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Exact Solutions for the Free Vibration of Extensional
Curved Non-uniform Timoshenko Beams

Sen Yung Lee1 and Jyh Shyang Wu2

Abstract: The three coupled governing differential equations for the in-plane vi-
brations of curved non-uniform Timoshenko beams are derived via the Hamilton’s
principle. Three physical parameters are introduced to simplify the analysis. By
eliminating all the terms with the axial displacement parameter, then reducing the
order of differential operator acting on the flexural displacement parameter, one
uncouples the three governing characteristic differential equations with variable
coefficients and reduces them into a sixth-order ordinary differential equation with
variable coefficients in term of the angle of the rotation due to bending for the first
time. The explicit relations between the axial and the flexural displacements and
the angle of the rotation due to bending are also revealed. It is shown that if the
material and geometric properties of the beam are in arbitrary polynomial forms,
then the exact solutions for the in-plane vibrations of the beam can be obtained.
Several limiting studies are illustrated. Finally, limiting cases are studied and the
influence of the taper ratio and the arc length on the first two natural frequencies of
the beams is explored.

Keywords: curved non-uniform Timoshenko beam, free vibration, extensional
beam

1 Introduction

Beams are one of the most commonly used structures. It can be widely found in
all the engineering fields. Based on the Bernoulli-Euler and the Timoshenko beam
theories, the studies on the static and dynamic response of straight beam struc-
tures are tremendous [Meirovitch (1967); Lee and Lin (1996); Iura, Suetake, and
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Atluri (2003); Beda (2003); Andreaus, Batra and Porfiri (2005); Vinod, Gopalakr-
ishnan and Ganguli (2006); Lee and Hsu (2007); Huang and Shih (2007); Lin,
Lee and Lin (2008), Lee, Lin, Lee, Lu and, Liu (2008), Lee, Lu, Liu and Huang
(2008)]. For curved beams, an interesting review can be found in the review paper
by Childamparam and Leissa (1993).

For two dimensional curved beam structures, the associated governing differential
equations for in-plane vibrations of curved Bernoulli-Euler beams are two cou-
pled differential equations in the flexural and the longitudinal displacements. If
the curved beam is uniform, then the coefficients of the differential equations are
constants. After some simple arithmetic operations, the coupled differential equa-
tions can be uncoupled and reduced into a sixth-order ordinary differential equation
with constant coefficients. Hence the problem can be solved by different analytical
methods, and the exact solutions can be obtained [Love (1944); Morley (1958)].

Based on Timoshenko beam theory, the associated governing differential equations
for the in-plane vibrations of curved beams are three coupled differential equations
in the longitudinal displacement, the flexural displacement and the angle of the
rotation due to bending. The problems were studied by the numerical methods,
such as: the transfer matrix approach [Irie, Yamada and Takahashi (1980)] and the
dynamic stiffness matrix method [Wang and Issa (1987), Huang, Tseng and Lin
(1998)]. The exact solutions for extensional curved uniform Timoshenko beams
were developed by Lin and Lee (2001) and Lee, Lin and Hsu (2008).

When the beams are non-uniform, the coefficients of associated governing differ-
ential equations are variable coefficients. The exact solutions in general are not
available. Hence, the problems were studied mainly by approximated methods
such as the Rayleigh–Ritz method [Laura, Bambill, Filipich and Rossi (1988)],
the Galerkin method [Lecoanet and Piranda (1983)], the transfer matrix method
[Murthy and Nigam (1975)], the discrete Green function method [Kawakami, Sakiyama,
Matsuda and Morita (1995)], and the asymptotic analysis of the equations of free
vibrations [Tarnopolskaya, De Hoog, Fletcher and Thwaites (1996)].

Exact solutions for curved non-uniform Bernoulli-Euler beams are only found in
the works done by Suzuki and Takahashi (1982) and Lee and Chao (2000a, 2000b,
2001). Suzuki and Takahashi (1982) gave an exact series solution to the beams
with the same boundary conditions at both ends. Nevertheless, their method has
difficulty in handing the problems with other kind of boundary conditions. Lee
and Chao (2000a, 2000b, 2001) are the first one who uncoupled the two coupled
differential equations with variable coefficients and developed the exact solutions
for the beams with the physic properties in arbitrary polynomial forms.

For three dimensional space curved beams, a series developments can be found in
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the works by Reissner (1981), Iura and Atluri (1988), Atluri, Iura and Vasudevan
(2001), Busool and Eisenberger (2002) and Zupan and Saje (2003, 2006).

From the existing literature, due to the complexity of the three coupled govern-
ing differential equations with variable coefficients, it can be found that the exact
solutions for the free in-plane vibrations of extensional curved non-uniform Timo-
shenko beams had never been developed before.

In this paper, based on the two dimensional curved beam theory, one studies the free
in-plane vibrations of extensional curved non-uniform Timoshenko beams. Three
physical parameters are introduced to simplify the analysis. By eliminating all the
terms with the non-dimensional axial displacement parameter, then reducing the
order of differential operator acting on the non-dimensional flexural displacement
parameter, one uncouples the three governing characteristic differential equations
and reduces them into a sixth-order ordinary differential equation with variable co-
efficients in the angle of the rotation due to bending. The explicit relations between
the axial and flexural displacements and the angle of the rotation due to bending
are derived.

When the radius of a curved beam becomes infinite, the curved beam is reduced to a
straight beam. Consequently, the sixth-order ordinary differential equation should
be reduced to a fourth-order ordinary differential equation. However, the limit-
ing study had never been successfully explored before. In this paper, a successful
limiting study is revealed.

It is shown that if the material and geometric properties of the beam are in arbitrary
polynomial forms, then the exact solutions for the in-plane vibrations of the beam
can be obtained. Several limiting studies are revealed. Finally, the numerical results
are compared with those in the existing literature. The influence of taper ratio and
arc length on the first two natural frequencies of the beams is illustrated.

2 Coupled Governing Equations

Consider the in-plane motion of a curved non-uniform Timoshenko beam of con-
stant radius R and doubly symmetric cross section, as shown in Figure 1. If the
thickness of the beam is small in comparison with the radius of the beam, the dis-
placement fields of the curved beam in cylindrical coordinates are:

ur (r,s,z, t) = v(s, t) , (1)

uθ (r,s,z, t) = u(s, t)+ r̄ψ (s, t) , (2)

uz (r,s,z, t) = 0, (3)

where ur, uθ and uz denote the displacements of the beam in the r, θ and z direc-
tions, respectively. s = Rθ . v and u are the neutral axis displacement of the beam
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in the r and θ directions, respectively. ψ is the angle of the rotation due to bending.
r̄ is measured outward from the neutral axis in the r direction.

r

0s =

ψ

v

u

R

0θ

θ

s L=

dA

r
z r

z
cross section A

cross section A

 

Figure 1: Geometry and coordinate system of a curved non-uniform beam of con-
stant radius.

Substituting equations (1-3) into the strain-displacement relations in the cylindrical
coordinate, the only two non-zero strains, εθθ and εrθ , are

εθθ =
ur

r
+

1
r

∂uθ

∂θ
=

R
R+ r̄

[(
∂u
∂ s

+
v
R

)
+ r̄

∂ψ

∂ s

]
, (4)

εrθ =
1
2

(
1
r

∂ur

∂θ
+

∂uθ

∂ r
− uθ

r

)
=

1
2

R
R+ r̄

(
∂v
∂ s
− u

R
+ψ

)
. (5)

When r̄ is small in comparison with R, the two strains are reduced to

εθθ =
∂u
∂ s

+
v
R

+ r̄
∂ψ

∂ s
, (6)

εrθ =
1
2

(
∂v
∂ s
− u

R
+ψ

)
. (7)
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Employing the two stress and strain relations, σθθ = Eεθθ and τrθ = 2kGεrθ , the
strain energy of the beam is

V ∗ =
1
2

∫ L

0

∫
A

σθθ εθθ dAdS+
1
2

∫ L

0

∫
A

τrθ εrθ dAds

=
1
2

∫ L

0

∫
A

E

[(
∂u
∂ s

+
v
R

)2

+2r̄
(

∂u
∂ s

+
v
R

)
∂ψ

∂ s
+ r̄2

(
∂ψ

∂ s

)2
]

dAds

+
1
2

∫ L

0

∫
A

kG
(

∂v
∂ s
− u

R
+ψ

)2

dAds,

(8)

where L is the length of the neural axis. E, G, k, I(s) and A(s) denote the Young’s
modulus, the shear correction factor, the area moment of inertia and the cross sec-
tion area of the beam, respectively. Since the cross section of the beam considered
is doubly symmetric, the integral of the second term in the square bracket vanishes.
The strain energy is simplified as

V ∗ =
1
2

∫ L

0

[
EA
(

∂u
∂ s

+
v
R

)2

+EI
(

∂ψ

∂ s

)2

+ kAG
(

∂v
∂ s
− u

R
+ψ

)2
]

ds. (9)

The Kinetic energy of the system is

T ∗ =
1
2

∫ L

0

{
ρA

[(
∂u
∂ t

)2

+
(

∂v
∂ t

)2
]

+ρI
(

∂ψ

∂ t

)2
}

ds, (10)

where ρ is the mass per unit volume of the beam.

Applying the Hamilton’s principle, one obtains the following three coupled gov-
erning differential equations

∂

∂ s

[
EA
(

∂u
∂ s

+
v
R

)]
+

kGA
R

(
∂v
∂ s
− u

R
+ψ

)
= ρA

∂ 2u
∂ t2 , (11)

∂

∂ s

[
kGA

(
∂v
∂ s
− u

R
+ψ

)]
− EA

R

(
∂u
∂ s

+
v
R

)
= ρA

∂ 2v
∂ t2 , (12)

∂

∂ s

(
EI

∂ψ

∂ s

)
− kGA

(
∂v
∂ s
− u

R
+ψ

)
= ρI

∂ 2ψ

∂ t2 , (13)

and the associated boundary conditions are at s = 0 and L:

EA
(

∂u
∂ s

+
v
R

)
= 0 or u = 0 (14)
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kGA
(

∂v
∂ s
− u

R
+ψ

)
= 0 or v = 0 (15)

EI
∂ψ

∂ s
= 0 or ψ = 0 (16)

For time harmonic vibration with angular frequency Ω, one assumes

u(s, t) = U(s)eiΩ t , (17)

v(s, t) = V (s)eiΩ t , (18)

ψ(s, t) = Ψ(s)eiΩ t . (19)

The coupled governing characteristic differential equations for the in-plane vibra-
tions of a curved non-uniform beam are[

EA
(

U ′+
V
R

)]′
+

kGA
R

(
V ′−U

R
+Ψ

)
+ρAΩ

2U = 0, (20)

[
kGA

(
V ′−U

R
+Ψ

)]′
− EA

R

(
U ′+

V
R

)
+ρAΩ

2V = 0, (21)

(
EIΨ

′)′− kGA
(

V ′−U
R

+Ψ

)
+ρIΩ

2
Ψ = 0, (22)

where the primes denote differentiation with respect to the s variable.

The associated boundary conditions are at s= 0 and L:

EA
(

∂U
∂ s

+
V
R

)
= 0 or U = 0 (23)

kGA
(

∂V
∂ s
−U

R
+Ψ

)
= 0 or V = 0 (24)

EI
∂Ψ

∂ s
= 0 or Ψ = 0 (25)

3 Uncoupled Governing Equation in Terms of the Angle of Rotation due to
Bending

3.1 Curved Non-uniform Timoshenko Beams

To uncouple the governing characteristic differential equations (20-22), one defines
the following three physical parameters:

Fθψ =
kGA

R
Ψ, (26)
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Frψ = (kGAΨ)′ , (27)

Mzψ =
(
EIΨ

′)′− (kGA−ρIΩ
2)

Ψ, (28)

where Fθψ , Frψ and Mzψ are the forces per unit arc length in the θ , r directions and
the bending moment per unit arc length in the z direction, caused by the angle of the
rotation due to bending Ψ, respectively. In terms of Fθψ , Frψ and Mzψ , The three
coupled governing characteristic differential equations (20-22), can be rewritten as

U ′′

R
+ γ1

U ′

R
−
(

kGA
R2EA

− γ2Ω
2
)

U
R

=− 1
R2

[(
1+

kGA
EA

)
V ′+ γ1V

]
−

Fθψ

REA
, (29)

U ′

R
+

(kGA)′

EA+ kGA
U
R

=
kGAV ′′+(kGA)′V ′−EA

( 1
R2 − γ2Ω2

)
V +Frψ

EA+ kGA
, (30)

U
R

= V ′−
Mzψ

kGA
, (31)

where γ1 and γ2 are defined in the appendix.

3.1.1 Coupled Differential Equations in terms of V and Ψ

Substituting equation (31) and its first and second derivatives into equations (29-
30), one can eliminate all the terms with parameter U . Therefore, equations (29-30)
can be expressed in terms of V and Ψ and rewritten as

LV =
(
D2 + γ1D+ γ2Ω

2)(Mzψ

kGA

)
− VS

R2EA
, (32)

L1V = D
(

Mzψ

kGA

)
+

D(VS)
EA

(33)

Here, Dn denotes the nth order differential operator with respect to s,

L = D3 + γ1D2 +
(

1
R2 + γ2Ω

2
)

D+
γ1

R2 , (34)

L1 = D2 +
(

1
R2 − γ2Ω

2
)

, (35)

VS = MZψ +RFθψ =
(
EIΨ

′)′+ρIΩ
2
Ψ, (36)

and γ3 is defined in the appendix.

It should be mentioned that the operators at the left hand side of equations (32)
and (33) are third-order and second-order differential equations with variable coef-
ficients in terms of V , respectively, the operators at the right hand side of equations
(32) and (33) are fourth-order and third-order differential equations with variable
coefficients in terms of Ψ, respectively. It can be easily shown that VS is the shear
force in the beam.
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3.1.2 Uncoupled Governing Differential Equations in terms of Ψ

To further uncouple differential equations (32-33), one reduces the order of differ-
ential operators on V. Now one defines a first-order differential operator R1 first,

R1 = D+ γ1. (37)

After applying operator R1 on equation (33), then subtracting it from equation (32),
one obtains a first order differential equation

L2V =− 1
2ρAΩ2

(
D2 +

1
R2

)
VS +

1
2

MZψ

kGA
, (38)

where

L2 = D+
1
2

γ3, (39)

and γ3 is defined in the appendix.

Secondly, one defines the other first-order differential operator R2

R2 = D− 1
2

γ3 (40)

After applying operator R2 on equation (38), then subtracting it from equation (33),
one finally can uncouple the V and Ψ parameters and express V explicitly in terms
of Ψ and its first five order derivatives.

V =
−1

2ρAΩ2a0

[(
D− 3γ3

2

)(
D2 +

1
R2

)
+2γ2Ω

2D
]

VS +
1

2a1

(
D+

1
2

γ3

)
MZψ

kGA
,

(41)

where

a0 =
1

R2 − γ2Ω
2−
(

γ3

2

)′
+
(

γ3

2

)2
. (42)

Substituting equation (41) and its differentiation into equation (38), one obtains the
uncoupled sixth-order governing characteristic differential equation in terms of the
angle of rotation due to bending{[(

D− γ3

2
−

a′0
a0

)(
D− 3γ3

2

)
+a1

](
D2 +

1
R2

)
+2γ2Ω

2
(

D+
γ3

2
− γ1−

a′0
a0

)
D
}

VS

+ρAΩ
2
[(

D+
γ3

2
−

a′0
a0

)(
D+

γ3

2

)
−a0

]
MZψ

kGA
= 0. (43)
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3.1.3 Explicit Relations

Equation (41) shows the explicit relation between V and Ψ and its first five order
derivatives. The other explicit relations are derived in the following.

When equation (41) is substituted into equation (38), one can obtain an explicit
relation between V ′and Ψ and its first five order derivatives

V ′ = L3VS +L4

(
MZψ

kGA

)
, (44)

where L3 and L4 are differential operators (A2) and (A3), defined in the Appendix,
respectively.

When equations (41) and (44) are substituted into equation (33), one has the explicit
relation between V ′′and Ψ and its first fifth order differentiations

V ′′ = L5VS +L6

(
MZψ

kGA

)
, (45)

where L5 and L6 are differential operators (A4) and (A5), defined in the Appendix,
respectively.

One can obtain the explicit relation between U and Ψ and its first fifth order differ-
entiations by substituting equation (44) into equation (31)

U
R

= L3VS +(L4−1)
(

MZψ

kGA

)
. (46)

Substituting equations (41, 44-46) into equation (30), it yields the explicit relation
between U ′ and Ψ and its first five order derivatives

U ′

R
= L5VS +(L6−D)

(
MZψ

kGA

)
. (47)

The associated boundary conditions, in terms of Ψ and its first five order deriva-
tives, can be obtained by substituting explicit relations, equations (41, 44, 46-47),
into equations (23-25).

3.2 Curved Uniform Timoshenko Beams

For uniform beams

a0 =
1

R2 − γ2Ω
2, a′0 = 0, γ1 = 0, γ3 = 0, (48)

Mzφ and VS are reduced to

Mzφ = EIΨ
′′−
(
kGA−ρIΩ

2)
Ψ, (49)



142 Copyright © 2009 Tech Science Press CMES, vol.40, no.2, pp.133-154, 2009

VS = EIΨ
′′+ρIΩ

2
Ψ. (50)

Consequently, the governing equation (41) becomes

Ψ
′′′′′′+q4Ψ

′′′′+q2Ψ
′′+q0Ψ = 0,s ∈ (0, L) (51)

where

q4 =
2

R2 +Ω
2 ρA

EI

(
ρI
ρA

+
EI
EA

+
EI

kGA

)
, (52)

q2 = Ω
4
(

ρA
EI

)2[ EI
kGA

ρI
ρA

+
EI
EA

(
EI

kGA
+

ρI
ρA

)]
−Ω

2 ρA
EI

[
1

R2

(
EI

kGA
−2

ρI
ρA

+
EI
EA

)
+1
]

+
1

R4 , (53)

q0 =−

{
−Ω

6
(

ρA
EI

)3 EI
EA

EI
kGA

ρI
ρA

+Ω
4
(

ρI
ρA

)2[ 1
R2

EI
kGA

ρI
ρA

+
EI
EA

(
1+

1
R2

ρI
ρA

)]
−Ω

2 ρA
EI

(
1

R2
ρI
ρA

)}
, (54)

This equation is exactly the same as that given by Lee and Lin (2001).

3.3 Curved Non-uniform Bernoulli-Euler Beams

For Bernoulli-Euler beams, both shear deformation and rotary inertia are not con-
sidered. By letting ρI = 0 and kGA being infinite, MzΨ and VS now are

lim
kGA→∞
ρI→0

Mzψ

kGA
=−Ψ, (55)

lim
ρI→0

VS =
(
EIΨ

′)′ . (56)

Consequently, the governing characteristic differential equation (43) is reduced to{[(
D− γ3

2
−

a′0
a0

)(
D− 3γ3

2

)
+a0

](
D2 +

1
R2

)
+2γ2Ω

2
(

D+
γ3

2
− γ1−

a′0
a0

)
D
}(

EIΨ
′)′

−ρAΩ
2
[(

D+
γ3

2
−

a′0
a0

)(
D+

γ3

2

)
−a0

]
Ψ = 0. (57)
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3.4 Curved Uniform Bernoulli-Euler Beams

For curved uniform Bernoulli-Euler beams, equation (57) is further reduced to

Ψ
′′′′′′+

(
2

R2 +
ρΩ2

E

)
Ψ
′′′′+

[
1

R4 −
ρΩ2

E

(
1

R2 +
A
I

)]
Ψ
′′

+
ρAΩ2

EI

(
1

R2 −
ρΩ2

E

)
Ψ = 0. (58)

This equation is exactly the same as that given by Lee (1975).

3.5 Straight Non-Uniform Timoshenko Beams

By letting R being infinite, equations (42-43) and (47) are reduced to

a0 =−γ2Ω
2−
(

γ3

2

)′
+
(

γ3

2

)2
, (59)

{[(
D− γ3

2
−

a′0
a0

)(
D− 3γ3

2

)
+a0

]
D2 +2γ2Ω

2
(

D+
γ3

2
− γ1 −

a′0
a0

)
D
}

VS

+ρAΩ
2
[(

D+
γ3

2
−

a′0
a0

)(
D+

γ3

2

)
−a0

]
Mzψ

kGA
= 0, (60)

[
D3− 3γ3

2
D2 +

(
2a0 +2γ2Ω

2)D
]

VS +ρA
[
Ω

2D+
γ3

2
Ω

2
] Mzψ

kGA
= 0. (61)

It is well known that the uncoupled governing differential equation for a Timo-
shenko beam is a fourth order differential equation. However, one can observe
that equations (60-61) are a sixth-order and a fifth-order differential equations, re-
spectively. To reduce the order of differential equation, one define a first-order
differential operator R3

R3 = D−
(

a′0
a0

+
γ3

2

)
. (62)

After applying operator R3 on equation (61), then subtracting it from equation (60),
one has

(
D2− γ3D

)
VS +ρAΩ

2
(

Mzψ

kGA

)
= 0. (63)
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It is a fourth-order governing differential equation in terms of Ψg and is the govern-
ing differential equation for the flexural vibration of a straight non-uniform Timo-
shenko beam

kGA
{
−1

ρAΩ2

[(
EIΨ

′)′+ρIΩ
2
Ψ

]′}′
−
(
EIΨ

′)′+ (−ρIΩ
2 + kGA

)
Ψ = 0. (64)

This equation is exactly the same as given by Lee and Lin (1995).

3.6 Uniform Straight Timoshenko Beams

For uniform straight Timoshenko beams, equation (64) is further reduced to

Ψ
′′′′+Ω

2 ρA
EI

(
ρI
ρA

+
EI

kGA

)
Ψ
′′+

[
EI

kGA
ρI
ρA

Ω
4
(

ρA
EI

)2

−Ω
2 ρA

EI

]
Ψ = 0. (65)

This equation is exactly the same as that given by Huang (1961).

4 Exact Fundamental Solutions

The uncoupled governing characteristic differential equation, in terms of Ψ, for the
in-plane vibration of curved non-uniform Timoshenko beams can be expressed as
a sixth-order differential equation with variable coefficients in the form of

6

∑
i=0

ei(s)Ψ(6−i)(s) = f (s), s ∈ (0, L) . (66)

If all the coefficients are in the polynomial forms, i.e.,

ep(s) =
mp

∑
j=0

ap, j (s− s0)
j, p = 0∼ 6, (67)

where s0 is a constant and 0 < s0 < L and mp, p = 0∼ 6, are integers representing
the numbers of the terms in the series, then one can assume the six fundamental
solutions of the differential equation in the form:

Ψi(s) =
1
i!

(s− s0)
i +

∞

∑
q=n

Aq,i (s− s0)
q, i = 0∼ 5, n = 6. (68)

Substituting equations (67-68) into equation (66), collecting the coefficients of like
powers, the following recurrence formula can be obtained:

Aq,i =− 1
n!a0,0

n−1

∑
l=0

l!an−l,0Al,i, q = n, (69)
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Aq,i =−(q−n)!
q!a0,0

[ n−1

∑
l=0

(q−n+ l)!
(q−n)!

an−l,0Aq−n+l,i

+
n

∑
l=0

q−n

∑
j=1

(q−n+ l− j)!
(q−n− j)!

an−l, jAq−n+l− j,i

]
, q > n, (70)

With this recurrence formula, one can generate the six exact fundamental equations
of the governing characteristic differential equation.

After substituting the homogenous solution which is a linear combination of the
six fundamental solutions into the associated boundary conditions, the frequency
equation and the natural frequencies of the beam can be obtained, consequently.

5 Numerical Results and Discussion

To illustrate the previous analysis, the following non-dimensional parameters will
be used in the following numerical analysis:

ξ =
s
L

, U∗ =
U
L

, V ∗ =
V
L

, Ψ
∗ = Ψ, θ0 =

L
R

, Lz =
L

γz(0)
,

a(ξ ) =
E(s)A(s)
E(0)A(0)

, m(ξ ) =
ρ(s)A(s)
ρ(0)A(0)

, δ (ξ ) =
kG(s)A(s)
kG(0)A(0)

,

b(ξ ) =
E(s)I(s)
E(0)I(0)

, J(ξ ) =
ρ(s)I(s)
ρ(0)I(0)

, µ =
2(1+ν)

k
1
L2

z
, η =

1
L2

z
,

ω = ΩL2

√
ρ(0)A(0)
E(0)I(0)

, Λ = ΩL

√
ρ(0)
E(0)

,

where γz(ξ ) is the radius of gyration about z-axis, θ0 is the centre angle, ω is the
non-dimension angular natural frequency of flexural vibration and Λ is the non-
dimension angular natural frequency of longitudinal vibration.

In the following, the natural frequencies of curved linearly tapered beams of rectan-
gular cross-section are studied. The material and geometric properties of the beams
with taper ratio ε are a(ξ ) = δ (ξ ) = m(ξ ) = 1−εξ and b(ξ ) = J(ξ ) = (1−εξ )3,
respectively.

In Table 1, the first five non-dimensional angular natural frequencies ω of curved
Timoshenko beams with hinged-hinged boundary conditions determined in the
present analysis are compared with those in the existing literature. It shows the
results are very consistent.

In Figure 2, the influence of the taper ratio ε and the non-dimensional arc length
Lz on the first non-dimensional natural frequencies Λ of curved linearly tapered
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Table 1: The first five dimensionless angular natural frequencies ω of curved Tim-
oshenko beams with hinged-hinged boundary conditions. [1/(θ0

√
η) = 100, ν =

0.3, k = 5/6, µ = 2(1+ν)η/k, LZ = 100θ0]

θ0 Mode
Present study ∗ ∗∗ ∗∗∗

ε = 0.8 ε = 0.4 ε = 0.0 ε = 0.0 ε = 0.0 ε = 0.0

150◦

1 13.7415 20.7851 26.4079 26.43 26.4079 26.4079
2 38.6852 57.3028 72.5588 72.71 72.5587 72.5588
3 75.6215 112.597 142.593 143.1 142.5925 142.5931
4 120.964 180.271 227.935 229.2 227.9351 227.9352
5 178.478 266.216 236.476 339.2 336.4950 336.4755

180◦

1 11.5353 17.573 22.3497 22.37 22.3497 22.3497
2 36.3591 53.8146 68.164 68.27 68.1644 68.1644
3 72.8014 108.454 137.429 137.8 137.4288 137.4288
4 118.402 176.696 223.742 224.6 223.7427 223.7416
5 175.646 262.372 332.071 334.0 332.0705 332.0712

* : Wolf (1971); * * : Tufekci and Arpaci (1998); * * * : Lee and Lin (2001)

Bernoulli-Euler and Timoshenko beams with clamped-free ends is shown. It can
be observed that with constant central angle, θ0 = 100, the first non-dimensional
natural frequencies Λ decrease as the arc length Lz is increased.

In Figures 3 and 4, the relative displacements of the first mode in the radial and the
axial directions are shown. It can be found that the first mode vibration is mainly
dominated by the flexural (radial) motion. Since the natural frequency of a flexural
vibration will decrease as the total length of the beam with the same cross section
is increased, this explains the observation revealed in Figure 2. In addition, the first
non-dimensional natural frequencies Λ increase as the taper ratio is increased.

In Figure 2, one can find that the difference between the first natural frequencies
evaluated via two different beam theories will decrease as the arc length Lz of the
beam is increased. It is due to the fact revealed in Figures 3 and 4. Since the first
mode vibration is mainly dominated by the flexural motion, the shear deformation
and the rotary inertia effects will be important when the arc length Lz is small.

In Figure 5, the influence of the taper ratio ε and the non-dimensional arc length
Lz on the second non-dimensional natural frequencies Λ of the Bernoulli-Euler and
Timoshenko beams is shown. It can be found that when Lz is small, the second
non-dimensional natural frequencies of the beams with high taper ratio are greater
than those with low taper ratio. However, when the taper ratio is greater than the
associated critical value, the second non-dimensional natural frequencies of the
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Figure 2: Influence of the taper ratio ε and the non-dimensional arc length Lz on
the first non-dimensional natural frequencies Λ of curved linearly tapered beams
with clamped-free ends [θ0 = 100].
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Figure 3: Relative displacements of the first mode in the radial and the axial direc-
tions [Lz = 5, ε = 0.2, θ0 = 100].
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Figure 4: Relative displacements of the first mode in the radial and the axial direc-
tions [Lz = 15, ε = 0.2, θ0 = 100].

Λ

zL
5 9 13 17 21 25

0.6

1

1.4

1.8

2.2

: Bernoulli Euler, E   = 0.2
: Bernoulli Euler, E   = 0.6
: Timoshenko, E   = 0.2
: Timoshenko, E   = 0.6

 

Figure 5: Influence of the taper ratio ε and the non-dimensional arc length Lz on
the second non-dimensional natural frequencies Λ of curved linearly tapered beams
with clamped-free ends [θ0 = 100].



Exact Solutions for the Free Vibration 149

ξ
0 0.2 0.4 0.6 0.8 1

-1

3

7

11

15
: Bernoulli Euler, U*

: Bernoulli Euler, V*
: Timoshenko, U*
: Timoshenko, V*

 

Figure 6: Relative displacements of the second mode in the radial and the axial
directions [Lz = 5, ε = 0.2, θ0 = 100].
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Figure 7: Relative displacements of the second mode in the radial and the axial
directions [Lz = 10, ε = 0.2, θ0 = 100].
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Figure 8: Relative displacements of the second mode in the radial and the axial
directions [Lz = 15, ε = 0.2, θ0 = 100].

beams with high taper ratio will be lower than those with low taper ratio.

In Figures 6 ∼ 8, the second mode shapes of beams with taper ratio ε = 0.2 and
different non-dimensional arc length Lz are shown. It can be observed that when Lz

= 5∼ 10, the second mode vibration of Bernoulli-Euler beams is mainly dominated
by the longitudinal (axial) motion. Since the influence of the total length on the
natural frequency of a longitudinal vibration is not significant, the second natural
frequency of Bernoulli-Euler beams with ε = 0.2 will be almost the same, when
Lz = 5 ∼ 10. The conclusion is consistent with the curve that corresponds to the
second natural frequency of Bernoulli-Euler beams with ε = 0.2 in Figure 5.

From Figure 5, one can observed that the difference between the natural frequen-
cies evaluated via two different theories is small, when the arc length Lz is small. It
is due to the fact that when the non-dimensional arc length Lz is small, the second
mode vibration of the beams is mainly dominated by the longitudinal (axial) mo-
tion. In longitudinal (axial) vibration, the shear deformation and the rotary inertia
effects will be negligible.

6 Conclusions

In this paper, three physical parameters are introduced to simplify the analysis.
By eliminating all the terms with the axial displacement parameter, then reduc-
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ing the order of differential operator acting on the flexural displacement parameter,
one successfully uncouples the three governing characteristic differential equations
with variable coefficients and reduces them into a sixth-order ordinary differen-
tial equation with variable coefficients in term of the angle of the rotation due to
bending for the first time. The explicit relations between the axial and the flexural
displacements and the angle of the rotation due to bending are also revealed. The
exact solutions for the in-plane vibrations of the beams with material and geomet-
ric properties in arbitrary polynomial forms are obtained. Several limiting studies
are illustrated. The influence of the taper ratio and the arc length on the first two
natural frequencies of the beams is explored. The mode shapes are given to explain
the observations.
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