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Hypersingular meshless method for solving 3D potential
problems with arbitrary domain
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Abstract: In this article, a hypersingular meshless method (HMM) is extended
to solve 3D potential problems for arbitrary domains after a 2D model was suc-
cessfully developed (Young et al. 2005a). The solutions are represented by a
distribution of the double layer potentials instead of the single layer potentials as
generally used in the conventional method of fundamental solutions (MFS). By
using the desingularization technique to regularize the singularity and hypersingu-
larity of the double layer potentials, the source points can be located exactly on the
real boundary to avoid the sensitivity of locating fictitious boundary for putting the
singularity outside the computational domain as usually faced by the conventional
MFS. As a result the diagonal terms of influence matrices are easily determined,
and the main singular difficulty of the coincidence of the source and collocation
points is then overcome. The numerical evidences of the proposed HMM demon-
strate the accuracy of solutions after comparing results with analytical solution,
conventional MFS, finite element and local differential quadrature methods for the
Dirichlet, Neumann and mixed-type boundary conditions of interior problems with
simple and complicated domains. Good agreement with analytical solutions and
other numerical results is observed.

Keywords: 3D Laplace equations, method of fundamental solutions, mixed-type
boundary conditions, hypersingular meshless method, double layer potential, desin-
gularization technique, singularity, hypersingularity, kernel function, circulants the-
ory.

1 Introduction

Recently, scientific researchers have paid much attention to the investigations of
the meshless methods. These methods have the characteristics free from mesh and
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element generations. The meshless methods further improve the mesh reduction
methods such as the boundary element method (BEM) without necessity to gen-
erate grid and mesh and only requiring boundary points. The mesh reduction and
meshless techniques possess great potentials to become rivals to the finite volume
method (FVM), finite element method (FEM) and finite difference method (FDM)
as called the dominant numerical methods. Since there are no requirements of do-
main or surface meshing, the meshless methods have become very attractive for
engineers in model creation, and important tools for scientific computing nowa-
days.

There are many meshless numerical methods developed recently and among the
two most popular schemes at present are the method of fundamental solutions
(MFS) and the meshless local Petrov Galerkin (MLPG) methods. The MFS and
MLPG have been broadly applied to solve many interesting sciences and engineer-
ing problems, such as the potential problems (Fairweather and Karageorghis 1998;
Cheng et al. 2000; Smyrlis and Karageorghis 2001; Young et al. 2002; Tsai et al.
2006; Vavourakis et al. 2006; Ma 2007; Liu 2008; Ma 2008; Pini et al. 2008),
elasticity (Shiah et al. 2008), fluid mechanics (Tsai et al. 2002), heat transfer
(Ling and Takeuchi 2008; Hu et al. 2008), electromagnetic and acoustic wave
propagation (Young and Ruan 2005; Godinho et al. 2007; Antonio et al. 2007),
eigenanalysis (Reutskiy 2004; Alves and Antunes 2005; Chen et al. 2005; Young
et al. 2006a; Reutskiy 2006), biharmonic and polybiharmonic problems (Jin 2004;
Tsangaris et al. 2004; Tsai 2008), and inverse problems (Hon and Wei 2005; Marin
2008). The MFS and MLPG are both the types of meshless methods, where only
boundary points are distributed in the MFS and MLPG (BIE). A comprehensive
survey of the MFS was reviewed by Fairweather and Karageorghis (1998) while
the MLPG can be referred to Atluri (2004).

The solution procedure makes use of the fundamental solutions, which satisfies the
governing equation automatically in the interested domain. To avoid the singularity
problem, the solution is represented as a set of singular kernels or the single layer
potentials distributed on a non-physical (fictitious) boundary outside the computa-
tional domain. The kernel function composes two-point function which is a kind of
radial basis functions (RBFs). The independent variables of the two-point function
depend only on point position and distance. A regular singularity-free formulation
was obtained as a result, and achieving an attractive truly boundary-type and math-
ematically simple meshfree method. However because of the controversial issue in
choosing artificial (fictitious) boundary outside the physical domain, the conven-
tional MFS is still not a very popular numerical method since it has some sensitive
problems in locating the fictitious boundary especially for complex geometry and
nontrivial boundary conditions (BCs). The meaning of fictitious boundary is an
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auxiliary boundary to offset a distance d from the real boundary to avoid the singu-
larities. The distance is generally obtained by the trial and error process or through
the judgment of past experiences. For realistic large scale engineering problems
especially for complicated geometries and BCs, the fictitious boundary distance is
rather difficult to determine since it is not known a priori. The diagonal coefficients
of influence matrices are divergent due to the point collocation when the fictitious
boundary approaches to the real boundary. Despite its gain in singularity free, the
influence matrices become ill-posed when the fictitious boundary is too far away
from the real boundary. It results in an ill-conditioned problem since the condition
numbers for the influence matrices become very large. The location of source and
observation points is vital to the accuracy and stability of the solution by imple-
menting the conventional MFS especially for the complex domains and nontrivial
BCs.

We have recently carried out a series of research on the HMM to overcome the
drawbacks of fictitious boundary in the conventional MFS (Young et al. 2005a,
2006b, 2007; Chen et al. 2006). The HMM has been successfully used to solve
2D potential (Young et al. 2005a; Chen et al. 2006; Young et al. 2007) and 2D
acoustics (Young et al. 2006b) problems. Following the fundamental concepts of
2D potential problems (Young et al. 2005a), in this paper we further extend the
HMM to solve the 3D potential problems based on the potential theory and the
desingularization of subtracting and adding-back technique (Tournour and Atalla
1999; Hwang et al. 2002; Young et al. 2005b). To remove the singularity, it is
necessary to regularize the singularity and hypersingularity from the kernel func-
tions. The proposed method is to distribute the observation and source points on
the coincident locations of the real boundary. This scheme even uses hypersingu-
lar double layer potentials and still preserves the relevant spirits of the MFS. The
diagonal terms of the influence matrices can be obtained analytically for spheri-
cal domain or numerically for irregular domains by using the proposed technique.
The influence coefficients by numerical methods are also compared with analytical
derivation by using separable kernels (Abramowitz and Stegun 1972) and circu-
lants theory (Davis 1979) for the special spherical domain. Finally a new algorithm
of the HMM is constructed to solve 3D Laplace problems subject to the Dirich-
let, Neumann and mixed-type BCs. The continuous or discontinuous BCs with
the smoothly and non-smoothly simple and complicated domains are included to
illustrate the potentiality and simplicity of the proposed HMM algorithm.
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2 Formulation

Consider a boundary value problem with a potential φ (x), which satisfies the 3D
Laplace equation as follows:

∇
2
3φ(x) = 0, x ∈ D (1)

subjected to BCs:

φ(x) = φ̄ , x ∈ B1 (2)

ψ(x) = ψ̄, x ∈ B2 (3)

where ∇2
3 is the 3D Laplacian operator, D is the domain of the problem. The BCs

are described as follows: where ψ(x) = ∂φ(x)
∂n , and B1 is the essential (Dirichlet)

boundary in which the potential is prescribed by φ , B2 is the natural (Neumann)
boundary in which the normal derivative is prescribed as ψ; and B1 and B2 construct
the whole boundary of the domain D as well as the outside domain De as shown in
Fig. 1 The real physical problems for the Laplace equation contain potential flow
problems, steady heat conduction problems, torsion bar problems, Stokes equations
of the vorticity transport equations, etc. By employing the RBFs technique [Chen
and Tanaka 2002; Young et al. 2002; Chen et al 2002a; 2002b], the representation
of the solutions for interior problems can be approximated in terms of the strengths
α j of the singularities s j as:

φ(xi) =
N

∑
j=1

A(i)(s j,xi)α j (4)

ψ(xi) =
N

∑
j=1

B(i)(s j,xi)α j, (5)

where A(i)
(
s j,xi

)
is RBF in which the superscript (i) denotes the interior domain,

α j are the j− th unknown coefficients (strengths of the singularities), s j is j−
th source point (singularity), xi is i− th observation point, N is the number of

source points and B(i)
(
s j,xi

)
=

∂A(i)(s j,xi)
∂nx

. After BCs are satisfied by the method

of collocation at the boundary points,
{

xi
}N

i=1, the coefficients
{

α j
}N

j=1 can be
determined. In Fig. 1 the distributions of source points and observation points are
shown for the interior problems. The descriptions of the terminologies of two-point
function, fictitious boundary and strength of singularity, observation points, source
points, field points, collocation points and boundary points, can also be found from
references [Chen et al. 2002a; Young et al. 2005a; Chen et al. 2006].
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(a) 

 

 
(b) 

 Figure 1: The source point and observation point distributions and definitions of r,
θ , η ; ρ , ϕ , η for interior problems by using (a) MFS (b) HMM.
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By collocating N numbers of observation points to match with the BCs in Eq. (4)
for Dirichlet problems and Eq. (5) for the Neumann problems, we have the follow-
ing linear systems of the form

a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N
...

...
. . .

...
aN,1 aN,2 · · · aN,N

{α
j}=

[
A(i)
]{

α
j}=

{
φ

(i)
}

, (6)


b1,1 b1,2 · · · b1,N

b2,1 b2,2 · · · b2,N
...

...
. . .

...
bN,1 bN,2 · · · bN,N

{α
j}=

[
B(i)
]{

α
j}=

{
ψ

(i)
}

, (7)

where

ai, j = A(i)(s j,xi), i, j = 1,2, · · · ,N (8)

bi, j = B(i)(s j,xi), i, j = 1,2, · · · ,N (9)

A linear combination of Eqs. (6) and (7) can be made to satisfy the mixed-type
BCs for the mixed-type problems. After solving the unknown density functions{

α j
}N

j=1 with the linear algebraic solver, the solutions for the interested domain
are calculated from the Eqs. (4) and (5).

The chosen RBF’s in this study will be the double layer potentials in the potential
theory and are derived in Appendix A for the interior problems or can be found in
references [Chen et al. 2002b; 2007] as

A(i) (s j,xi)=−yknk

r̄3
i j

(10)

B(i) (s j,xi)=
nknkr2

i j−3ykylnknl

r̄5
i j

(11)

where ri j =
∣∣s j− xi

∣∣, nk is the k− th component of the outward normal vector at s j;
nk is the k− th component of the outward normal vector at xi and yk = xi

k− s j
k. The

chosen RBF is a kind of the two-point function.

It is noted that the double layer potentials have both singularity and hypersingular-
ity at the origin, which can lead to annoying singular kernels and controversially
auxiliary boundary in the conventional MFS. As shown in Fig. 1(a) the off-set
distance between the fictitious (auxiliary) boundary (B’) and the real boundary (B)
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defined by (d), needs to be chosen deliberately. To circumvent the above-mentioned
drawback, s j is distributed on the real boundary as shown in Fig. 1(b) by using the
proposed regularization technique. The rationale for choosing double layer poten-
tial instead of the single layer potential as used in the proposed method for the
form of RBFs, is to take advantage of the desingularization of the subtracting and
adding-back technique, so that no off-set distance is needed when evaluating the
diagonal coefficients of influence matrices. The single layer potential can not be
chosen as the form of RBFs, since Eqs.(14) and (15) in Section 3 are not satisfied by
single layers but only by double layers. As a result in case the single layer potential
is used, the desingularization of subtracting and adding-back technique fails, and
this principle has been proved already (Young et al. 2005a; Young et al. 2006b).

3 Derivation of diagonal coefficients of influence matrices for arbitrary do-
main

When the source point s j approaches to the collocation point xi, Eqs. (4) and (5)
will become singular. Equations (4) and (5) need to be regularized by using special
treatment of the desingularization of subtracting and adding-back technique [Young
et al. 2005a, 2006] as follows:

φ
(
xi)=

N

∑
j=1

A(i) (s j,xi)
α

j−
N

∑
j=1

A(e) (s j,xi)
α

j

=
i−1

∑
j=1

A(i) (s j,xi)
α

j +
N

∑
j=i+1

A(i) (s j,xi)
α

j

+

[
N

∑
m=1

A(i) (sm,xi)−A(i) (si,xi)]
α

i, xi ∈ B

(12)

ψ
(
xi)=

N

∑
j=1

B(i) (s j,xi)
α

j−
N

∑
j=1

B(e) (s j,x j)
α

j

=
i−1

∑
j=1

B(i) (s j,xi)
α

j +
N

∑
j=i+1

B(i) (s j,xi)
α

j

−

[
N

∑
m=1

B(i) (sm,xi)−B(i) (si,xi)]
α

i, xi ∈ B

(13)

in which

N

∑
j=1

A(i)(s j,xi) = 0, xi ∈ B (14)
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N

∑
j=1

B(i)(s j,xi) = 0, xi ∈ B. (15)

The superscripts (i) and (e) stand for the interior and exterior domains respectively.
Detailed derivations of Eqs. (14) and (15) are given in Appendix A. The original
singular terms of A(i)

(
si,xi

)
and B(i)

(
si,xi

)
in Eqs. (4) and (5) have been trans-

formed into regular terms[
N

∑
m=1

A(i) (sm,xi)−A(i) (si,xi)]
and

−

[
N

∑
m=1

B(i) (sm,xi)−B(i) (si,xi)]

in Eqs. (12) and (13), respectively. In which the terms of
N
∑

m=1
A(i)
(
sm,xi

)
and

N
∑

m=1
B(i)
(
sm,xi

)
are the adding-back terms and the terms of A(i)

(
si,xi

)
and B(i)

(
si,xi

)
are the subtracting terms in the two brackets for the special treatment technique. Af-
ter applying the desingularization of subtracting and adding-back technique (Young
et al. 2005a), the singularity and hypersingularity of the kernel functions can be
removed. Therefore, the diagonal coefficients for the interior problems can be ex-
tracted out as:

{
φ

i}=



N
∑

m=1
a1,m−a1,1 a1,2 · · · a1,N

a2,1
N
∑

m=1
a2,m−a2,2 · · · a2,N

...
...

. . .
...

aN,1 aN,2 · · ·
N
∑

m=1
aN,m−aN,N


{

α
j} , (16)

{
ψ

i}=



−(
N
∑

m=1
b1,m−b1,1) b1,2 · · · b1,N

b2,1 −(
N
∑

m=1
b2,m−b2,2) · · · b2,N

...
...

. . .
...

bN,1 bN,2 · · · −(
N
∑

m=1
bN,m−bN,N)


{

α
j} .
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(17)

The diagonal terms of the two influence matrices for both interior and exterior prob-
lems can also be derived analytically for a special case of spherical domain shown
in the Appendix B. The derivation of diagonal terms in the influence matrices of
the spherical problem is analyzed by the separable kernel (Abramowitz and Ste-
gun 1972) and circulants theory (Davis 1979). Table 1 shows the properties of the
influence matrices for both spherical and arbitrary domains.

4 Numerical results and discussions

To demonstrate the accuracy and validity of the proposed method, the potential
problems with spherical, cubic, cylindrical and arbitrary shapes subject to different
Dirichlet, Neumann, and mixed-type BCs with continuous and discontinuous BCs
are considered in the following examples.

Example 1: Spherical shape case (case 1)
The interior Dirichlet problem with continuous BCs of the spherical domain is
taken as the first example. This simply-connected problem with spherical geome-
try is used to demonstrate the analytic derivation of diagonal terms in the influence
matrices as derived in Appendix B. Two numerical methods, the MFS and pro-
posed HMM, are used to compare the accuracy and stability with the analytical
solution using the same degrees of freedom. The following case uses 1866 collo-
cating boundary points.

Case 1: Dirichlet problem
Problem sketch and the 1866 nodes distribution with outward normal vectors em-
ploying the proposed HMM are depicted respectively in Figs. 2(a) and 2(b). The
problem is subjected to Dirichlet continuous BCs as follows:

φ = 1− cos2η , η : the solid angle. (18)

In this case, the analytical solution is found to be:

φ =
4
3

P0 (cosη)− 4
3

r2P2 (cosη) , Pn : Fourier Legendre polynomial. (19)

By using the MFS and distributing the 1866 source points on the fictitious boundary
with d=0.5 off-set distance, we obtain the good results of the field potential. It is
facile to find out an optimal off-set distance (d) for the spherical shape due to the
very simple geometry. The comparisons of numerical results between the analytical
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(a) Problem sketch 

 
(b) Nodes distribution with normal vectors 

 Figure 2: (a) Problem sketch and (b) nodes distribution with normal vectors (1866
nodes) for case 1.

solutions at (y=0, z=0) line by using the MFS (d=0.5) and proposed HMM are
displayed in Tab. 1. The results of two meshless methods show good agreement
with analytical solutions. However as expected the MFS with a RMSE 7.58E-4
will give a better solution than the HMM with a RMSE 1.03E-2 due to an optimal
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off-set distance is found in the MFS, since the MFS adopts single layer potential
while the HMM has to use double layer potential. Here the root mean square error

(RMSE) is defined as

√
N
∑

i=1
|φanalytical−φnumerical|2

N .

Example 2: Cubic shape cases (cases 2-1 and 2-2)
The interior Dirichlet problems with discontinuous BCs are given in cases 2-1 and
2-2. The interior Dirichlet problem is considered in case 2-1, while case 2-2 is
devoted to the interior Dirichlet, Neumann mixed-type boundary problem. Both
two cases use 1350 boundary nodes.

Case 2-1: Dirichlet problem
Problem sketch and the nodes distribution with outward normal vectors employing
the proposed HMM are depicted in Figs. 3(a) and 3(b) respectively. The problem
is subjected to the following Dirichlet discontinuous BCs:

φ (x,y,1) = 1, φ (x,y,0) = φ (x,0,z) = φ (x,1,z) = φ (0,y,z) = φ (1,y,z) = 0 (20)

In this case, an analytical solution is found as follows:

φ =
∞

∑
m=1

∞

∑
n=1

4sin(mπx)sin(nπy)
[

1− (−1)m

mπ

][
1− (−1)n

nπ

] sinh
(√

m2 +n2πz
)

sinh
(√

m2 +n2π

)
(21)

We obtain the field potential solutions with a RMSE 6.26E-5 using the MFS by
distributing 1350 source points on the fictitious boundary with an off-set distance
(d=0.5). The ideal off-set distance is easily obtained for this simple cubic shape too.
The numerical results using the HMM with 1350 nodes will end up with a RMSE
2.01E-3. If the FEM with 13720 elements and 3375 nodes is adopted we will
get a RMSE 4.10E-3. The comparisons of numerical values at (x=0.5, y=0.5) and
(x=0.5, z=0.5) lines between the analytical solution by using the proposed HMM,
MFS, and the FEM are listed in Tab.2. The results obtained using the present HMM
match the analytical solutions very well. To see the error distribution pattern of the
cross-section at x=0.5, the absolute error with analytical solution in the interested
field with 225 inner points is given in Fig. 4. The large error occurs on the singular
corner and the boundary due to the boundary layer effects of the HMM and MFS.
The absolute error is defined as |φexact −φnumerical|. Among the three numerical
schemes we can see that MFS again gives the best accuracy, HMM is the second
and FEM is the worst one.

Case 2-2 Dirichlet and Neumann mixed-type problem
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(a) Problem sketch 
 

 
(b) Nodes distribution with normal vectors 

 
Figure 3: (a) Problem sketch and (b) nodes distribution with normal vectors (1350
nodes) for case 2-1.

In this case, we investigate a domain with the Neumann discontinuous BCs at the
bottom of the cubic as given below:

φ (x,y,1)= 1,
∂φ (x,y,0)

∂n
= 0, φ (x,0,z)= φ (x,1,z)= φ (0,y,z)= φ (1,y,z)= 0

(22)

Problem sketch using the proposed HMM is similar to Fig. 4. In this case, an
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(a) MFS 

 

 
 

(b) HMM 
 

Figure 4: The error distribution map of cross-section at x=0.5 by using (a) MFS (b)
HMM for case 2-1.

analytical solution is available as follows:

φ =
∞

∑
m=1

∞

∑
n=1

4sin(mπx)sin(nπy)
[

1− (−1)m

mπ

][
1− (−1)n

nπ

] cosh
(√

m2 +n2πz
)

cosh
(√

m2 +n2π

)
(23)

The field results find that the present HMM with 1350 nodes yields a RMSE 2.02E-
3, the conventional MFS (d=0.5) with 1350 nodes reaches a RMSE 8.23E-5 and the
FEM with 13720 elements and 3375 nodes will have a RMSE 4.10E-3. The com-
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(a) MFS 
 

 
(b) HMM 

 
Figure 5: The error distribution map at x=0.5 cross-section by using (a) MFS (b)
HMM for case 2-2.

parison of analytical solutions at (x=0.5, y=0.5) and (x=0.5, z=0.5) lines by using
the HMM, MFS and the FEM are shown in Tab.3. In Fig. 5 the error distribution
pattern of the interested domain is plotted. The numerical results by using all the
methods are very close to the analytical solutions. However the MFS is still a little
better than the HMM and FEM, while the HMM is even accurate than the FEM
though coarse points are used in the HMM as expected.

Example 3: Cylinder shape case (case 3)
In case 3 the interior Dirichlet problem of cylindrical shape with discontinuous BCs
is considered.
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Case 3: Interior Dirichlet problem (discontinuous BCs)
A cylinder subjected to the following Dirichlet BCs is considered:

φ (r,θ ,1) = 1, φ (r,θ ,0) = φ (1,θ ,z) = 0. (24)

 
 

(a) Problem sketch 

 
(b) Nodes distribution with normal vectors 

 
Figure 6: (a) Problem sketch and (b) nodes distribution with normal vectors (1800
nodes) for case 3.

Problem sketch and 1800 nodes distributions with outward normal vectors using
the proposed HMM are respectively depicted in Fig. 6(a) and 6(b). An analytical
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solution is available as follows:

φ =
∞

∑
n=1

2
eαn− e−αn

1
αnJ1 (αn)

(
eαnz− e−αnz)J0(αnr) (25)

where

αn : The n− th root of J0 (26)

We obtain the results by using the MFS for the off-set distance (d) same as case 1.
We are able to obtain good results using this distance by numerical experiment. The
field solutions with 1800 nodes by the proposed HMM and MFS (d=0.5) reached
the accuracy of RMSE 2.84E-2 for HMM, and a RMSE 3.80E-3 for the MFS re-
spectively. Moreover, both results at (x=0,y=0) line are compared with analytical
solutions as shown in Tab.4. However the MFS still outperforms the HMM, be-
cause an optimal off-set distance of the MFS could be found. In Fig. 7 the error
distribution pattern of the interested domain is plotted. For the cylindrical shape,
the node distribution severely affects the accuracy when applying the HMM. The
comparison of numerical accuracy for the different nodes distributions is shown in
Fig. 8. If the nodes are uniformly distributed at the top and bottom circular surfaces
of the cylinder as Fig.8 (a) we will get a good RMSE: 2.41E-2. If every circle has
the same number of nodes as Fig.8 (b) it ends up with a poor RMSE: 0.1523. If we
fix the number of nodes at outside part and increase the number of nodes at inside
part in the cylinder as Fig.8 (c) it results in a good RMSE: 8.89E-2. However if
we control the number of inside part and outside part separately like Fig. 8 (d)
we will have a poor RMSE: 0.1738 again. By applying the mean distance of the
nodes from Tab. 5, we know the fact that the most uniform point distribution will
provide the best result judging from Fig. 8. Thus the ideal number of nodes on
the z-axis can be determined and the best result of the whole computational do-
main is obtained as shown in Fig. 9. This figure reveals a significant message that
uniform convergence and numerical stability are always expected with increasing
collocating points in the HMM which is quite different from the MFS. We will
encounter a stability problem when the collocation points are too big in the MFS.
Moreover the convergence is an exponential function so only very coarse collocat-
ing points are required to obtain an optimal solution by the HMM. Occasionally in
case when a more dense mesh is needed locally due to the nature of simulating a
physical problem, we suggest employing the localization concepts such as domain
decomposition techniques (Chen et al. 2005) or matrix decomposition algorithm
(Tsangaris et al. 2004) to tackle the problem. It is certainly a follow-up topic which
is worth studying deeply.
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(a) MFS 

 

(a) HMM 
 

Figure 7: The error distribution map at z=0.5 cross-section by using (a) MFS (b)
HMM for case 3.

Example 4: Ring shape case (case 4)
In case 4 we consider the ring shape of interior Dirichlet problems with discontin-
uous BCs.

Case 4: Interior Dirichlet problem (discontinuous BCs)
Figs. 10(a) and 10(b) respectively depict problem sketch and 1236 nodes distribu-
tion with outward normal vectors using the proposed HMM. A ring shape subjected
to the following Dirichlet BCs is considered:

φ (1,θ ,z) = 1, others: φ = 0. (27)

Hereby we use the MFS and FEM to check the accuracy of the proposed model
HMM. Comparison of these three numerical methods at (y=0, z=0.5) and (x=0,
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 Figure 8: The point distribution of (a), (b), (c), (d) arrangements by using HMM at

top and bottom surfaces for case 3.

Table 5: Sensitivity test of point distribution for case 3.
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Figure 9: Convergence test of number of the nodes.

z=0.5) lines is presented in Tab.6; it is found that almost the same results are ob-
tained. However there are 5000 elements and 1320 nodes employed in the FEM
and only 1236 nodes are used in the HMM and MFS to reach the same accuracy.

Example 5: Dual sphere shape cases (cases 5-1 to 5-3)
In the cases 5-1 to 5-3, the interior Dirichlet problems for the dual sphere shape
with continuous and discontinuous BCs are considered.

Case 5-1: Interior Dirichlet problem (trivial continuous BCs)
Problem sketch and 2826 nodes distribution with outward normal vectors are de-
picted in Figs. 11(a) and 11(b) respectively for more complex linear BCs: φ =
ex.cosy + z. Analytical solutions φ = ex.cosy + z (using 2826 points to plot the
contours) for the considered problem are also shown in Fig. 12. After distributing
2826 nodes, we obtain very unreasonable results by using the MFS for different
types and distances of fictitious boundary (d) as depicted in Fig. 13(a) for an inter-
sectional fictitious boundary. Figure 13(b) displays MFS wrong results for d=0.5.
It is obvious that the field solutions of the MFS depend not only on the circular
fictitious boundary as shown in Fig. 14(a) but also on the offset distance d=0.5
(wrong answer) as shown in Fig. 14(b), and d=1 (correct) with a RMSE 1.26E-4
as shown in Fig.14(c). It is very shocked to observe from Figs. 13(b), 14(b) and
14(c) that the MFS will give correct or wrong solutions depending on the source
locations outside the computational domain even the same 2826 source points are
adopted. This illustrates an important fact that the location of source points is very
crucial to the accuracy of the solution by using the conventional MFS if there is no
exact solution available or not first using the HMM solution to serve as guidance.
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(a) Problem sketch 

 

(b) Nodes distribution with normal vectors 
 

Inside radius: 1 

Outside radius: 2 

Height: 1 

1=φ  0=φ  

0=φ

0=φ  

Figure 10: (a) Problem sketch and (b) nodes distribution with normal vectors (1236
nodes) for case 4.

In such a situation, the MFS can not yield reliable and consistent solutions if a rea-
sonable off-set distance can not be determined even for this trivial BCs case. Thus
the confusion of selecting a meaningful off-set distance in the MFS is avoided by
adopting the present HMM. In Fig. 15 the field solutions with a MRSE 4.12E-2 of
the proposed HMM show very close results to the analytical solutions.
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BC: zye x +⋅= cosφ  

(a) Problem sketch 
 

 

(a) Nodes distribution with normal vectors 
 

02 =∇ φ

Figure 11: (a) Problem sketch (b) nodes distribution with normal vectors (2826
nodes) for case 5-1.
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 Figure 12: The analytical solution for case 5-1.

Case 5-2, 5-3: Interior Dirichlet problem (nontrivial BCs)
Problem sketches using the proposed HMM are similar to Fig. 11 for case 5-2 with
BCs: φ = 1−cos2η ; and for case 5-3 with BCs: φ = 1 for upper sphere and φ = 0
for lower sphere. For these nontrivial BCs, it is difficult to find an ideal off-set
distance to obtain good results for Case 5-2 and Case 5-3 by the MFS with 2826
nodes and d=1 (wrong answers) as shown respectively in Figs. 16(a) and 17(a). (It
will be recalled that for d=1 the MFS will give excellent results for the trivial BCs of
Case 5-1 but wrong solutions of nontrivial BCs of Case 5-2 and Case 5-3). Since the
cases with the feature of geometric singularity posses no analytical solutions, we
use a high order accuracy method, the local differential method (LDQ) (Zong and
Lam, 2002) to verify the HMM results. Shen et al. (2007; 2009) further developed
the improvement of LDQ method for irregular domains. The results with 2981
nodes are obtained by referring 5 nearest local points along 3 Cartesian axes as in
Figs. 16(b) and 17(b), respectively. The proposed HMM with 2826 nodes provides
promising results without adjusting any off-set distance as shown respectively in
Figs. 16(c) and 17(c). Furthermore, the HMM has solved the problems without any
mesh and more efficient than the LDQ. It is important to point out that the selection
of appropriate off-set distance of the MFS not only depends on the geometry but
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(       Fictitious boundary)        2826 nodes 

(a) Intersectional fictitious boundary   (b) MFS (d=0.5) 
 Figure 13: (a) Intersectional fictitious boundary location (b) field solutions at z=0

cross-section by using MFS (d=0.5) for case 5-1.

also heavily on the BCs such as demonstrating in cases 5-1 to 5-3 and the following
cases 6-1 to 6-3.

Example 6: Pole shape cases (cases 6-1 to 6-3)
In cases 6-1 to 6-3, the interior Dirichlet problems for the pole shape with continu-
ous and discontinuous BCs are given, respectively.

Case 6-1: Interior Dirichlet problem (trivial continuous BCs)
Problem sketch and 2261 nodes distribution with outward normal vectors using
the proposed method are depicted in Figs. 18(a) and 18(b), respectively for more
complex geometry. Analytical solution for the chosen problem is also shown in
Fig. 19. After distributing 2261 nodes, we obtain the results by using the MFS, with
circular fictitious boundary, for different off-set distances (d) as depicted in Fig. 20.
It is obvious to observe that the field solutions of the MFS with d=2 (wrong answer)
by experience judgment, is worse than d=1.2 (correct answer) with RMSE 1.34E-4,
by adjusting to match the analytical solution as shown in Fig. 20(a) and Fig. 20(b)
respectively. This demonstrates how sensitive for a reliable solution obtained by
MFS from observing a very marginal range of the off-set distance chosen from the
boundary. In Fig. 20(c) the field solutions of the proposed HMM with a RMSE
4.11E-2 reveal good result as comparing with analytical solutions.

Cases 6-2, 6-3: Interior Dirichlet problems (nontrivial BCs)
Problem sketch using the proposed method are similar to Fig. 18 for case 6-2 with
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(        Fictitious boundary) 
(a) Circular fictitious boundary 
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              2826 nodes               2826 nodes 
            RMSE: 9.62E22            RMSE: 1.26E-4 
            (b) MFS (d=0.5)           (c) MFS (d=1) 
 

Figure 14: (a) Circular fictitious boundary location and field solutions at z=0 cross-
section by using (b) MFS (d=0.5) and (c) MFS (d=1) for case 5-1.

BCs: φ = 1 for upper sphere and φ = 0 for lower cylinder; and for case 6-3 with
BCs: φ = 1− cos2η for upper sphere and φ = 0 for lower cylinder. For these
nontrivial BCs, it is still difficult to find ideal offset distance to obtain good results
for nontrivial BCs of Case 6-2 and Case 6-3 by using MFS with 2261 nodes and
d=1.2 (wrong answers) as shown in Figs. 21(a) and 22(a), respectively. The MFS
for modeling Case 6-2 and Case 6-3 draws almost the similar conclusion as Case
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2826 nodes 
RMSE: 4.12E-2 

HMM 
 Figure 15: The field solutions at y=0 cross-section by using HMM for case 5-1.

 

      2826 nodes          2981 nodes          2826 nodes 
     (a) MFS (d=1)          (b) LDQ            (c) HMM 
 

Figure 16: The field solutions at z=0 cross-section by using (a) MFS (d=1) (b) LDQ
(c) HMM for case 5-2.
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       2826 nodes         2981 nodes          2826 nodes 
    (a) MFS (d=1)          (b) LDQ            (c) HMM 
 

Figure 17: The field solutions at z=0 cross-section by using (a) MFS (d=1) (b) LDQ
(c) HMM for case 5-3.

5-2 and Case 5-3. It is recalled that for d=1.2 the MFS will give excellent results
for the trivial BCs of Case 6-1 but wrong solutions of nontrivial BCs of Case 6-2
and Case 6-3. The results of the LDQ with 2310 nodes are obtained by referring 5
nearest local points along three Cartesian axes as depicted in Figs. 21(b) and 22(b),
respectively. The proposed HMM with 2261 nodes still provides good solutions in
comparing with the LDQ results as shown respectively in Figs. 21(c) and 22(c).In
these two cases we are not able to get meaningful solutions by the conventional
MFS unless HMM or LQD is employed.

5 Conclusions

In this article we implement the HMM to solve the 3D Laplace problems for ar-
bitrary domains subject to the Dirichlet, Neumann and mixed-type BCs. Only the
boundary nodes on the real boundary are required. The major difficulty of the co-
incidence of the source and collocation points in the conventional MFS is then cir-
cumvented. Moreover the controversy of the artificial (fictitious) boundary outside
the physical domain by using the MFS no longer exists. From the present study for
irregular domains with nontrivial BCs, the conventional MFS has to spend a lot of
efforts to search for the optimal off-set distance for each assigned number of source
points. There is possible we will face with difficulty to find a meaningful solution.
On the other hand, an acceptable answer with logarithmic convergence always can
be easily obtained by using the HMM. Furthermore from the sensitivity analysis
of point distribution and seeding it is found that the HMM requires uniform point
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BC: xze y +⋅ sin  
(a) Problem sketch 

 
(b) Nodes distribution with normal vectors 

 

02 =∇ φ

45.0

5.1

Figure 18: (a) Problem sketch (b) nodes distribution with normal vectors (2261
nodes)
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Figure 19: Analytical solution for case 6-1.

distribution to obtain a better accuracy. The numerical results were obtained by
using the developed program for six category examples with different BCs and do-
main shapes. Solutions were compared very well with the analytical solutions or
other numerical methods such as the FEM, LDQ and MFS especially for irregular
domains and the nontrivial BCs, in which the MFS will face a big challenge to
select the right off-set distance. The logarithmic convergence for the HMM with
increasing collocating points is much superior to the MFS which will result in an
ill-conditioned and unstable system if collocating points are too large or the source
locations are inappropriate. Therefore it is recommended that the HMM should be
combined with MFS to solve large scale engineering problems with complicated
geometry and BCs by using the HMM first and then tuning the optimal off-set dis-
tance from the boundary through the known HMM solutions as shown in present
study.
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RMSE: 2 

(a) MFS(d=2) 

 
RMSE: 1.34E-4            RMSE: 4.11E-2 
(b) MFS (d=1.2)              (c) HMM 

 Figure 20: The field solutions at y=0 cross-section by using (a) MFS (d=2), (b)
MFS (d=1.2) (c) HMM for case 6-1.
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Figure 21: The field solutions at z=0 cross-section by using (a) MFS (d=1.2) (b)
LDQ (c) HMM for case 6-2.
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Figure 22: The field solutions at z=0 cross-section by using (a) MFS (d=1.2) (b)
LDQ (c) HMM for case 6-3.
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Appendix A: The detail derivations of equations (14) and (15)

The null-fields of the boundary integral equations (BIEs) based on the direct method
are

0 =
∫

B

∂Φ(i)(s,xi)
∂ns

φ(s)dB(s)−
∫

B
Φ

(i)(s,xi)
∂φ(s)
∂ns

dB(s), xi ∈ De, (A1)

0 =
∫

B

∂ 2Φ(i)(s,xi)
∂ns∂nxi

φ(s)dB(s)−
∫

B

∂Φ(i)(s,xi)
∂nxi

∂φ(s)
∂ns

dB(s), xi ∈ De, (A2)

where the superscript (i) denotes the interior domain, Φ is the single layer poten-
tial, and is equal to 1/(r̄i j) for 3D Laplace equation. Let ∂Φ(i)(s,xi)

∂ns
= A(i)(s,xi),

and ∂ 2Φ(i)(s,xi)
∂ns∂nxi

= B(i)(s,xi). By employing the simple test method (∂φ(s)/∂ns =
0 when φ(s) = 1), we can write Equations (A1) and (A2) respectively as follows:∫

B
A(i)(s,xi)dB(s) = 0 , xi ∈ De, (A3)

∫
B

B(i)(s,xi)dB(s) = 0 , xi ∈ De. (A4)

When the field point xi approaches the boundary, we can discretize Equations (A3)
and (A4) as follows:

N

∑
j=1

A(i)(s j,xi)` j = 0, xi ∈ B, (A5)

N

∑
j=1

B(i)(s j,xi)` j = 0, xi ∈ B. (A6)

where ` j is the half of distance of the ( j−1)− th source point and the ( j +1)− th
source point. When the distribution of nodes is uniform, we are able to reduce
Equations (A5) and (A6) to the following:

N

∑
j=1

A(i)(s j,xi) = 0, xi ∈ B, (A7)

N

∑
j=1

B(i)(s j,xi) = 0, xi ∈ B, (A8)

where

A(i) (s j,xi)=−yknk

r̄3
i j

(A9)
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B(i) (s j,xi)=
nknkr2

i j−3ykylnknl

r5
i j

(A10)

where r̄i j =
∣∣s j− xi

∣∣, nk is the kth component of the outward normal vector at s j;
n̄k is the kth component of the outward normal vector at xi and yk = xi

k− s j
k. The

Equations (A7) and (A8) are the equations (14) and (15) in the text of Section 3;
and Equations (A9) and (A10) are the Equations (10) and (11) in the text of Section
2.

Appendix B

Analytical derivation of diagonal coefficients of influence matrices for a spher-
ical domain in 3D Laplace equation by separable kernels
By adopting the addition theorem (Abramowitz and Stegun 1972), we expand the
two kernels in Eqs. (10) and (11) for interior problems as well as similarly for
the exterior problems into separable kernels which separate the field point, xi, and
source point, s j, as follows:

Ā(s j,xi) =
∂ ( 1

ri, j
)

∂ r
=

Ā(i)(s j,xi) =
1
r2 +

∞

∑
n=1

n
∑

m=0
(n+1) (n−m)!

(n+m)! cos [m(ϕ−θ)]Pm
n (cosη)Pm

n (cos η̄) rn

ρn+2

Ā(e)(s j,xi) =

−
∞

∑
n=1

n
∑

m=0
n (n−m)!

(n+m)! cos [m(ϕ−θ)]Pm
n (cosη)Pm

n (cos η̄) rn−1

ρn+1

(B1)

B̄(s j,xi) =
∂ ( 1

ri, j
)

∂ r ∂ ρ
=

B̄(i)(s j,xi) =

−
∞

∑
n=1

n
∑

m=0
(n+1)(n+2) (n−m)!

(n+m)! cos [m(ϕ−θ)]Pm
n (cosη)Pm

n (cos η̄) rn

ρn+3

B̄(e)(s j,xi) =
∞

∑
n=1

n
∑

m=0
n(n+1) (n−m)!

(n+m)! cos [m(ϕ−θ)]Pm
n (cosη)Pm

n (cos η̄) rn−1

ρn+2

(B2)

where Pm
n (•) is the associated Legendre polynomial, s j =(r,θ , η̄) and xi =(ρ,ϕ,η)

are defined in the spherical coordinates and plotted in Fig. 1(a) and 1(b). The su-
perscripts (i) and (e) represent the interior and exterior problems respectively. For
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simplicity we move the original coordinate system into a new coordinate system to
take advantage of the concept of objective coordinate system of the RBFs. We then
reformulate the Eqs. (B1) and (B2) to avoid dealing with the complex associate
Legendre functions as follows:

A(s j,xi) =


A(i)(s j,xi) =

∞

∑
n=0
−(n+1) ρ

nl

rnl+2 cos [nl(ϕ−θ)−θ ]

A(e)(s j,xi) =
∞

∑
n=0

n rnl−1

ρ
nl+1 cos [nl(ϕ−θ)−ϕ]

(B3)

B(s j,xi) =


B(i)(s j,xi) =

∞

∑
n=0
−n(n+1)ρ

nl−1

rnl+2 cos [nl(ϕ−θ)−θ ]

B(e)(s j,xi) =
∞

∑
n=0
−n(n+1) rnl−1

ρ
nl+2 cos [nl(ϕ−θ)−ϕ]

, (B4)

where nl =
(

ρ

a

)
n and l = 0, 1, 2, · · ·n−1 in which n is the quantity of source points

we choose in the original coordinate system, nl is the corresponding source points
in the new coordinate system and a is the amplitude of the considered geometry.
Since the rotation symmetry is preserved for the spherical boundary, the influenced
matrices with the elements are described as

Ki j = K(r,θ j,ρ,ϕi), (B5)

Where the kernel function ki j can be the interior or exterior problem, θ j, ϕi are
the angles of source and collocation points, respectively. By superimposing N
lumped strength along the boundary, we have the following influence matrices,

[K] =


k0 k1 · · · kN−1

kN−1 k0 · · · kN−2
...

...
. . .

...
k1 k2 · · · k0

 , (B6)

Where the elements of the first row can be obtained by

k j = k(r,θ j,ρ,0), (B7)

in which ϕ = 0 is assigned without loss of generality. The matrix [K] in Eq. (B6)
is found to be a circulant since the rotational symmetry for the influence coeffi-
cients is considered. By introducing the following bases for the circulants, I, (CN)1,
(CN)2 . . ., and (CN)N−1, we can expand [K] into

[K] = k0I + k1(CN)1 + k2(CN)2 + · · ·+ kN−1(CN)N−1, (B8)
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where I is an unit matrix and

CN =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · 0 0


N×N

. (B9)

Based on the circulant theory (Davis 1979), the eigenvalues for the influence ma-
trix, [K], are found as follows:

λl = k0 + k1τl + k2(τl)2 + · · ·+ kN−1(τl)N−1, l = 0,1,2, · · · ,N−1, (B10)

where λl and τl are the eigenvalues for [K] and [CN], respectively. It is easily found
that the eigenvalues τl for the circulant [CN] are the roots for τN = 1 as shown
below:

τl = ei 2πl
N , l = 0,1,2, · · · ,N−1. (B11)

Substituting Eq. (B11) into Eq. (B10), we have

λl =
N−1

∑
m=0

kmτ
m
l =

N−1

∑
m=0

kmei 2πml
N , l = 0,1,2, · · · ,N−1. (B12)

According to the definition for km in Eq. (B5), we obtain

km = kN−m, m = 0,1,2, · · · ,N−1. (B13)

Substitution of Eq. (B13) into Eq. (B12) it yields

λl =
N−1

∑
m=0

km cos(
2πml

N
), l = 0,1,2, · · · ,N−1. (B14)

By setting ϕ = 0 without loss of generality, the Riemann sum of infinite terms
reduces to the following integral

λl =
1

∆θ
lim

N→∞

N−1

∑
m=0

K(m∆θ ,0)cos(ml∆θ)∆θ ≈ N
2π

∫ 2π

0
cos(lθ)K(θ ,0)dθ , (B15)

where ∆θ = 2π

N .

Interior problem
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By employing the separable kernel A(i) =
(
s j,xi

)
for interior problem (r > ρ) in

Eq. (B1) and the orthogonal conditions, Eq. (B15) reduces to

ν
(i)
l =

{
0, l = 0
−N(N−1)

r2 , l = 1, 2, · · · , N−1
(B16)

Similarly, we have

δ
(i)
l =

{
0, l = 0, 1
−N(N−1)

r3 , l = 2, · · · , N−1
(B17)

where ν
(i)
l and δ

(i)
l are the eigenvalues of

[
A(i)
]

and
[
B(i)
]

matrices, respectively.
By employing the invariant property for the influence matrices, the first invariant is
the sum of all the eigenvalues. The diagonal coefficients for the two matrices for
the interior problem are obtained by adding all the eigenvalues and can be shown
below:

Na j j =
N−1

∑
m=0

ν
(i)
m , (j no sum) (B18)

Nb j j =
N−1

∑
m=0

δ
(i)
m . (B19)

Hence, the diagonal elements are easily determined from the first invariant as fol-
lows:

a j j =
−(N−1)2

r2 ≈ −4π2(2π r
N

)2 , N� 1 (B20)

b j j =
−(N−1)(N−2)

r3 ≈ −8π3(2π r
N

)3 , N� 1 (B21)

Exterior problem
By employing the separable kernel for interior problem (r > ρ) in Eq. (B1) and the
orthogonal conditions, we have

ν
(e)
l =

{
0, l = 0
2N(N−1)

r2 , l = 1, 2, · · · , N−1
(B22)

δ
(e)
l =

{
0, l = 0
−2N2(N−1)

r3 , l = 1, 2, · · · , N−1
(B23)
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By the same way, the diagonal coefficients for the two matrices for the exterior
problem are in the form of

Nāii =
N−1

∑
l=0

ν
(e)
l (B24)

Nb̄ii =
N−1

∑
l=0

δ
(e)
l . (B25)

Similarly, the diagonal terms of the influence matrices for the exterior problem are
shown as follows:

ā j j =
2(N−1)2

r2 ≈ 8π2(2π r
N

)2 , N� 1 (B26)

b j j =
−2N(N−1)2

r3 ≈ −16π3(2π r
N

)3 , N� 1 (B27)

The properties of the influence matrices for interior and exterior problems are
shown in Tab. 7.
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