(
2πt
t f

)]
(92)

with t f = 5000. Because the moment is applied at one point x = 0.9, the projection
of the solution surface as shown in Fig. 7(a) along the t-axis as shown in Fig. 7(b)
appears an N-type kink near to the point x = 0.9.

5 Conclusions

The multipoint BVPs are discretized by the finite difference method. The present
paper simply transformed the resulting nonlinear algebraic equations into an evolu-
tionary system of equations by introducing a fictitious time, and had adding differ-
ent coefficients νi to enhance the stability of numerical integration of the resulting
ODEs and to speed up the convergence of solutions. Because no inverse of a matrix
is required, the present method is very time efficient. Several numerical examples
were worked out. Some are compared with exact solutions revealing that high ac-
curacy can be achieved by the FTIM. The new method is also applicable to the
solutions of multipoint BVPs of the first-order ODEs system, which is simple and
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Figure 7: The solution of Example 12 by using the FTIM. 
Figure 7: The solution of Example 12 by using the FTIM.
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has a great advantage to easily extend to the higher-dimensional ODEs with non-
linear multipoint BVPs. The FTIM was used to find the periods of nonlinear ODEs
system and its corresponding periodic solutions, like as the van der Pol and Duff-
ing equations. Its easy implementation and efficiency is over previous numerical
methods. The numerical examples also included a vibration problem of the Euler-
Bernoulli beam under a three-point boundary condition.

Acknowledgement: Taiwan’s National Science Council project NSC-97-2221-
E-019-009-MY3 granted to the author is highly appreciated.

References

Agarwal, R. P. (1979): The numerical solution of multipoint boundary value prob-
lems. Journal of Computational and Applied Mathematics, vol. 5, pp. 17-24.

Ahmad, B.; Ali Khan, R.; Eloe, P. W. (2002): Generalized quasilinearization
method for a second-order three point boundary-value problem with nonlinear bound-
ary conditions. Electric Journal of Differential Equations, vol. 2002, pp. 1-12.

Ali Libre, N.; Emdadi, A.; Kansa, E. J.; Rahimian, M.; Shekarchi, M. (2008):
A stabilized RBF collocation scheme for Neumann type boundary value problems.
CMES: Computer Modeling in Engineering & Sciences, vol. 24, pp. 61-80.

An, Y.; Ma, R. (2008): Global behavior of the components for the second order
m-point boundary value problems. Boundary Value Problems, vol. 2008, Article
ID 254593.

Ascher, U. M.; Mattheij, R. M. M.; Russell, R. D. (1995): Numerical Solution
of Boundary Value Problems for Ordinary Differential Equations. SIAM, Philadel-
phia.

Bai, C. (2007): Existence of positive solutions for fourth-order three-point bound-
ary value problems. Boundary Value Problems, vol. 2007, Article ID 68758.

Bellman, R.; Kagiwada, H.; Kalaba, R. (1962); Orbit determination as a multi-
point boundary-value problem and quasilinearization. Mathematics, vol. 48, pp.
1327-1329.

Cakir, M.; Amiraliyev, G. M. (2007): Numerical solution of a singularly per-
turbed three-point boundary value problem. International Journal of Computer
Mathematics, vol. 84, pp. 1465-1481.

Calvert, B.; Gupta, C. P. (2005): Existence and uniqueness of solutions to a super-
linear three-point boundary-value problem. Electric Journal of Differential Equa-
tions, vol. 2005, pp. 1-21.

Cash, J. R. (1986): On the numerical integration of nonlinear two-point boundary



A Fictitious Time Integration Method 151

value problems using iterated deferred corrections, Part 1: a survey and comparison
of some one-step formulae. Computer and Mathematics with Applications, vol. 12,
pp. 1029-1048.

Cash, J. R. (1988): On the numerical integration of nonlinear two-point boundary
value problems using iterated deferred corrections, Part 2: the development and
analysis of highly stable deferred correction formulae. SIAM Journal on Numerical
Analysis, vol. 25, pp. 862-882.

Cash, J. R.; Wright, R. W. (1998): Continuous extensions of deferred correction
schemes for the numerical solution of nonlinear two-point boundary value prob-
lems. Applied Numerical Mathematics, vol. 28, pp. 227-244.

Chang, C. W.; Chang, J. R.; Liu, C.-S. (2008): The Lie-group shooting method
for solving classical Blasius flat-plate problem. CMC: Computers, Materials &
Continua, vol. 7, pp. 139-153.

Chang, J. R.; Liu, C.-S.; Chang, C. W. (2007); A new shooting method for
quasi-boundary regularization of backward heat conduction problems. Interna-
tional Journal of Heat and Mass Transfer, vol. 50, pp. 2325-2332.

Cuomo, S.; Marasco, A. (2008): A numerical approach to nonlinear two-point
boundary value problems for ODEs. Computer and Mathematics with Applica-
tions, vol. 55, pp. 2476-2489.

Deeba, E.; Khuri, S. A.; Xie, S. (2000): An algorithm for solving boundary value
problems. Journal of Computational Physics, vol. 159, pp. 125-138.

Gao, Y.; Pei, M. (2008): Solvability for two classes of higher-order multi-point
boundary value problems at resonance. Boundary Value Problems, vol. 2008, Ar-
ticle ID 723828.

Garg, V. K. (1980): Improved shooting techniques for linear boundary value prob-
lems. Computer Methods in Applied Mechanics and Engineering, vol. 22, pp.
87-99.

Gupta, C. P. (1992): Solvability of a three-point nonlinear boundary value problem
for a second order ordinary differential equation. Journal of Mathematical Analysis
and Applications, vol. 168, pp. 540-551.

Gupta, C. P. (1994): A note on a second order three-point nonlinear boundary
value problem. Journal of Mathematical Analysis and Applications, vol. 186, pp.
277-281.

Ha, S. N. (2001): A nonlinear shooting method for two-point boundary value prob-
lems. Computer and Mathematics with Applications, vol. 42, pp. 1411-1420.

Ha, S. N.; Lee, C. R. (2002): Numerical study for two-point boundary value prob-
lems using Green’s functions. Computer and Mathematics with Applications, vol.



152 Copyright © 2009 Tech Science Press CMES, vol.39, no.2, pp.125-154, 2009

44, pp. 1599-1608.

Henderson, J. (2004): Double solutions of three-point boundary-value problems
for second-order differential equations. Electric Journal of Differential Equations,
vol. 2004, pp. 1-7.

Jiang, W.; Li, F. (2007): Several existence theorems of monotone positive solu-
tions for third-order multipoint boundary value problems. Boundary Value Prob-
lems, vol. 2007, Article ID 17951.

Keller, H. B. (1992): Numerical Methods for Two-point Boundary Value Problems.
Dover, New York.

Kubicek, M.; Hlavacek„ V. (1983): Numerical Solution of Nonlinear Boundary
Value Problems with Applications. Prentice-Hall, New York.

Kwong, M. K. (2006): The shooting method and multiple solutions of two/multi-
point BVPs of second order ODE. Electric Journal of Qualitative Theory of Differ-
ential Equations, vol. 2006, pp. 1-14.

Kwong, M. K.; Wong, J. S. (2007): The shooting method and nonhomogeneous
multipoint BVPs of second-order ODE. Boundary Value Problems, vol. 2007, Ar-
ticle ID 64012.

Li, D.; Xu, J. (2004): A method to determine the periodic solution of the non-linear
dynamics system. Journal of Sound and Vibration, vol. 275, pp. 1-16.

Liu, C.-S. (2001): Cone of non-linear dynamical system and group preserving
schemes. International Journal of Non-Linear Mechanics, vol. 36, pp. 1047-1068.

Liu, C.-S. (2006a): The Lie-group shooting method for nonlinear two-point bound-
ary value problems exhibiting multiple solutions. CMES: Computer Modeling in
Engineering & Sciences, vol. 13, pp. 149-163.

Liu, C.-S. (2006b): Efficient shooting methods for the second order ordinary dif-
ferential equations. CMES: Computer Modeling in Engineering & Sciences, vol.
15, pp. 69-86.

Liu, C.-S. (2006c): The Lie-group shooting method for singularly perturbed two-
point boundary value problems. CMES: Computer Modeling in Engineering &
Sciences, vol. 15, pp. 179-196.

Liu, C.-S. (2008a): A two-stage LGSM for three-point BVPs of second-order
ODEs. Boundary Value Problems, vol. 2008, Article ID 963753, 22 pages.

Liu, C.-S. (2008b): An LGSM to identify nonhomogeneous heat conductivity
functions by an extra measurement of temperature. International Journal of Heat
and Mass Transfer, vol. 51, pp. 2603-2613.

Liu, C.-S. (2008c): An LGEM to identify time-dependent heat conductivity func-



A Fictitious Time Integration Method 153

tion by an extra measurement of temperature gradient. CMC: Computers, Materials
& Continua, vol. 7, pp. 81-95.

Liu, C.-S. (2008d): Solving an inverse Sturm-Liouville problem by a Lie-group
method. Boundary Value Problems, vol. 2008, Article ID 749865, 18 pages.

Liu, C.-S. (2008e): Identifying time-dependent damping and stiffness functions by
a simple and yet accurate method. Journal of Sound and Vibration, vol. 318, pp.
148-165.

Liu, C.-S. (2008f): A Lie-group shooting method for simultaneously estimating the
time-dependent damping and stiffness coefficients. CMES: Computer Modeling in
Engineering & Sciences, vol. 27, pp. 137-149.

Liu, C.-S. (2008g): A Lie-group shooting method estimating nonlinear restoring
forces in mechanical systems. CMES: Computer Modeling in Engineering & Sci-
ences, vol. 35, pp. 157-180.

Liu, C.-S. (2008h): A time-marching algorithm for solving non-linear obstacle
problems with the aid of an NCP-function. CMC: Computers, Materials & Con-
tinua, vol. 8, pp. 53-65.

Liu, C.-S. (2008i): A fictitious time integration method for two-dimensional quasi-
linear elliptic boundary value problems. CMES: Computer Modeling in Engineer-
ing & Sciences, vol. 33, pp. 179-198.

Liu, C.-S.; Atluri, S. N. (2008a): A novel time integration method for solving
a large system of non-linear algebraic equations. CMES: Computer Modeling in
Engineering & Sciences, vol. 31, pp. 71-83.

Liu, C.-S.; Atluri, S. N. (2008b): A fictitious time integration method (FTIM)
for solving mixed complementarity problems with applications to non-linear op-
timization. CMES: Computer Modeling in Engineering & Sciences, vol. 34, pp.
155-178.

Liu, C.-S.; Atluri, S. N. (2008c): A novel fictitious time integration method for
solving the discretized inverse Sturm-Liouville problems, for specified eigenval-
ues. Modified Potentials as a Tool for Computing Green’s Functions in Continuum
Mechanics

Liu, C.-S.; Chang, C. W.; Chang, J. R. (2008): A new shooting method for
solving boundary layer equation in fluid mechanics. CMES: Computer Modeling
in Engineering & Sciences, vol. 32, pp. 1-15.

Liu, C.-S.; Chang, J. R.; Chang, K. H.; Chen, Y. W. (2008): Simultaneously
estimating the time-dependent damping and stiffness coefficients with the aid of
vibrational data. CMC: Computers, Materials & Continua, vol. 7, pp. 97-107.

Luo, H.; Ma, Q. (2005): Positive solutions to a generalized second-order three-



154 Copyright © 2009 Tech Science Press CMES, vol.39, no.2, pp.125-154, 2009

point boundary value problem on time scales. Electric Journal of Differential
Equations, vol. 2005, pp. 1-14.

Ma, R. (1998): Positive solutions of a nonlinear three-point boundary-value prob-
lem. Electric Journal of Differential Equations, vol. 1998, pp. 1-8.

Marhoune, A. L. (2006): A three-point boundary value problem with an integral
two-space-variables condition for parabolic equations. Computer and Mathematics
with Applications, vol. 53, pp. 940-947.

Melnikov, Y. A.; Melnikov, M. Y. (2001): Modified potentials as a tool for com-
puting Green’s functions in continuum mechanics. CMES: Computer Modeling in
Engineering & Sciences, vol. 2, pp. 291-306.

Ojika, T. (1987): Modified deflation algorithm for the solution of singular prob-
lems. II. nonlinear multipoint boundary value problems. Journal of Mathematical
Analysis and Applications, vol. 123, pp. 222-237.

Ojika, T.; Kasue, Y. (1979): Initial-value adjusting method for the solution of
nonlinear multipoint boundary-value problems. Journal of Mathematical Analysis
and Applications, vol. 69, pp. 359-371.

Sun, Y.; Zhang, X. (2007): Existence of symmetric positive solutions for an m-
point boundary value problem. Boundary Value Problems, vol. 2007, Article ID
79090.

Xu, J.; Jiang, J. (1996): The global bifurcation characteristics of the forced van
der Pol oscillator. Chaos Solitons and Fractals, vol. 7, pp. 3-19.

Zhao, Z. (2007): Positive solutions for singular three-point boundary-value prob-
lems. Electric Journal of Differential Equations, vol. 2007, pp. 1-8.


