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Effects of the local structure on a cracked periodically
distributed composite

M. Patrício1, R. Mattheij1 and G. de With2

Abstract: In this paper the effect of the local structure of a highly heterogeneous
composite material on the parameters that characterise crack propagation is anal-
ysed. The evaluation of stress intensity factors is discussed. A hybrid approach
based on domain decomposition and homogenisation methods is employed to ob-
tain accurate solutions with reduced computational complexity.
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1 Introduction

Engineering structures are designed to withstand the loads they are expected to be
subject to while in service. Large stress concentrations are avoided and a reasonable
margin of security is taken to ensure that values close to the maximum admissible
stress are never attained. However, material imperfections which arise at the time of
production or usage of the material are unavoidable, and hence must be taken into
account. Indeed, even microscopic flaws may cause structures which are otherwise
safe to fail, as they grow over time.

In the past, when a component of some structure exhibited a crack, it was either
repaired or simply retired from service. Such precautions are nowadays in many
cases deemed unnecessary, not possible to enforce, or may prove too costly. In this
setting fracture mechanics plays a central role, as it provides useful tools which
allow for an analysis of materials which exhibit cracks, Broek (1986); Cherepanov
(1979); Freund (1990); Owen and Fawkes (1983). The goal is to predict whether
and in which manner failure might occur.

In this paper we shall focus on the brittle fracture of composite materials with peri-
odically distributed linear elastic components. The increasing usage of composites
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for high performance applications has justified much interest in recent years, cf.
for example Aymerich and Serra (2006); Guz, J.Rushchitsky, and A.Guz (2008);
Fitzgerald, Goldbeck-Wood, Kung, Petersen, Subramanian, and J.Wescott (2008,
2004); Masuda and Noguchi (2006). We are particularly interested in ascertaining
the value of the stress intensity factors (SIFs) of a loaded cracked plate - see for ex-
ample Aliabadi and López (1996); H. Tada and Irwin (2000). The SIFs are relevant
material parameters for elastic materials as it can be assumed that crack propaga-
tion will occur when they reach certain values. In general, a fracture criteria such
as this allow the modelling of crack growth, see for example Sageresan and Drathi
(2008); Wang and Wang (2008); Gato and Shie (2008); A. Dimitrov and Schnack
(2006).

The elastic behaviour of the materials we look into can be modelled as a boundary
value problem for which the underlying differential equation has highly oscillating
ε-periodic coefficients. Finding the solution of these problems, which is a prior
requirement to the computation of the SIFs, is complicated from a numerical point
of view. Indeed, for small values of ε , the usage of finite elements is no longer
feasible. Taking an element size smaller than the typical periodicity is required in
order to obtain accurate results, cf. Hou, Wu, and Cai (1999), but that would be
computationally too expensive.

To address this issue one may resort to the theory of homogenisation, Cioranescu
and Donato (1999); Pavliotis and Stuart (2007). With this, one finds a macro-
scopic constitutive equation for a homogenised medium which captures the av-
erage behaviour of the composite. The advantage of this procedure is that the
boundary value problem obtained with the new constitutive equation is no longer
ε-dependent. However, the role of the heterogeneities is disregarded. It is then not
possible to obtain good estimates for the SIFs, as these depend greatly on the local
structure.

In this paper we consider heterogeneous materials with pre-existing cracks. Each
crack tip is laying fully inside one of the components of the composite material.
Our goal is to approximate the stress and displacement fields of the elastic plate
accurately, so that good approximations for the SIFs can be found.

We start by formulating the elasticity problem for a composite material in Section
2. There the classical notions of fracture mechanics that will be employed are in-
troduced. In Section 3 the stress field around a crack tip, for which the SIFs play
a fundamental role, is characterised. We show how to compute these material pa-
rameters. In particular the stress correlation method, the displacement correlation
method and the J-integral are applied. Next, in Section 4, we investigate the effect
of the local structure of a periodically distributed composite material on the value
of the stress intensity factors, for several example microstructures. An algorithm
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that combines homogenisation and domain decomposition techniques is presented,
cf. Patrício, Mattheij, and de With (2008b). This allows for an accurate and compu-
tationally cheap way to determine the SIFs, in particular for small values of ε , for
one or more cracks. Finally, in Section 5, a plate of a heterogeneous material with
a central crack is considered. For different crack lengths, the SIFs are computed
using the aforementioned algorithm.

2 The mechanisms of linear elastic fracture

In this section we first introduce the equations that describe the behaviour of a
composite plate Ω with constituents periodically distributed. Let us assume that
Ω is covered by a mosaic of cells of the form εY =]0,εl1[×]0,εl2[ over which
the material is distributed as in the reference cell Y =]0, l1[×]0, l2[, cf. Patrício,
Mattheij, and de With (2008a).

In the absence of body forces the well-known linear elasticity problem for the com-
posite material is stated as follows, cf. Cioranescu and Donato (1999)


−∇ · (Aε(x)ε(uε)) = 0, x ∈ Ω,
uε = 0, on ΓD,
σ(uε) ·n = gN , on ΓN ,

(1)

where gN is a given vector function. As for ε = (εi j)i, j=1,2 and σ = (σi j)i, j=1,2,
they are the strain and stress tensors defined respectively by

ε(w) = (∇w+(∇w)T ), σ(w) = Aε
ε(w), (2)

for any vector function w taking values over Ω. The tensor Aε characterising
the behaviour of the material can be obtained by extending the components of a
fourth-order tensor Ã = Ã(y) = (ãi jkh)1≤i, j,k,h≤2, defined over the reference cell
Y , periodically to IR2. We denote Aε = Aε(x) = (aε

i jkh)1≤i, j,k,h≤N such that for

x = (x1, x2) ∈ IR2, one has aε
i jkh(x) := ãi jkh(y) = ãi jkh(x/ε), where y := x/ε , for

y = (y1, y2) ∈ IR2.

Now consider a plate Ω, with elastic behaviour described by (1), exhibiting a crack.
The mechanisms of crack propagation lay outside the scope of the theory of elastic-
ity. It is useful to adopt Irwin’s classical classification Irwin (1958a) corresponding
to the three situations represented in Figure 1. It distinguishes the different ways a
cracked plate may be loaded.
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Figure 1 - a) Mode I.
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Accordingly we consider three distinct modes: mode I, mode II and mode III.

For each of these modes crack extension may only take place in the direction of
the x1-axis, the original orientation of the crack. More generally, we typically find
a mixed mode situation, where there is a superposition of the modes and the crack
may propagate in any direction. For such a problem the principle of stress su-
perposition states that the individual contributions to a given stress component are
additive, so that if σ I

i j, σ II
i j and σ III

i j are the stress components associated to the
modes I, II and III respectively, then the stress component σi j of a plate in a mixed
mode situation is given by

σi j = σ
I
i j +σ

II
i j +σ

III
i j , for i, j = 1,2. (3)

Within the scope of the theory of linear elasticity, a crack introduces a discontinuity
in the elastic body such that the stresses tend to infinity as one approaches the crack
tip. Using the semi-inverse method as in Westergaard (1939), Irwin Irwin (1957,
1958b) related the singular behaviour of the stress components to the distance to the
crack tip r. In particular, when we consider a Cartesian coordinate system centred
at the crack tip, in the mode I and in polar coordinates we have

σi j '
KI√
2πr

f I
i j(θ), (4)

where the angular variation function f I
i j , which will be introduced later, depends

only on θ . The parameter KI , the stress intensity factor, plays a fundamental role
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in fracture mechanics, as it characterises the stress field, reflecting the geometry of
the structure and the loading it is subject to. This approximation for the stresses
is assumed to be valid in the vicinity of the crack tip for linearly elastic materials.
Actually, the materials yield or deform inelastically very near the crack tip and so
there is a region of validity of the approximation, cf. Zehnder (2007).

Henceforth we will consider the problem of elastic brittle fracture of a cracked plate
in a plane stress situation, which means that mode III situations (pure or mixed)
will be disregarded. Due to the presence of the crack, besides the equations of
elasticity, an extra equation to serve as fracture criteria is also required, see for
example, Broek (1986); Cherepanov (1979). Many different criteria are available
in the literature. In what follows, we will adopt a classical criterium.

For a stationary semi-infinite line crack, loaded in a mode I situation, we assume
that crack growth will occur when

KI = KIc (5)

holds. Here KIc , which behaves as a threshold value for KI , is called the critical
stress intensity factor or mode I fracture toughness. It may be determined experi-
mentally for each material. In Table 1 we include examples of experimental data for
the fracture toughness of some materials, as taken from Ashby and Jones (1996).

Table 1: Examples of fracture toughness.

Material KIc (MN/m3/2)
Mild steel 140
Titanium alloys 55−120
High carbon steel 30
Nickel, copper > 100
Nickel, copper > 100
Concrete (steel reinforced) 10−15
Concrete (unreinforced) 0.2
Glasses, rocks 1
Ceramics (Alumina, SiC) 3−5
Nylon 3
Polyester 0.5

We now focus our attention on the more general situation when the loading is a
combination of modes I and II. Unlike the mode I loading situation, where the
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direction of the crack growth is trivially determined, criteria on whether the crack
will propagate but also on which direction it may do so must be decided upon. This
will be based on the circumferential tensile stress σθθ which, up to an order of

√
r,

reads

σθθ (r,θ) =
Kθθ (θ)√

2πr
, (6)

where

Kθθ (θ) = KI cos3(
1
2

θ)−3KII sin(
1
2

θ)cos2(
1
2

θ) (7)

is the circumferential stress intensity factor, cf. Broek (1986); Cherepanov (1979).
We assume that crack growth will occur when

max
θ

Kθθ (θ) = KIc , (8)

which can be seen as a generalisation of (5). The direction of propagation is given
by the angle θ = θp which maximizes Kθθ (θ),

θp = 2arctan

KI−
√

K2
I +8K2

II

4KII

 . (9)

Note that using (9), (8) can be rewritten as

4
√

2K3
II(KI +3

√
K2

I +8K2
II)

(K2
I +12K2

II−KI

√
K2

I +8K2
II)

3
2

= KIc . (10)

3 Determination of the SIF

The SIFs are fundamental parameters in the prediction of crack propagation. It is
therefore important to be able to compute them accurately. We now look at several
ways to do so.
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3.1 Local and global approaches

In order to describe the local approach to determining the SIFs, we start by exam-
ining the role that they have in the distribution of stresses and displacements in the
region around the tip of a crack. For that, consider a static crack in a plate which is
in a plane stress situation. Assume that the crack is positioned along the negative
x-axis as in Figure 2 and that its surfaces are stress free.

x
1

q

r

x
2

Figure 2: Crack tip coordinates.

Then the stress field in the vicinity of the crack tip is given, up to an order of
√

r,
by

σi j(r,θ) =
KI√
2πr

f I
i j(θ)+

KII√
2πr

f II
i j (θ), (11)

see for example Broek (1986); Cherepanov (1979); Freund (1990); Irwin (1958a).
Here, i, j = 1,2. As for KI and KII , they are defined by

KI := lim
r→0

K∗I (r), where K∗I (r) =
√

2πrσ22(r,0), (12)

KII := lim
r→0

K∗II(r), where K∗II(r) =
√

2πrσ12(r,0). (13)

Finally, in (11), the angular variation functions for mode I are given by

f I
11(θ) = cos(

1
2

θ)
(

1− sin(
1
2

θ)sin(
3
2

θ)
)

, (14)
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f I
22(θ) = cos(

1
2

θ)
(

1+ sin(
1
2

θ)sin(
3
2

θ)
)

, (15)

f I
12(θ) = f I

21(θ) = cos(
1
2

θ)sin(
1
2

θ)cos(
3
2

θ), (16)

while the equivalent functions for mode II are

f II
11(θ) =−sin(

1
2

θ)
(

2+ cos(
1
2

θ)cos
3
2

θ)
)

, (17)

f II
22(θ) = cos(

1
2

θ)sin(
1
2

θ)cos(
3
2

θ), (18)

f II
12(θ) = f II

21(θ) = cos(
1
2

θ)
(

1− sin(
1
2

θ)sin
3
2

θ)
)

. (19)

It is also possible to obtain equations for the corresponding displacement field near
the crack tip, cf. Cherepanov (1979); Irwin (1958a); Owen and Fawkes (1983).

The formulas we have presented allow us to characterise the stress field in the vicin-
ity of a crack tip. In turn, if the stress field is known, this allows for the determina-
tion of the SIFs using (12) and (13). This technique is called the stress correlation
method. It is applied as follows: to calculate KI , one simply finds the function
K∗I (r) for values of the stress computed ahead of the crack tip and extrapolates the
value of the function back to r = 0. In a similar way, K∗II(r) can also be determined.
This method is quite simple, but its accuracy depends on the mesh refinement and
also on how it deals with the crack singularity.

In turn, the displacement correlation method makes use of the equations for the
displacement field near the crack tip. From these it can be shown that

KI = lim
r→0

K∗∗I (r), where K∗∗I (r) =
E
4

u2(r,π)

√
2π

r
, (20)

KII = lim
r→0

K∗∗II (r), where K∗∗II (r) =
E
4

u1(r,π)

√
2π

r
, (21)
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where E is the Young’s modulus of the elastic material where the crack tip lays, cf.
Zehnder (2007).

One alternative to the above local approach is obtained by using the path-independent
J-integral Rice (1968). This is defined as a line integral along a counterclockwise
contour C which surrounds the crack tip, see Figure 3. Its components are given in
terms of the strain energy density We = ∑i, j=1,2 σi jεi j and the stresses by

Jk =
∮

C
(Wenk− ∑

i, j=1,2

σi jn j
∂ui

∂xk
)dS, (22)

for k = 1,2 and where n = (n1,n2) is the outward-pointing normal vector defined
over C, cf. Hegen (1997); van Vroonhoven (1996); Zehnder (2007). The vector
J = (Jk)k=1,2 can be regarded as the energy flux per unit length into the crack tip. It
is called path-independent because it does not depend on the choice of the curve C.

C

n

Figure 3: Integration path (gray) around the crack tip.

We note that in a mode I situation, once the J-integral has been computed, the SIF
can also be obtained by

J =
K2

I

E
, (23)

cf. Hegen (1997); van Vroonhoven (1996); Zehnder (2007). The main advantage
of the J-integral method is that it is in general very accurate without requiring the
usage of very fine meshes. The reason for that is that capturing the crack tip singular
stress field is no longer necessary. It suffices to be able to find a good approximation
for the stress and strain fields over the curve C. It is in that sense a global approach.
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3.2 Numerical approach

There are classical examples of cracked geometries for which the mode I SIFs
have been computed or approximated explicitly and are available in handbooks, cf.
H. Tada and Irwin (2000). Consider for example a square plate, of side length 2b,
with a central crack of length 2a, see Figure 4. Let the plate be loaded from its
upper and lower edges by a uniform tensile stress σ .

2a

2b

s

2b

Figure 4: Finite plate with a centre through crack under tension.

An expression for the SIFs can be given by

KI = σ
√

πa(1+0.043ρ +0.491ρ
2 +7.125ρ

3−28.403ρ
4

+59.583ρ
5−65.278ρ

6 +29.762ρ
7), (24)

cf. Aliabadi Aliabadi and López (1996). From this formula we compute reference
solutions for the stress intensity factors for several values of ρ = a/b. The values
of KI/K0, where K0 := σ

√
πa, are displayed in the second line of Table 2. Note

that KI/K0 does not depend on the loading applied to the plate, but only on the
geometrical ratio ρ . In what follows we discuss several methods to compute the
SIFs numerically, namely the stress correlation method, the displacement correla-
tion method and the J-integral method, cf. for example Zehnder (2007).

We start by finding an approximation for the SIFs by applying the displacement
correlation method. As a first step we need to solve the elasticity problem. In order
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to do that we use finite elements. A mesh with quadratic triangular elements with
maximum width of the element side h = 0.01 is generated. Now, for each value of
ρ , we approximate the function K∗∗I linearly within an interval contained in [0,a].
The choice of the interval is not arbitrary: since the limit for r→ 0 is sought, we
want to consider the function in a domain where the values of r are small. On the
other hand, the crack tip singularity affects the accuracy of the results near r = 0.
This means that the values of K∗∗I when r is too small must be disregarded.

To illustrate this procedure, we take ρ = 0.4. Without loss of generality, let b = 1.
The values of K∗∗I /K0 can be plotted versus the values of r, see the full line in
Figure 5.

0 0.05 0.1 0.15 0.2

1.225

0.7

0.9

1.1
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1.3

r

 

 

K∗∗
I /K0

Figure 5: Extrapolation using the displacement correlation method, ρ = 0.4.

We use a linear interpolator - represented by a dashed line- to fit the function in
the interval [0.03,0.2]. The data over the interval [0,0.03] are neglected due to the
crack tip singularity. To proceed, we extrapolate the value of the interpolator back
to r = 0, in order to obtain the desired approximation. The SIFs obtained using
this method are displayed in the third line of Table 2 for the different values of ρ

contained in the first line of the table.

The stress correlation method goes about in a similar way. The respective results are
shown in the fourth line of Table 2. They are not so accurate as the previous results.
This was to be expected, because we are using the stresses to approximate the SIFs,
whereas the primary result of the finite element analysis is the displacement field.
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Table 2: Stress intensity factors.

SIF/K0 \ ρ 0.1 0.2 0.4 0.6

KI 1.014 1.055 1.216 1.481

KI(u) 1.004 1.058 1.225 1.525

KI(σ) 1.226 1.145 1.211 1.802

KI(J) 1.004 1.051 1.212 1.477

It should be pointed out that the choice of the interval where the linear interpolator
is to be applied does affect the results, as it is not completely objective and re-
quires intuition. The inherent subjectivity of the choice of an interval is no longer a
problem for the method employing the J-integral, as this fracture parameter is path-
independent. In this sense this is a much more reliable method than the previous
two as it allows for quite accurate approximations of the SIFs. The results obtained
using this method can be seen in the last line of Table 2. They are given by (23)
after averaging a number of J-integrals, each computed over a small circle centred
at the crack tip.

4 SIFs in composite materials

In what follows we investigate how the local structure of a highly heterogeneous
plate influences the SIFs of a pre-existent static crack. A hybrid approach to com-
pute these fracture parameters is included.

4.1 Effects of the local structure

Consider a cracked plate Ω = ΩP−ΩC, where ΩP = [−0.5,0.5]× [−0.5,0.5] and
ΩC is the crack line [−0.5,−0.3]×{0} of length a = 0.2, see Figure 6.

The plate is made of a composite elastic material, its elastic behaviour being mod-
elled by (1). We assume that the plate is pulled at its upper and lower edges. The
remaining boundaries, including the crack edges, are stress-free, so that the follow-
ing boundary conditions hold
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Figure 6: Cracked plate.

gN(x) =


(0,1), x2 = 0.5,
(0,−1), x2 =−0.5,
(0,0), otherwise.

(25)

Let the plate be composed of a layered material with isotropic constituents with
components of the elasticity tensor Ã reading

ã2222(y) = ã1111(y) =
E(y)

1−ν2(y)
; ã2211(y) =

E(y)ν(y)
1−ν2(y)

; (26)

ã2121(y) =
E(y)

2(1+ν(y))
; ã2111(y) = ã2221(y) = 0, (27)

where E is the Young’s modulus, ν is the Poisson’s ratio and y = (y1, y2). We
assume that the reference cell for this material, given by Y = [0,1]× [0,1], can
be decomposed into two subdomains Y1 = [0, 0.5]× [0, 1], Y2 = [0.5, 1]× [0, 1]
composed respectively by materials A and B, see Figure 7. Moreover, for i = 1, 2,
Yi is occupied by a linear elastic material with Young’s modulus Ei = Ei(y1) and
Poisson’s ratio νi = νi(y1). In short, we have

E(y) = E1χ1(y1)+E2χ2(y1), (28)

ν(y) = ν1χ1(y1)+ν2χ2(y1), (29)
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where χ1 and χ2 are the characteristic functions of the sets Y1 and Y2. These are
defined by

χi(y) =
{

1, for y ∈ Yi,
0, for y ∈ Y −Yi,

(30)

and can be extended periodically.

0.5 1

1

0

Y
2

Y
1

Material A

Material B

Figure 7: The reference cell Y , composed of two different materials.

Finally let

ν1 = 0.3, ν2 = 0.1, E1 = 10, E2 = 1, ε = 0.02. (31)

The problem we have described up to now has been set up so that the material
layers are disposed orthogonally to the crack line, see Figure 8 e). We actually
want to think of other material orientations as well, in order to illustrate the effect
of the local structure on the SIFs. We consider the five situations depicted in Figure
8, which represent zoom-ins of the vicinity of the crack tip. The figures labeled a)
to e) correspond to the different material orientations characterised by the angles
β = 0o, 30o, 45o, 60o and 90o that the layer boundaries form with the horizontal
axis. Furthermore we assume that the crack tip lays inside material A.
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-0.05

0.05

Figure 8 - a) β = 0o
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b) β = 30o.
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b

c) β = 45o .
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d) β = 60o.
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0.1
b

e) β = 90o.

Material A

Material B

For each of these configurations, our goal is to compute the SIFs KI and KII as well
as the propagation angle θP. Before we can compute the SIFs, we have to solve
the elasticity problems (1) with (25)-(31) for the various values of β . For that we
employ the finite element method. A fine mesh with quadratic triangular elements
in the vicinity of the crack tip and quadratic rectangular elements everywhere else
is generated. This allows for the computation of the displacement and stress fields
for the different material orientations. The SIFs KI and KII are then determined
using the J-integral method and their values are displayed in Table 3. As for the
propagation angle θP also included in the table, it is zero when β = 0o or β = 90o.
In the other cases, it is computed using (9).

Table 3: SIF and propagation angle. The material surrounding the crack tip is
characterised by E1 and ν1.

β KI KII θP

0o 2.20 0 0o

30o 2.13 −2.23E−2 1.2o

45o 2.10 −5.22E−2 2.8o

60o 2.11 −8.20E−2 4.4o

90o 2.13 0 0o

Next, we interchange the roles of materials A and B. We assume they are now
characterised by E2 and ν2 and by E1 and ν1 respectively. We solve the previous
problem with this new assumption. The values we find are shown in Table 4.
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Table 4: SIF and propagation angle. The material surrounding the crack tip is
characterised by E2 and ν2.

β KI KII θP

0o 8.16E−1 0 0o

30o 7.75E−1 7.18E−2 −10.4o

45o 7.10E−1 1.07E−1 −16.4o

60o 6.24E−1 1.21E−1 −20.5o

90o 5.39E−1 0 0o

By comparing the results in the two tables, it can be seen that the local structure
can influence the value of the SIFs quite dramatically. For this example of a layered
material, this may not be so much the case when the material orientation changes.
Indeed, if we take for instance the values of KI along the second column of Table 3
or of Table 4 they do not vary much. However, there is quite a difference when the
crack tip is laying on different materials. This is particularly relevant for composites
or other materials which are very heterogeneous.

We note that we dealt with a heterogeneous periodic plate where the period ε of the
heterogeneities was rather large. For this accurate numerical approximations of the
solutions of the elasticity problems and consequently of the SIFs could be obtained
by the finite element method and taken as reference solutions. When ε is much
smaller, the typical mesh width h must satisfy h� ε to yield reasonable results and
so prohibitively thin meshes have to be employed. Alternatively, we may adopt a
macroscopic approach and replace the heterogeneous medium by a fictitious equiv-
alent homogeneous material. In particular, instead of the layered material with
vertically disposed layers for which (28) and (29) hold, one may consider the or-
thotropic material characterised by the elasticity tensor A with components

a1111 =
Ex

1−νxyνyx
, a2211 =

Exνyx

1−νxyνyx
, (32)

a2222 =
Ey

1−νxyνyx
, a2121 = Gxy, (33)

a2111 = a2221 = 0, (34)
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where νxyEy = νyxEx, cf. Patrício, Mattheij, and de With (2008a). Homogenisation
can also be applied for the remaining material orientations other than for β = 90o,
by rotating the axes of orthotropy.

The advantage of the homogenisation procedure lays in the very significative sim-
plification of the underlying elasticity equations, as the ε-dependent coefficients
are replaced by constants. However this comes at the price of losing the effects
of locality. Indeed, homogenisation intends to provide the average behaviour of a
material in some sense, not its local behaviour, so it is not as accurate. Moreover,
we note that if we are interested in computing the SIFs and propagation angles
for the homogenised material it should be taken into account that the homogenised
material is orthotropic. In particular, the maximum circumferential tensile stress
criterion (8) should be reformulated, cf. Nobile and Carloni (2005).

P

r

Figure 9: Inclusion near the crack tip.

Besides the material orientation, the behaviour of the SIFs is also affected by the
presence of defects, as we will illustrate in the following example. Consider again
the cracked plate represented in Figure 6, and let it now be composed of a linear
elastic isotropic homogeneous material with E = 1 and ν = 0.1. We assume that it
is subject to the boundary conditions (25), so that a mode I situation arises. Using
the J-integral method to compute the SIF for this configuration, we find that KI =
1.18.

Now consider the same plate but containing one linear elastic circular inclusion of
radius 0.05, centred at the point P and characterised by E2 = 10 and ν2 = 0.3, cf.
Figure 9. We take various coordinates for P as listed in Table 5, so that the SIF can
be measured when the inclusion is closer or further from the crack tip, located at
(−0.3,0).
When the inclusion is at a larger distance d from the crack tip, the SIF is about
the same as the one computed for the plate without any inclusion. Conversely, this
fracture parameter is affected by a closer proximity of the inclusion, see Table 5.
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Table 5: SIF affected by the proximity of an inclusion.

P d KI

(−0.2,0) 0.05 1.11

(−0.1,0) 0.15 1.16

(−0.2,0.2) 0.17 1.14

(−0.1,0.2) 0.23 1.15

(0,0) 0.25 1.17

(0.2,0) 0.45 1.18

This example illustrates the sensitivity of the stress intensity factors to the local
characteristics of the surroundings of the crack tip. If one looks for accurate ap-
proximations for the SIFs, the local structure in the vicinity of the crack tip may
not be disregarded. As we move away from this region, the heterogeneities have
much less influence on the crack behaviour.

4.2 Hybrid approach

The heterogeneities of composite materials should be taken into account in order
for accurate enough approximations for the SIFs to be obtained. However, doing
so explicitly with the use of finite elements is in most cases too demanding in terms
of the computational complexity.

To deal with this one would like to have the best of both worlds and design a method
that is both accurate - especially in the vicinity of the crack tip - and computation-
ally feasible. This is the goal of the hybrid approach presented in Patrício, Mattheij,
and de With (2008b). This is a flexible method which allows the region around the
crack tip to be treated separately. It is also easily adaptable for when there is more
than one crack present.

The idea of this hybrid approach is to employ both homogenisation and domain
decomposition methods. Then, instead of approaching (1) directly, we split the do-
main Ω in Ω1 and Ω2 = Ω−Ω1, where Ω1 is a small region that surrounds the crack
tip. On Ω2 we want to use the ε-periodicity of the composite material to approxi-
mate the solution with homogenisation techniques. As for Ω1, it is a critical region
where accuracy is fundamental, and it is important to solve the heterogeneities fully.
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The hybrid approach for this problem can be expressed in the form of an algorithm.
Following Patrício, Mattheij, and de With (2008b), we will introduce a sequence of
problems defined on two overlapping subdomains Ω̂1 and Ω2, where Ω1 ⊂ Ω̂1 ⊂Ω.
Let Γ1 = ∂Ω1∩∂Ω2 and Γ2 = ∂ Ω̂1∩∂Ω2, as illustrated in Figure 10.

G
1

G
2

W
1

W
2

Overlapping
region

G
1G

2

^

Figure 10: The overlapping subdomains Ω̂1 and Ω2.

The domain Ω̂1 must be chosen so that the overlapping region Ω̂1−Ω1 suits our
needs. One should take into account that choosing this region to be large implies
that the iterative scheme converges in less steps. However, there is a trade off, as
more effort must be put into solving the problem on Ω̂1.

The algorithm expressing the hybrid approach for elasticity, allowing us to obtain
sequences of approximations {û(k)

1 }k and {û(k)
2 }k for uε |

Ω̂1
and uε |Ω2 , respectively,

is as follows. Let λ̂
(0)

be the initial guess for u|Γ2 , Tol = (Tol1,Tol2) the tolerance
for the stopping condition and k = 0.

1 - Solve



−∇ · (Aεε(û(k+1)
1 )) = 0, x ∈ Ω̂1,

û(k+1)
1 = 0, x ∈ ΓD

⋂
∂ Ω̂1,

σ(û(k+1)
1 ) ·n = gN , x ∈ ΓN

⋂
∂ Ω̂1,

û(k+1)
1 = λ̂

(k)
, x ∈ Γ2,

(35)

and
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−∇ · (Aε(w(k+1))) = 0, x ∈ Ω2,

w(k+1) = 0, x ∈ ΓD
⋂

∂Ω2,

σ(w(k+1)) ·n = gN , x ∈ ΓN
⋂

∂Ω2,

w(k+1) = û(k+1)
1 , x ∈ Γ1.

(36)

2 - Set

w1(x) =
1
2 ∑

i, j=1,2

(
∂wi

∂x j
+

∂w j

∂xi

)
χ

i j(
x
ε
). (37)

3 - Solve


−∇ · (Aε(C(k+1))) = 0, x ∈ Ω2,

C(k+1) =−εw1, x ∈ ΓD∩∂Ω2,

σ(C(k+1)) ·n = 0, x ∈ ΓN ∩∂Ω2.

(38)

4 - Set û(k+1)
2 := w(k+1) + εw(k+1)

1 +C(k+1).

5 - Update λ̂
(k)

and increment k

λ̂
(k+1)

= û(k+1)
2 |Γ2 , (39)

k→ k +1. (40)

6 - Return to step 1 until

‖(û(k)
1 |Γ2− û(k)

2 |Γ2)i‖∞ < Toli, for i = 1,2. (41)

Here, (û(k)
1 |Γ2−û(k)

2 |Γ2)i represents the ith component of the vector function (û(k)
1 |Γ2−

û(k)
2 |Γ2). We may take Tol1 and Tol2 as the estimated maximum homogenisation

errors for the horizontal and vertical components of the displacement, respectively.
Finally, χ and C denote the solution of the cell problem and boundary corrector
associated to (1), respectively. For more details see Patrício, Mattheij, and de With
(2008b).
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We note that this algorithm may be significantly simplified if the accuracy require-
ments are not too demanding. The iteration steps 2 to 4, where correctors are
employed to improve the accuracy of the overall procedure, may be replaced by
simply having û(k+1)

2 := w(k+1). In any case the error originating from this proce-
dure will depend on the accuracy of the homogenised solution, which improves for
smaller values of ε .

Finally, we note that a possible choice for an initial approximation λ̂
(0)

is given by

λ̂
(0)

:= u|Γ2 , where


−∇ · (Aε(u)) = 0, x ∈ Ω,
u = 0, x ∈ ΓD,
σ(u) ·n = gN , x ∈ ΓN .

(42)

This particular initial guess provides a cheap approximation for the solution of (1)
by disregarding the heterogeneities.

With this hybrid procedure the computational complexity of the original problem
is significantly reduced, as the heterogeneities are only resolved where it is relevant
to do so.

5 Numerical example

To approximate the stress intensity factors for a given crack, using the computa-
tional methods mentioned in section 3, it is necessary to first solve the elasticity
problem. For very heterogeneous materials, the complexity of this task is tackled
by the hybrid approach.

To illustrate the relevant features of this technique, we consider a cracked elastic
plate Ω = ΩP−ΩC, where ΩP = [−1,1]× [−1,1] and ΩC is the closed crack line
[−a,a]×{0}.
We assume that the plate is composed of a layered material with vertically disposed
isotropic components such that (1) and (28)-(29) hold. Besides this, we take

ν1 = ν2 = 0.3, E1 = 3, E2 = 1, ε = 2.5E−2. (43)

As for the boundary conditions, let the plate be pulled along its upper and lower
edges while it remains free of stress along the other boundaries so that
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Figure 11: Cracked plate (left) and zoom-in around crack region (right).

gN(x) =


(0,1), x2 = 1,
(0,−1), x2 =−1.
(0,0), otherwise.

(44)

Due to the underlying symmetry of the problem, it suffices to consider the domain
[0,1]× [0,1]− ([0,a]×{0}) represented on Figure 11.

Consider the values for a, half of the crack length, included in the first line of Table
6. For each of these values, a reference solution is found for the elasticity problem
employing finite elements, with very fine meshes. Using the J-integral method, the
mode I stress intensity factor KI is computed. It is included in the second line of
the table.

Table 6: Mode I stress intensity factor.

2.5E−3 5.0E−3 7.5E−3 1.0E−2

KI 1.33E−1 1.93E−1 2.46E−1 3.24E−1

Kha
I 1.31E−1 1.90E−1 2.47E−1 3.18E−1

Next, we look for an approximation of the SIF applying the hybrid approach. The
computational domain ΩCp = [0,1]× [0,1] is split into the overlapping subdomains
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Ω̂1 = [0,0.15]× [0,0.15] and Ω2 = ΩCp − ([0,0.1]× [0,0.1]). We compute the
elasticity problem by the hybrid algorithm and determine the stress intensity factors
Kha

I with the J-integral method. These values are displayed in the last line of Table
6.

This example illustrates the computational capabilities and the accuracy of the hy-
brid approach.

6 Conclusion

An algorithm to compute the SIFs for a given crack in a highly heterogeneous
plate is presented, which is both accurate and computationally cheap. In general,
this algorithm may be applied successfully to materials which are homogenisable
everywhere except in the vicinity of the crack tip. Also, it can be easily extended
to plates with a small number of cracks. We note that the finite element based
packages Abaqus and Comsol Multiphysics, in combination with Matlab, were
used in the implementation of the algorithm and throughout the examples present
in this work.
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