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Abstract: A discontinuous Galerkin (DG) finite element method for the heat con-
duction problems with local high gradient and thermal contact resistance is pre-
sented. The DG formulation is constructed by employing the stabilization term and
the Bassi-Rebay numerical flux term. The stabilization term is defined by a penal-
ization of the temperature jump at the interface. By eliminating the penalization
term of the temperature jump in the region of local high gradient and imperfect
contact interfaces, the present DG method is applied to solve problems involving
local high gradient and thermal contact resistance where the numerical flux is ob-
tained from the definition of the thermal contact resistance. This treatment leads to
a novel approach to capture the peak value of the heat flux in local high gradient
field and the temperature jump at the imperfect contact interface. Moreover, an it-
erative procedure and a relaxation technique are also adopted herein to simulate the
nonlinear thermoelastic coupling between thermal contact resistance, temperature
and stress field, which can easily avoid numerical instability and gets reasonable
results.
Several numerical examples are given to demonstrate the accuracy and the reliabil-
ity of the present DG finite element method. From our investigations, we find that
the DG method is an attractive and competitive approach for solving heat conduc-
tion problems with local high gradient and thermal contact resistance, and also can
easily avoid numerically instability in dealing with nonlinear coupling problems
caused by thermal contact resistance.
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1 Introduction

Interest in heat conduction problems with local high gradient and thermal con-
tact resistance originally received a strong impulse from nuclear, aeronautic and
aerospace technologies. In problems such as nuclear reactors, layered structures,
heat exchangers and heat removal from electronic devices, thermal contact resis-
tance plays a very important role [Bahrami et al. (2006)]. In the high gradient
temperature field problems, even with a very refined mesh, it is difficult to cap-
ture the peak value of the heat flux by using traditional continuous Galerkin finite
element method, unless it is coupled with some special techniques such as curvi-
linear spectral overlay method [Belytschko and Lu (1992)]. In order to simulate
the temperature discontinuity phenomenon at the contact interface caused by ther-
mal contact resistance, the continuous Galerkin method employs interface elements
to perform the analyses [Blandford and Tauchert (1985)], and this approach intro-
duces additional freedom at the interface. Some researchers employ mesheless lo-
cal Petrov-Galerkin (MLPG) method [Li et al. (2003)], or the moving least squares
(MLS) approximation scheme of element-free Galerkin (EFG) method [Masuda
and Noguchi (2006)], or the boundary element method [Keppas et al. (2008)], or
the Material Point Method (MPM) [Chen et al. (2008)], to model other discontinu-
ous phenomena such as material discontinuity on the interface.

Since the discontinuous Galerkin (DG) finite element method allows discontinuities
of the physical unknowns within the interior of the problem domain, it seems to be
a natural approach to capture these discontinuities numerically. This DG method-
ology results from the integration by parts on the finite element of the governing
equations multiplied by discontinuous weighting functions. Physical unknowns
and weighting functions are substituted by a discontinuous polynomial approxima-
tion respectively. Since this integration by parts is applied to finite element, it leads
to element boundary integral terms usually referred to as numerical fluxes. These
terms enforce the consistency and the continuity of the problem unknowns in a
weak manner.

The first DG method was introduced by Reed and Hill for the neutron transport
equation [Reed and Hill (1973)], which is a linear hyperbolic partial differential
equation. Due to the properties of locally conservative, high-order accurate, and
dissipation or stabilization through jumps in the DG method, even in convection-
dominated regimes, the DG method has received considerable attention in compu-
tational fluid dynamics, for example, in gas dynamics [Bassi and Rebay (1997)],
compressible [Bassi and Rebay (1997)] and incompressible [Cockburn et al. (2005)]
flows, magneto-hydrodynamics [Warburton and Karniadakis (1999)], and other
fields, like structural dynamics [Li and Wiberg (1998); Chien and Wu (2008)], mod-
eling of functionally graded and layered materials [Aksoy and Senocak (2005)],
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Maxwell equations [Dolean et al. (2008)], et al.

Although the original impetus of most researches on the DG method was the so-
lution of hyperbolic and parabolic problems, the applications of the DG method
have also spread to the elliptic problems [Arnold et al. (2002)]. Some representa-
tive examples are Timoshenko beams [Celiker et al. (2006)], shells [G uzey et al.
(2006); G uzey et al. (2007)], nonlinear elasticity [Eyck and Lew (2006)], hypere-
lasticity [Noels and Radovitzky (2006)], incompressible and nearly incompressible
linear elasticity [Hansbo and Larson (2002)], strain gradient elasticity [Engel et al.
(2002)], elastoplasticity [Alberty and Carstensen (2002)], et al. Khalmanova and
Costanzo proposed a space-time discontinuous Galerkin finite element method for
fully coupled linear thermo-elasto-dynamic problems with strain and heat flux dis-
continuities [Khalmanova and Costanzo (2008)], but they didn’t consider the dis-
continuity caused by the imperfect contact on the material interface. Kanapady, et
al. provided the so-called local discontinuous Galerkin (LDG) method for solving
various kinds of heat conduction problems with temperature discontinuity caused
by thermal contact resistance [Kanapady et al. (2005); Jain et al. (2006)]. For
a detailed overview of the DG method, from the theoretical, performance and ap-
plication perspectives we refer the readers to the review articles [Cockburn et al.
(2000); Cockburn (2003)] and the references therein. However, up to now, to the
authors’ knowledge, the application of the DG method on the heat conduction prob-
lems with local high gradient and thermal contact resistance has not been met.

The main purpose of this paper is to develop the DG finite element method to solve
heat conduction problems with local high gradient and thermal contact resistance
where the DG concept can show its advantages compared to the continuous formu-
lation. The present DG method is also extended to solve the nonlinear coupling
problems caused by thermal contact resistance.

The paper is organized as follows: Section 2 provides the detailed formulation
and implementation of the DG finite element method for heat conduction prob-
lems. Section 3 presents examples provides several numerical evidences and ap-
plications in engineering problems of the established properties of the DG finite
element method. Finally, some conclusions and discussions are given in Section 4.

2 Formulation of the DG finite element method

In this section, we introduce the formulation of the DG finite element method as
applied to the equations of heat conduction problems.
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2.1 Problem definition

We consider the following heat conduction problem on the domain Ω bounded by
∂Ω, as shown in Fig. 1. The governing equations can be expressed as:

∇ ·q− f = 0 on Ω (1)

q+k(x)∆T = 0 on Ω (2)Figures 

Figure 1:  Solution domain and its boundary parts. ∂ΩD and ∂ΩN represent the parts 
of the boundary where Dirichlet and Neumann boundary conditions, respectively, are 

applied. 

 

Figure 2:  Illustration of approximation functions for the DG method on a three 
element patch of linear triangles

∂ΩN 

∂ΩD 

Ω 

n 

Figure 1: Solution domain and its boundary parts. ∂ΩD and ∂ΩN represent the parts
of the boundary where Dirichlet and Neumann boundary conditions, respectively,
are applied

The boundary ∂Ω is decomposed into a region of Dirichlet boundary conditions
∂ΩD and Neumann boundary conditions ∂ΩN (i.e. ∂ΩD∪∂ΩN = ∂Ω and ∂ΩD∩
∂ΩN = /0):

T = T̄ on ∂ΩD (3)

n ·q = q̄ on ∂ΩN (4)

In Equations (1)-(4), ∇ denotes the gradient operator, q is the heat flux, f is the heat
source, k(x) is a symmetric matrix of thermal conductivity coefficients which may
vary in space, T is the temperature field, T̄ and q̄ are the prescribed temperature
and heat flux respectively, n is the outward unit normal to the boundary ∂Ω.

Equations (1)-(4) are the governing differential equation for the heat conduction
problem, which are also called strong form of the problem. The solution for the
strong form must satisfy the differential Equations (1) and (2) at each point of the
domain and the boundary conditions (3) and (4). In order to obtain the approximate
solution of the problem, by taking the inner product of Equations (1) and (2) with
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weighting functions v and w respectively, over the solution domain Ω we obtain the
weak form of the problem:∫

Ω

v(∇ ·q− f )dΩ = 0 on Ω (5)

∫
Ω

w · (q+k∇T )dΩ = 0 on Ω (6)

where weighting functions v and w are a set of arbitrary functions equal in number
to the number of equations involved.

2.2 Elemental formulation of the weak form

For a two dimensional problem we assume ℑ(Ω) is a two dimensional tessellation
of the domain Ω. Let Ωe ∈ ℑ(Ω) bounded by ∂Ωe be a non-overlapping element
within the tessellation such that if e1 6= e2 then Ωe1 ∩Ωe2 = /0, and it may have
hanging nodes and elements of various shapes. We define the following two spaces
for our discontinuous approximations:

Vh : =
{

v ∈ L2 (Ω) : v|
Ωe ∈ P(Ωe)∀Ωe ∈ ℑ

}
Σh : =

{
w ∈

(
L2 (Ω)

)2
: w|

Ωe ∈ Σ(Ωe)∀Ωe ∈ ℑ

}
where P(Ωe) is the space of linear polynomial functions and Σ(Ωe) = (P(Ωe))2.
We assume that the discrete spaces, Vh and Σh, are finite dimensional. Fig. 2
illustrates the discontinuous nature of the approximation functions across interior
element boundaries for a three elements patch of linear triangles.

 

Figure 2: Illustration of approximation functions for the DG method on a three
element patch of linear triangles

Let ve ∈ Vh and we ∈ Σh denote the scalar and vector weighting functions respec-
tively, defined on an element Ωe. Now the problem reduces to finding T e ∈Vh and



268 Copyright © 2009 Tech Science Press CMES, vol.39, no.3, pp.263-299, 2009

qe ∈ Σh such that for all Ωe ∈ ℑ(Ω) we have:∫
Ωe

ve (∇ ·qe− f e)dΩ = 0 ∀ve ∈Vh (7)∫
Ωe

we · (qe +Ke
∇T e)dΩ = 0 ∀we ∈ Σh (8)

Integrating by parts the terms associated with the divergence in Equation (7) and
gradient in Equation (8) lead to:∫

Ωe
ve

∇ ·qedΩ =
∮

∂Ωe
ve (ne ·qe)dΓ−

∫
Ωe

∇ve ·qedΩ (9)∫
Ωe

we · (Ke
∇T e)dΩ =

∮
∂Ωe

T e (Kewe) ·nedΓ−
∫

Ωe
T e

∇ · (Kewe)dΩ (10)

where ne is the outward unit normal to the boundary ∂Ωe.

Substituting Equation (9) into Equation (7) and substituting Equation (10) into
Equation (8), the following form can be obtained:∫

Ωe
(∇ve ·qe + ve f e)dΩ =

∮
∂Ωe

ve (ne ·qe)dΓ (11)∫
Ωe

(T e
∇ · (Kewe)−we ·qe)dΩ =

∮
∂Ωe

T e (Kewe) ·nedΓ (12)

In Equations (11) and (12) we note that the values of qe and T e are required in the
boundary integration terms

∮
∂Ωe ve (ne ·qe)dΓ and

∮
∂Ωe T e (Kewe) ·nedΓ of each el-

ement respectively. Since the main feature of the traditional continuous Galerkin
finite element method is the assumption of continuity in the primary variable across
interior boundaries, after the global assembly procedure the internal boundary in-
tegration terms disappeared. But due to the discontinuous nature of the approxima-
tion functions in the DG finite element, interelement discontinuity is allowed, so
in the DG formulation continuity of the unknown variables are enforced by using
stabilization terms and numerical fluxes between the interior elemental boundaries
which will be discussed in the following subsections. Finally, we must note that in
the above discussion it was implicitly assumed that all the integrals are capable of
being evaluated.

2.2.1 Numerical flux

In the present DG formulation, we replace the element heat flux qe and element
temperature T e in the boundary integration terms by the so-called numerical fluxes
q̂e and T̂ e respectively to obtain the DG finite element equations:∫

Ωe
(∇ve ·qe + ve f e)dΩ =

∮
∂Ωe

ve (ne · q̂e)dΓ (13)
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∫
Ωe

(T e
∇ · (Kewe)−we ·qe)dΩ =

∮
∂Ωe

T̂ e (Kewe) ·nedΓ (14)

The temperature numerical flux T̂ e can be expressed in terms of T e and T eb, and
heat flux numerical flux q̂e can be expressed in terms of qe and qeb, where T eb

and qeb denote the temperature and heat flux in the element eb , respectively. Here
the superscript “eb” denotes the neighbor element of element e. The choice of the
numerical fluxes is quite delicate, as it has great effect on the stability and accuracy
of the method as well as the sparsity and symmetry of the stiffness matrix.

In the present research the numerical fluxes at the interior boundary Γeb of element
e neighbored with element eb are defined by:

T̂ e = αT T e +βT T eb on Γ
eb (15)

q̂e = αqqe +βqqeb on Γ
eb (16)

From a consistency point of view, the real valued numerical flux coefficients αT ,
βT , αq and βq should satisfy the constraint:

αT +βT = 1

αq +βq = 1
(17)

We can get different versions of DG finite element methodology by using different
numerical flux coefficients. A simple and natural choice of the numerical fluxes
is proposed by Bassi and Rebay [Bassi and Rebay (1997)], which is so-called the
Bassi-Rebay numerical fluxes. It takes the arithmetic average of the two values of
temperature T and heat flux q at the boundary of the elements as the numerical
fluxes T̂ e and q̂e respectively:

T̂ e =
1
2

(
T e +T eb

)
on Γ

eb (18)

q̂e =
1
2

(
qe +qeb

)
on Γ

eb (19)

Numerical fluxes (18) and (19) implies that αT = βT = αq = βq = 1/2.

If part of the element boundary ∂Ωext ∈ (∂ΩD∪∂ΩN), then the numerical fluxes
on the external boundary ∂Ωext are defined by:

T̂ e =

{
T̄ if ∂Ωext ∈ ∂ΩD

T e if ∂Ωext ∈ ∂ΩN
(20)

ne · q̂e =

{
q̄ if ∂Ωext ∈ ∂ΩN

ne ·qe if ∂Ωext ∈ ∂ΩD
(21)
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2.2.2 Stabilization

The stabilization terms in the formulation of DG method are of crucial importance.
Brezzi et al. investigated the stabilization mechanisms in DG methods [Brezzi et
al. (2006)]. Sherwin et al. pointed out that stabilization is necessary when us-
ing the Bassi-Rebay boundary numerical fluxes [Sherwin et al. (2006)], and it
can also enhance the numerical stability and accuracy when using other kinds of
numerical fluxes. Typically, stabilization can be defined as the penalization of
the jump of the primitive variable at the interface of two neighbored elements∫

Γeb τve
(
T e−T eb

)
dΓ, where τ is the stabilization parameter, and it can be inter-

preted as the weak enforcement of continuity of the primitive variable across inte-
rior boundaries. Nitsche introduced a least-squares term

∫
Γeb τve

(
T e−T eb

)2 dΓ as
the stabilization term, and he also showed that for linear element, the stabilization
parameter τ should be O(‖Ke‖/h) > 0, where h is an element size measure and
‖Ke‖ is a norm of the thermal conduction coefficient matrix [Zienkiewicz et al.
(2003)].

In the present research we adopt the penalization of the jump of the temperature at
the interface, so the stabilized DG finite element equations can be written as:

∫
Ωe

(∇ve ·qe + ve f e)dΩ+
Ne

b

∑
eb=1

∫
Γeb

τve
(

T e−T eb
)

dΓ =
∮

∂Ωe
ve (ne · q̂e)dΓ (22)

∫
Ωe

(T e
∇ · (Kewe) - we ·qe)dΩ =

∮
∂Ωe

T̂ e (Kewe) ·nedΓ (23)

where Ne
b denotes the number of boundary segments in element e, Γeb denotes the

eb-th boundary segment in element e.

2.3 DG finite element equation

Suppose that the temperature T e and heat flux qe are approximated over a typical
finite element Ωe by the expressions:

T e = Ne
T δTe, qe = Ne

qδqe (24)

where δTe and δqe denote listings of nodal temperatures and heat fluxes for ele-
ment e. Ne

T and Ne
q denote the expansion basis or shape functions. Here the shape

functions can be constructed independently in each element domain Ωe , so that the
order of the approximating polynomial can be easily changed from one element to
the other and refinement of the grid can be achieved without taking into account
the continuity restrictions which is typical of continuous finite element methods,



A Discontinuous Galerkin Finite Element Method 271

and this makes the DG method can easily handle adaptivity strategies. In order to
obtain a Galerkin style formulation, the weighting functions ve and we are taken as:

ve = (Ne
T )T

we =
(
Ne

q
)T (25)

Substituting Equations (24) and (25) into Equations (22) and (23), the following
DG finite element equations can be obtained:

(Ke
3−Ke

1)δqe +
Ne

b

∑
eb=1

Keb
3 δqeb−Ke

2δTe−
Ne

b

∑
eb=1

Keb
2 δTeb = Fe

T

Ke
5δqe +(Ke

6−Ke
4)δTe +

Ne
b

∑
eb=1

Keb
6 δTeb = 0

(26)

where we have used the definitions described in the following.

The term Ke
1 corresponds to the elemental contribution which is typically arises in

a continuous Galerkin finite element formulation:

Ke
1 =

∫
Ωe

∇(Ne
T )T ·Ne

qdΩ (27)

Ke
2 and Keb

2 denote the contribution of stabilization and are given by:

Ke
2 =

∮
∂Ωe

τ (Ne
T )T Ne

T dΩ

Keb
2 =

∫
Γeb
−τ (Ne

T )T Neb
T dΓ

(28)

Ke
3 and Keb

3 denote the contribution of interface integration caused by the heat flux
numerical flux q̂e and are given by:

Ke
3 =

∮
∂Ωe

αq (Ne
T )T (ne ·Ne

q
)

dΓ

Keb
3 =−

∫
Γeb

βq (Ne
T )T

(
ne ·Neb

q

)
dΓ

(29)

Fe
T denotes the element heat load vector relating to internal heat generation and is

given by:

Fe
T =

∫
Ωe

(Ne
T )T f edΩ (30)
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Ke
4 and Ke

5 corresponds to the heat conduction constitutive equation and are given
by:

Ke
4 =

∫
Ωe

Ne
T Ke

∇ · (Ne
T )T dΩ

Ke
5 =

∫
Ωe
−
(
Ne

q
)T Ne

qdΩ

(31)

Ke
6 and Keb

6 corresponds to the contribution of interface integration caused by the
temperature numerical flux T̂ e and are given by:

Ke
6 =

∮
∂Ωe

αT Ne
T Ke (Ne

q
)T ·nedΓ

Keb
6 =

∫
Γeb

βT Neb
T Ke (Ne

q
)T ·nedΓ

(32)

If the temperature numerical flux T̂ e is independent with the heat flux on the ele-
ment interior boundary, then the variable qe can be solved through Equation (23)
in an element-by-element fashion to get:

δqe = (Ke
5)
−1

(
(Ke

4−Ke
6)δTe−

Ne
b

∑
eb=1

(
Keb

6 δTeb
))

(33)

Then qe can be eliminated from the equations by substituting (33) into Equation
(22) to get the DG finite element equation on element domain Ωe:

Ke
δTe +

Ne
b

∑
eb=1

(
Keb

δTeb +Kebb
δTebb

)
= Fe

T (34)

where,

Ke = (Ke
3−Ke

1)(K
e
5)
−1 (Ke

4−Ke
6)−Ke

2

Keb = Keb
3 (Ke

5)
−1
(

Keb
4 −Keb

6

)
− (Ke

3−Ke
1)(K

e
5)
−1 Keb

6 −Keb
2

Kebb =−
Nebb

b

∑
ebb=1

(
Keb

3

(
Keb

5

)−1
Kebb

6

) (35)

here the superscript “ebb” denotes the neighbor element of element eb.

The assembly procedure for DG finite element method is the same as that used for
continuous Galerkin finite element method, and the assembled system of equations
corresponding to the unknown primary variables can be written as:

KT = F (36)
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After the imposition of the boundary conditions procedure, the assembled equations
can be solved by traditional techniques that are widely employed for the continuous
Galerkin method, then we can use Equation (23) to compute the heat flux or other
desired quantities from the primary degrees of freedom computed from Equation
(36).

2.4 Remarks on numerical implementation

Here we consider the continuous Galerkin finite element implementation as a base-
line, and comment on the essential modifications to obtain the DG one. DG finite
element method involves contributions of the stabilization and numerical flux inte-
gration terms on interior boundaries, which require the introduction of a loop over
interior boundaries in addition to the loop over all the elements. This interaction
between the two-neighbored elements makes it necessary to implement a search
algorithm that can detect the interface of the element and its neighbor element. In
the present study, we give all the neighbor information such as neighbor elements
and common sides when preparing the input gridding data.

In the following subsections, we give some remarks on the numerical implementa-
tion of the DG finite element method in solving problems involve local high gradi-
ent, imperfect thermal contact and thermoelastic coupling.

2.4.1 Problems with local high gradient

Local high gradient temperature field is usually caused by the sharp change of the
heat generation rate or heat flux, and this local high gradient always can be con-
sidered as a kind of weak discontinuity. In solving such problems, a very small
element size distribution in the region of high gradient is commonly needed as
well as coupled with some special techniques such as curvilinear spectral overlay
method. [Belytschko et al. (1990)] in continuous Galerkin method, and Ching et
al. used the meshless Local Petrov-Galerkin (MLPG) method for transient thermo-
mechanical response of a functionally graded composite heated by Gaussian laser
beams [Ching and Chen (2006)].

Because of the discontinuous nature of the approximation function at the interface,
it is possible to use fewer elements to capture the peak value of the heat flux in the
temperature field with local high gradient. In the present research, we eliminate the
penalization of the jump of the temperature at the interface in the region of local
high gradient, and this relaxation makes the possible to capture the peak value of
the heat flux a reality.
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2.4.2 Problems with thermal contact resistance

Thermal contact resistance (TCR) arises in the contact region of two solids, because
the two surfaces are not perfectly contact with each other, most of the heat passes
through a limited number of actual contact spots, which means the real contact
area is only a small fraction of the nominal or apparent area. Over the preceding
decades, a lot of theoretical and experimental investigations have been performed
to improve our knowledge of the TCR [Bahrami et al. (2006)]. Because of the
existence of the TCR, the temperature jumps in the contact region while the heat
flux remains continuous, and the TCR denoted by R is defined as the ratio of the
temperature jump at the interface to the heat flux:

R =
∆T
qn

(37)

where ∆T denotes the temperature jump in the contact region and qn denotes the
heat flux normal to the interface.

In solving heat conduction problems with thermal contact resistance, Kanapady
et al. presented the so-called local discontinuous Galerkin (LDG) finite element
method [Kanapady et al. (2005)]. Blanford and Tauchert adopted linear interface
elements to capture the temperature jump at the contact interface [Blandford and
Tauchert (1985)]. Keppas et al. presented a boundary element procedure to treat
two dimensional time dependent thermo-elastic contact problems with thermal con-
tact resisitance [Keppas et al. (2008)]. In the present research, the penalization of
the jump of the temperature on the imperfect contact interface is eliminated to cap-
ture the temperature jump, at the same time the interface numerical flux of the heat
flux is substituted by the definition of the thermal contact resistance:

ne · q̂e =
T eb−T e

R
(38)

This treatment may lead to a novel approach to capture the temperature jump at the
imperfect contact interface.

2.4.3 Problems with thermoelastic coupling

Cylindrical contacts occur in many applications such as cylindrical tanks, space
structures (heat pipes), power transmission lines, and nuclear fuel elements. So
heat conduction problems through cylindrical contacts are very important, and a
common phenomenon to understand in these problems is the thermoelastic cou-
pling caused by TCR. We consider two dissimilar homogeneous and isotropic discs
with initial gap δgap = b−a (see Fig. 3).
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a b co
r

 

Figure 3: Illustration of two discs with initial gap δgap

We assume that heat is transferred from inner disc to outer disc. The two discs of
different materials may be forced into contact with each other as a result of thermal
expansion, so within the analysis there are two different solution states: gap-open
state and gap-closed state which indicates the initial gap is still open and closed,
respectively. In the first situation, although no contact has been made there still
exists coupling between temperature field and TCR through radiation heat transfer.
In the second situation, coupling phenomenon exists if an imperfect contact inter-
face assumption is adopted: initial state of gap open makes the temperature of inner
disc increases, and thermal expansion of the inner disc makes the gap closed which
leads to the decrease of the TCR, and then the temperature jump at the interface
decreases to make the gap open again. This results an on-off contact state caused
by the coupling of temperature, TCR and interface stress shown in Fig. 4.

a b co
r

 

Figure 3:  Illustration of two discs with initial gap δgap 

 

Figure 4:  Illustration of the coupling between temperature field, interface stress and 
TCR 

 

Temperature field 

Interface stress TCR 

Figure 4: Illustration of the coupling between temperature field, interface stress and
TCR

It is worth noting that traditionally coupling is just present in the case of finite
deformations, and when dissipative processes like friction or plasticity have to be
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considered. Because of the temperature-dependent nature of the material and the
coupling of temperature, TCR and interface contact pressure, an iterative scheme
is needed to solve the nonlinear equilibrium equations in Equation (36).

In order to avoid the over modification of the temperature vector and accelerate
the convergence process, we adopt the relaxation technique in these circumstances,
which means to use T+α ·∆T to update the current temperature vector instead of
T+∆T, where α is the relaxation parameter and 0<α<1, and in the present research
we adopt α=0.2.

3 Numerical examples

In this section, we consider some numerical examples in one and two dimensions
to illustrate the properties and efficiencies of the DG finite element method.

3.1 Effect of stabilization parameter and numerical flux coefficients

Since the stabilization parameter and the numerical flux coefficients can greatly
affect the stability and accuracy of the method, we consider the heat conduction
problem in a one dimensional bar as the first numerical example to show how they
work. The length of the bar is L=0.2 m, the isotropic thermal conductivity is k=46.3
Wm−1K−1, and the area of the section is taken as A=0.001 m2. The heat gener-
ation rate is q0=400 kWm−3. The left end of the bar has a specified temperature
T (0)=350 K and the right end of the bar has a specified heat flux g0(L)= 16 kWm−2.
The bar is divided into 100 linear elements with the same size. The exact solution
of the problem is given by:

T (x) =
L2

k

(
q0

2

(
2x
L
−
( x

L

)2
)

+
g0x
L2

)
+T1 (39)

Fig. 5 and Fig. 6 show the variation of the local relative error of the tempera-
ture in the middle of the bar and the global error with the stabilization parameter
respectively. Fig. 7 and Fig. 8 show the variation of the local relative error of
the temperature in the middle of the bar and the global error with the temperature
numerical flux coefficient αT respectively, in which we assume that the heat flux
numerical flux coefficient αq is equal to the temperature numerical flux coefficient
αT . Here the global error is defined by the norm

∥∥TDG−Texact
∥∥

2, where TDG is
the node temperature vector calculated by the present DG finite element method,
and Texact is the corresponded exact node temperature vector.

It can be seen from Fig. 5 and Fig. 6 that whatever to consider the local relative
error or the global error, the stabilization term is very necessary when using the
Bassi-Rebay numerical flux. The proper range of the stabilization parameter is
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Figure 5: Variation of the local relative
error of the temperature in the middle
of the bar with the stabilization param-
eter τ
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Figure 6: Variation of the global error
of temperature with the stabilization
parameter τ
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Figure 7: Variation of the local relative
error of the temperature in the middle
of the bar with the temperature numer-
ical flux coefficient αT
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Figure 8: Variation of the global error
of temperature with the temperature
numerical flux coefficient αT

104-108, any stabilization parameter out of this range may cause singularity to the
stiffness matrix and leads to unstable or inaccuracy results. So in the following
numerical examples, we adopt 107 as the stabilization parameter.

It can be seen from Fig. 7 and Fig. 8 that whatever to consider the local relative
error or the global error, 0.5 is the best choice of the temperature numerical flux
coefficient, that is to say, in the present problem numerical flux had better to be
taken as the average of the value on the two segments of the interface. So in the
following numerical examples, we adopt the Bassi-Rebay numerical flux with αT

=βT =αq =βq =0.5.
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3.2 Local high gradient temperature field

In the second example, we consider a one dimensional heat conduction problem
with local high gradient. The length of the bar is L=6 m, and the isotropic thermal
conductivity is k=1 Wm−1K−1, and the boundary conditions are given by: T (0)=-
tanh(3c) K and T (L)=tanh(3c) K, where c is a constant. The heat generation rate is
given by:

q0 (x) = 2c2sech2 (c(x−3)) tanh(c(x−3)) (40)

The exact solution the temperature field for this problem is [Belytschko and Lu
(1992)]:

T = tanh(c(x−3)) (41)

Here we assume the constant c =40, and the bar is divided into 100 linear elements
with the same size. Due to the sharp change of the heat generation at the middle of
the bar, there exists local high gradient. Fig. 9 and Fig. 10 show the comparisons
of the temperature distribution and heat flux distribution between the present DG
finite element method and the exact results respectively, and Fig. 11 illustrates the
computational efficiency of the present DG method in capturing the peak value of
the heat flux.
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Figure 9: Comparison of the temper-
ature distribution between the present
DG results and exact results
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Figure 10: Comparison of the heat flux
distribution between the present DG
results and exact results

The comparisons in Fig. 9 and Fig. 10 reveal that the present DG results exactly
match the analytical results. In fact, because of the discontinuous nature of the
approximation function at the interface of the DG method, it is possible to use fewer
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Figure 11: Comparison of the present DG results and the CG results on the variation
of the peak value of the heat flux with the total DOF

elements to capture the peak value of the heat flux in the temperature field with
local high gradient, and this advantage is illustrated in Fig. 11. From Fig. 11, it can
be seen that the continuous Galerkin finite element method requires a very refined
mesh (more than 1000 DOF) to capture the peak value of the heat flux. However,
the present DG finite element method requires much less number of degrees of
freedom (less than 150 DOF). The present DG method is even more efficient than
the so-called local discontinuous Galerkin (LDG) finite element method proposed
by Kanapady [Kanapady et al. (2005)] et al. which requires more than 200 DOF to
capture the peak value of the heat flux.

So this example shows the validity and computational efficiency of the present DG
method in modeling high gradient field.

3.3 Imperfect thermal contact of two bars

In the third example we consider the imperfect thermal contact of two bars to verify
the validity and accuracy of the present DG method in capturing the temperature
jump at the contact region caused by the thermal contact resistance. Geometry and
description of the problem is given in Fig. 12. Two different values of interlayer
thermal contact resistance are considered namely [Blandford and Tauchert (1985)]:
R=0.34×10−3 m2KW−1 (a typical value for rolled steel plates subject to a compres-
sive contact stress ≥25 MPa), R=3.80×10−3 m2KW−1 (a typical value for rough
machined surfaces under zero compressive contact stress).

The exact results and the present DG results for the above cases are shown in Fig.
13(a) and Fig.13(b). The exact results were obtained using the formulation de-
scribed in Appendix A. The DG finite element results were obtained using 5 linear
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Figure 12:  Geometry and description of the two imperfect thermal contact bars 
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Figure 12: Geometry and description of the two imperfect thermal contact bars

elements in each bar. The temperature jump under different thermal contact resis-
tance is shown in Fig. 14.

We can see from Fig. 13(a) and Fig.13(b) that the results of the present DG method
are in excellent agreement with the exact results. Furthermore, thermal contact
resistance increases the temperature magnitude within the left layer and decrease
the temperature magnitude within the right layer whereas it has an opposite effect
to the temperature gradients. Fig. 14 shows that with the increase of the thermal
contact resistance, the temperature jump at the interface increases quickly, and the
limit value of the temperature jump is 10 K.

This example shows the validity and accuracy of the present DG method in captur-
ing the temperature jump in one dimensional heat conduction problem.

3.4 Fin and plate problem

In the fourth example, we consider the fin and plate problem that is typical in heat
removal from electric devices. The goal of such structures is to keep the tempera-
ture of the plate as low as possible, and the key point is to keep the thermal contact
resistance (TCR) between the fin and the plate as low as possible. Fig. 15 shows the
discretization and the boundary conditions of the problem. We consider a segment
containing only a fin, and due to the symmetry of the problem only one half of the
geometry need to be analyzed. To increase heat dissipation on the upper side(BG)
of a plate(OABG) subjected to heat flux from the bottom(OA), some fins(CDEF)
are placed in contact with the plate. Here we neglect the gas contribution and ra-
diation effects to the TCR and the TCR can be determined by Equation (A.9) in
Appendix B. The main interesting input material and structure data of the problem
are collected in Table 1.

Since the mechanical pressure between the fin and the plate is very important to
the thermal contact resistance (see from Equation (A.9) ), a series of numerical
tests have been carried out varying the mechanical pressure applied in the contact
zone. The temperature in some points of the structures, obtained by the present DG
method, are compared with Wriggers’ results shown in Fig. 16(a)-(d) and Fig. 17.
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Figure 13: Comparison of the temperature distributions for two imperfect contact
bars with different thermal contact resistance between the present DG results and
exact results: (a) R = 0.34×10−3m2K/W; (b) R = 3.80×10−3m2K/W

It can be observed from Fig. 16(a)-(d) and Fig. 17 that the present DG results are
in general close to those obtained by Wriggers et al. by using a two-node contact
element [Wriggers and Zavarise (1993)], which show the validation of the present
method in modeling two dimensional heat conduction problems with thermal con-
tact resistance. Decreases of the temperature jump at the contact zone means that
heat can be easily transferred from the plate to the fin, so Fig. 17 also shows that the
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Figure 14: Variation of temperature jump with different thermal contact resistance

Figure 15:  Fin and plate problem description 
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Figure 15: Fin and plate problem description
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Table 1: Input parameters of material and structure

Characteristics Values
RMS surface roughness 0.478×10−6 m

Mean absolute asperity slope 0.072
Experimental hardness parameters c1 6.271 GPa
Experimental hardness parameters c2 -0.229

Thermal conductivity 19.2 Wm−1K−1
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Figure 16: Comparisons of the variation of temperature at different points with
the mechanical pressure at the contact zone between the present DG results and
Wriggers’ results [Wriggers and Zavarise (1993)]: (a)point A; (b)point B; (c)point
C; (d)point D

thermal dissipation efficiency increases with the increase of the mechanical pres-
sure. Since high mechanical pressure may bring the structure failure at the contact
zone, it is very important in engineering practices that how to determine the bal-
ance point of the mechanical pressure with the considerations both of the structure
safety and the thermal dissipation efficiency, and the present DG method provides
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Figure 17: Comparisons of the variation of temperature jump at the contact zone
with the mechanical pressure between the present DG results and Wriggers’ results
[Wriggers and Zavarise (1993)]
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Figure 18: Discretization of the two discs
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a noval approach to find this balance point efficiently and accurately.

3.5 Thermoelastic coupling of two discs caused by TCR

In this example, two dissimilar homogeneous and isotropic discs with imperfect
thermal contact subjected to axially symmetric temperature field is investigated.
Since there is initial gap between the two discs, the temperature jump, TCR and
contact stress at the interface are changeable under different initial gaps. The pur-
pose of this investigation is to show the efficiency of the DG method in dealing with
the coupling problems of the temperature field, TCR and interface contact stress.

The following assumptions are adopted in the present research: thermal conduc-
tance (reciprocal of thermal contact resistance) is just caused by radiation which
irrelevant to the width of the gap when there is no contact between the two discs,
and it can be obtained from Appendix B; the thermal conductance is just caused
by radiation and spots contact heat transfer which depends on the contact pressure
when the two discs contact with each other, and the relationship between the tem-
perature field and the contact pressure can be obtained from Appendix C; contact
pressure is substituted by the yielding stress if the calculated contact pressure is
larger than the yielding stress.

The inside and outside diameters of the inner disc are 0.012 m and 0.016 m re-
spectively, and the inner and outside diameters of the outer disc are (0.016+δgap) m
and 0.036 m respectively. δgap denotes the initial gap between the two discs. The
specified temperature of the inner boundary of the inner disc is 1000 K, and the
specified temperature of the outer boundary of the outer disc is 300 K. The proper-
ties for the outer material are assumed to be unchangeable: elastic modular Eo=51
GPa, Poisson ratio νo=0.33, thermal conductivity ko=60 Wm−1K−1, and thermal
expansion coefficient αo=0.46×10−6 1/K. The properties of the inner material are
considered to be temperature-dependent which are collected in Table 2 except the
Poisson ratio is 0.3. Fig. 18 shows the discretization of the two discs.

The relaxation techniques described in subsection 2.4.3 is used to solve the present
coupling problem. The convergence parameter ηT , residuum norm RT , and unbal-
anced energy ET are defined by:

ηT = ‖∆T‖2
‖T‖2

RT = ‖F−KT‖2
ET = (F−KT)T ·∆T

(42)

where T is the current temperature vector, ∆T is the increment of temperature vec-
tor, F is the current heat load vector, K is the current stiffness matrix. The conver-
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gence criterion in the present study is:

ηT ≤ η (43)

where η is the temperature convergence tolerance.

Fig. 19 show the convergence process of the algorithm with different initial gaps.

We can see from Figs. 19(a)-(c) that, if the initial gap is small (e.g., less than 30
µm), the gap keeps closed during the iteration; if the initial gap is large (e.g., larger
than 90 µm), the gap keeps open during the iteration, so the algorithm convergences
quickly in these two cases. Otherwise, if the initial gap is moderate (e.g., equal
to 60 µm), from the numerical point of view, an unstable solution is observed
which the algorithm loops between the state of gap-closed and gap-open, unless
the relaxation technique is adopted. Fig. 20 and Fig. 21 illustrate the temperature
field and the radial temperature distribution with different initial gaps, respectively.
Table 3 lists some interesting results such as interface temperature jump, contact
stress and thermal contact resistance under different initial gap.

Interestingly, because the thermal expansion coefficient of the inner disc is larger
than the outer disc and the efficient of spot heat transfer is greater than radiation heat
transfer, small initial gap leads to a smaller temperature jump at the interface but
a higher interface contact stress, and large initial gap leads to a larger temperature
jump at the interface but a smaller interface contact stress as we can see from Fig.
21 and Table 3. In fact, both overmuch temperature jump and interface contact
stress are dangerous to the structure, so there needs a match point to balance the
temperature jump and the interface contact stress. The present DG method seems
an impactful numerical technique in engineering design and analysis to find this
match point. From our investigation, we also find that the present DG method
has good capability in avoiding numerical instability to simulate the coupling of
temperature, thermal contact resistance and interface contact stress.

4 Conclusions and discussions

The DG finite element method for heat conduction problems with local high gra-
dient and TCR has been developed. The DG formulation is constructed by em-
ploying the stabilization term and the numerical flux term that allow apparently
different formulations to be used. In the present research, we adopt the stabiliza-
tion term defined by a penalization of the jump of the temperature at the interface
and the Bassi-Rebay numerical flux. Numerical examples show that, generally,
when stabilization parameter τ is assigned in the range 104<τ<108 and numerical
flux coefficients αT = αq=0.5 is chosen, the best accuracy is achieved.

Because of the discontinuous nature of the approximation function at the interface,
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 Figure 19: Convergence process of different error index with different initial gaps
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Figure 20: Temperature field with different initial gaps: (a) 30 µm, (b) 60 µm, (c)
90 µm
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the present DG method can be conveniently applied to the problems involving local
high gradient and thermal contact resistance, where the numerical flux is substituted
by the definition of the thermal contact resistance. This treatment leads to a novel
approach to capture the peak value of the heat flux in local high gradient field and
the temperature jump at the imperfect contact interface. Numerical examples illus-
trate that the present DG method is not only high accurate in capturing the peak heat
flux of local high gradient field and the temperature jump at the imperfect contact
interface, but also has higher computational efficiency compared with traditional
continuous Galerkin method and even the local discontinuous Galerkin method.

In solving the nonlinear coupling problem caused by thermal contact resistance,
an iterative procedure and relaxation technique are suggested, which can efficienly
aviod numerical instability, and the present DG method also presents an impactful
numerical technique to find the match point to balance the temperature jump and
the interface contact stress.

It should be mentioned that there are still a lot of work to do for DG method in
further research. Firstly, the discontinuous nature of the shape functions introduces
additional unknowns relative to the continuous Galerkin method, as we need to
distinguish between values from different elements at the same node. Secondly,
the implementation is more complicated than that of standard finite element pro-
cedures. This is evident in the treatment of the interfaces where information from
neighbor elements is needed to construct the flux terms. However, the method is
promising to efficient parallel implementation and adaptivity, which can reduce the
effect of the increase of degrees of freedom. Moreover, as the high gradient and
discontinuities are always located in some parts of the mesh, the coupled discontin-
uous/continuous Galerkin method is more preferable [Clint and Jennifer (2002)].
So future work aim at further enhancing the efficiency of the computations, espe-
cially in regions where the solution is smooth.
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Appendix A Exact solution of the temperature jump in two imperfect contact
bars

In this appendix we give the exact solution of the temperature jump in two imperfect
contact bars. Each bar is of length L/2, and the isotropic thermal conductivity is k,
the interlayer thermal contact resistance is R. The boundary conditions are taken
as: T (0)= T1 and T (L)= T2. We adopt “+” and “-” to denote the left side and right
side of the contact interface.

The heat flux in the left bar and right bar can be calculated as:

q+
R = k

T1−T +
R

LR

q−R = k
T−R −T2

L−LR

(A.44)

The heat flux is continuous at the interface, so we have:

qR = q−R = q+
R (A.45)

Then the thermal contact resistance can be calculated as:

R =
∆T
qR

=
T +

R −T−R
qR

(A.46)

With Equation (A.1) and Equation (A.3) we can obtain:

T +
R = T1 +

LR

L+ kR
(T2−T1)

T−R = T2 +
L−LR

L+ kR
(T1−T2)

(A.47)

And the temperature jump is:

∆T = T +
R −T−R =

kR
L+ kR

(T1−T2) (A.48)

The heat flux in the bar can be calculated by:

q = k
T1−T2

L+ kR
(A.49)

As can be seen from (A.6) , thermal contact resistance makes the effective length
of the bar has an increment of kR.
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Appendix B Thermal contact resistance model

The purpose of the present research is not to develop a new thermal contact resis-
tance model, but to show the efficiency of the DG method in capturing the tempera-
ture jump in the contact zone for a given value of the thermal contact resistance. So
in this appendix, we just give the thermal contact resistance model from the former
researchers.

As we know, the heat exchange takes place by conduction through the contact spots,
conduction through the gas contained in the cavities and radiation between cavity
surfaces, and conduction through the interstitial materials if they are used in the
interface. This leads to the following relationship for the thermal contact resistance
R:

1
R

=
1

Rspot
+

1
Rgas

+
1

Rradiation
without interstitial material

1
R

=
1

Rspot
+

1
Rintmat

with interstitial material
(A.50)

or in terms of the heat conductance h:

h = hspot +hgas +hradiation without interstitial material

h = hspot +hintmat with interstitial material
(A.51)

There have been several comprehensive reviews in thermal contact resistance mod-
eling and experiment. Song and Yovanovich suggested that the heat conductance
caused by spots contact heat transfer can be calculated as. [Song and Yovanovich
(1987)]:

hspot =
1.25k∗m̄

σ

(
pN

c1

(
1.6177

106σ

m̄

)−c2
) 0.95

1+0.0711c2

(A.52)

Where k∗ = 2k1k2/(k1 + k2) is the mean thermal conductivity of the two contact
materials, m̄ is the mean absolute asperity slope, σ is RMS surface roughness, pN is
the apparent mechanical pressure, and c1,c2 are experimental hardness parameters
determined with micro hardness tests.

The contribution of the gas that contained in the micro-cavities to the heat conduc-
tance can be calculated as [Madhusudana and Fletcher (1981)]:

hgas =
kgas

d +g1 +g2
(A.53)
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Where kgas is the gas conductivity, and d is the effective height of the cavity which
corresponding to the mean plane distance:

d = 1.363σ

√
− ln

(
5.589

pN

He

)
(A.54)

Where He is the micro hardness distribution. Terms g1 and g2 are introduced to
reproduce the nonlinear surface effect and the temperature surface discontinuity,
and can be calculated as:

g1 +g2 =
(

2−α1

α1
+

2−α2

α2

)
2γ

γ +1
1
Pr

Λ0
T
T0

pg0

pg
(A.55)

Where α1 and α2 are experimental coefficients related to the two contact surfaces
respectively. γ = cp/cv indicates the specific heat ratio, where cp and cv are specific
heat capacity at constant pressure and constant volume respectively. Λ0 is the mean
free path calculated at reference temperature T0 and reference gas pressure pg0. T
and pg are the current temperature and reference gas pressure respectively. Pr is the
Prandtl number defined by:

Pr =
µcp

kgas
(A.56)

Where µ is the viscosity coefficient of the gas.

Heat transfer by radiation works in a vacuum as well as in a gas medium circum-
stance. The basic relation for the heat flux due to radiation is given in terms of the
Stefan-Boltzmann law:

q = cemcSBF12
(
T 4

1 −T 4
2
)

(A.57)

Where cem is the surface emissivity, cSB is Stefan-Boltzmann constant, F12 is the
mutual radiation factor of the two surfaces. In the present research, we assume that
cSB= 5.67×10−8 Wm−2K−4, cem=0.8, and F12 =1.

Then the heat conductance caused by radiation can be calculated as:

hrad =
q

T1−T2
= cemcSB

(
T 2

1 +T 2
2
)
(T1 +T2) (A.58)

Often the radiation effects between the surfaces of the micro-cavities can be ne-
glect, because the low temperature greatly reduces this effect. However the ra-
diation effect might be important to regularize the jump in the thermal resistance
between status gap open and status gap closed as we can see in section 3.5 or when
the interface temperature is high.
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We can easily obtain the heat conductance caused by interstitial material contact
heat transfer by substituting the thermal conductivity k∗ in Equation (A.9) with the
thermal conductivity k∗intmat :

hintmat =
1.25k∗intmatm̄

σ

(
pN

c1

(
1.6177

106σ

m̄

)−c2
) 0.95

1+0.0711c2

(A.59)

Appendix C Relationship of the axially symmetric temperature field and in-
terface contact stress of two contact discs

In this section, the relationship of the axially symmetric temperature field and in-
terface contact stress of two contact discs is given. The radial displacement of
the plane stress disc subjected to axially symmetric temperature field with inside
diameters 2r1 and outside diameters 2r2 are given by [Du et al. (1986)]:

ur =
α

r

(
(1+ν)

∫ r

r1

(T −T0)rdr +
(1−ν)r2 +(1+ν)r2

1

r2
2− r2

1

∫ r2

r1

(T −T0)rdr
)

(A.60)

If it is a plane strain problem, then we just need to substitute α,E,ν in Equation
(A.17) with α∗,E∗,ν∗ which are defined by:

α
∗ = α (1+ν) ,E∗ =

E
1−ν2 , ν

∗ =
ν

1−ν
(A.61)

Here we consider two discs with cylindrical contact that are subjected to axially
symmetric temperature field. The inside and outside diameters of the inner disc
are a and b respectively, and the inside and outside diameters of the outer disc
are b and c respectively. The material parameters of the inner material and outer
material are denoted by subscript i and o, respectively. We assume that the thermal
expansion coefficient of the inner material is larger than the outer material. The
radial displacement of an annual disc with inner and outer pressure is given by [Du
et al. (1986)]:

ur (r) =
1

E
(
r2

o− r2
i

) ((pir2
i − por2

o
)
(1−ν)r + r2

i r2
o (pi− po)(1+ν)

1
r

)
(A.62)

According to Equation (A.19), the interface pressure pN on inner and outer disc
caused negative and positive displacement respectively and are given by:

up
i =

pNb2

Ei (b2−a2)

(
(1+νi)a2

b
+(1−νi)b

)
up

o =
pNb2

Eo (c2−b2)

(
(1+νo)c2

b
+(1−νo)b

) (A.63)



A Discontinuous Galerkin Finite Element Method 299

Considering that the interference stress pN is cause by thses two displacements up
i

and up
o in (A.20), we have:

pN =
up

i +up
o

R
(

c2+b2

Eo(c2−b2) + a2+b2

Ei(b2−a2) + νo
Eo
− νi

Ei

) (A.64)

According to Equation (A.17), the interface displacements of inner and outer disc
with temperature field T (r) are given by:

ui
b =

2αib
b2−a2

∫ b

a
(T −T0)rdr

uo
b =

2αob
c2−b2

∫ c

b
(T −T0)rdr

(A.65)

The compatible condition of the displacement is:

ui
b +uo

b = up
i +up

o (A.66)

Using Equations (A.21)(A.22)(A.23), the relationship of the temperature field and
interface pressure can be written as:

pN =
ui

b +uo
b

b
(

c2+b2

Eo(c2−b2) + a2+b2

Ei(b2−a2) + νo
Eo
− νi

Ei

) (A.67)




