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An Atomistic Study of Elliptic Cross-Sectional
Nanosprings
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Abstract: One-dimensional copper nanospring with elliptic cross section was
studied using molecular statics method based on minimum energy consideration.
Various geometric sizes (wire semi-axis length, radius, pitch) and crystal orien-
tations of nanosprings were systematically modeled to investigate the size depen-
dence of elastic properties for both normal and binormal nanosprings. It was ob-
served that as the wire semi-axis increases, and the radius and pitch decrease, the
nanospring stiffness would increase irrespective to the crystal orientations. More-
over, it was noticed that the normal nanosprings always behave stiffer than the bi-
normal ones for the same radius, pitch and cross-sectional geometry in our study.
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1 Introduction

Considerable research effort has been focused recently on one-dimensional nanos-
tructures such as nanorods, nanowires, nanotubes and their assembled structures
due to the possible applications and new physical phenomena. Among them, helical
nanowires and coiled nanotubes (referred hereafter generally as nanosprings) are a
new form of one-dimensional nanostructures that have promising applications in
nanoelectromechanical systems [Singh, Liu, Ye, Picu, Lu, and Wang (2004), Gao,
Ding, Mai, Hughes, Lao, and Wang (2005), Wang (2004)]. Nanosprings could be
employed to measure an extremely small force of several nanonewtons and pro-
vided as an excellent energy dissipation mechanism. With the recent advance in
nanotechnology, there is a growing interest in studying how the mechanical prop-
erties of the nanostructured materials differ from those of their bulk counterparts.

Various fabrication methods commonly used in semiconductor industry have been
proposed to synthesize nanosprings so as to investigate their growth mechanisms
[Gao, Ding, Mai, Hughes, Lao, and Wang (2005), Wang (2004), Amelinckx, Zhang,
Bernaerts, Zhang, Ivanov, and Nagy (1994), McIlroy, Zhang, Kranov, and Norton
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(2001), McIlroy, Alkhateeb, Zhang, Aston, Marcy, and Norton (2004), He, Fu,
Zhang, Zhao, Zhang, Xia, and Cai (2007), Bell, Sun, Zhang, Dong, Nelson, and
Grutzmacher (2006)]. It is observed that the cross-sectional shape of nanosprings
varies from circle, ellipse to rectangle [McIlroy, Zhang, Kranov, Norton (2001),
McIlroy, Alkhateeb, Zhang, Aston, Marcy, Norton (2004), Wang (2004)] possibly
due to the differences in stress and strain during formation. Despite the initial suc-
cessful growth of the helical or coiled structures, the consistent fabrication control
of the nanosprings is still a subject of great research interest to many researchers.

There are several experimental attempts to characterize the physical and mechanical
properties of these nanospring structures using scanning transmission microscopy
(STM), atomic force microscopy (AFM), and transmission electron microscopy
(TEM). Volodin, Ahlskog, Seynaeve, Van Haesendonck, Fonseca, and Nagy (2003)
studied the elastic properties of coiled multiwalled nanotubes using AFM combined
with a circular beam approximation and observed that the Young’s modulus re-
mains comparable to the hexagonal graphene sheets, which agree with the classical
theory of elasticity. Chen, Zhang, Dikin, Ding, Ruoff, Pan, and Nakayama (2003)
loaded a carbon nanocoil with two AFM tips and observed that the nanocoil be-
haves like an elastic spring in the low-strain regime with an elastic constant upturn
in the high-strain regime. Singh, Liu, Ye, Picu, Lu, and Wang (2004) compressed
the cobalt coated silicon nanospring by passing through a dc using a conductive
AFM tip and found that the spring constant determined from the measurements
was consistent with that obtained from a finite element analysis.

In addition to experimental characterization of the nanospring elastic properties,
some researchers adopted continuum approaches to derive expressions for the nano-
spring stiffness [Da Fonseca, Malta, and Galvao (2006a)(2006b)]. However, it is
still an unsettled question whether classical theory could apply to predict the behav-
iors of nanostructures and to what extent it can apply at the nanoscale. Molecular
simulation method is a proper and frequently used tool to study the mechanical
properties of nanostructures [Chen, Cheng, and Hsu (2007), Nair, Farkas, and Kriz
(2008), Nishidate, and Nikishkov (2008)]. Chang and Yeh (2008) studied the elas-
tic properties of circular cross-sectional nanospring using molecular statics method
and found that some modifications need to be made to the classical equations in
order to apply in the stiffness prediction of nanosprings.

In this research, we will focus on the atomistic study of elliptic cross-sectional
nanospring. A series of systematic simulations will be performed to study the ge-
ometric size, cross-sectional shape and crystal orientation effect on the stiffness of
the nanospring based on molecular statics calculation.
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2 Molecular simulation

The suitable interatomic potentials and atomic model are essential to perform a
proper molecular simulation. Without loss of generality, fcc copper is chosen for
this study with lattice constant of 3.615 Å. The embedded-atom-method EAM po-
tential developed by Foiles, Baskes, and Daw (1986) is chosen to describe atomic
interactions. Among the various types of n-body potentials, the EAM potential is
one of the most realistic and promising potentials, which provide a relevant descrip-
tion of the surface effect and defect properties of the transition metals with either a
fcc or bcc structure. [Johnson (1988)(1989)] In the EAM potential, the total energy
is composed of the electrostatic pairwise interaction energy between atoms and the
embedding energy required to insert the atom into the local electron density field
created by its near neighbors. Empirical functions in the EAM potential are fitted
to experimentally measured bulk material properties, such as equilibrium lattice
constants, sublimation energies, elastic constants, and vacancy formation energy.

Both normal and binormal nanosprings as shown in Fig. 1(a) and Fig. 2(a) are stud-
ied since they may lead to different technological application. The atomic model of
nanosprings is constructed by firstly creating a large block of fcc single-crystalline
copper atoms and keeping the atoms that are within the elliptic cross section, whose
surface normal is perpendicular to the z axis, along the nanospring centerline as
shown in Fig. 1(b) and Fig. 2(b). The semi-axes of the elliptic cross-sectional
nanosprings are a and b, respectively. The cross section becomes circular while
semiaxes a and b are equal. The spatial relation of the nanospring centerline can be
described by

~s = Rcosθ î+Rsinθ ĵ +
θ

2π
Pk̂

where R and P are the radius and pitch of the nanospring helix, respectively. The
vertical displacement will shift a pitch when θ rotates an angle of 2π and, thus, the
spring rising angle α is defined as tanα = P/2πR. Only one full pitch length of the
nanospring is constructed in the atomic model. The periodic boundary condition
(PBC) is applied in the z direction to simulate an infinitely long nanospring. Uni-
axial strain deformation along z direction is loaded on nanosprings to extract their
elastic properties.

In this research, various sizes of nanosprings are built to investigate the dependence
of the nanospring radius, pitch, and wire semi-axis length (i.e. a- and b-axis). The
radii R of the nanosprings are in the range of 6-9 nm, the wire semi-axes are 5-8
nm, and the pitches are 20-35 nm, as listed in Tab. 1. The numbers of atoms in
the simulation model are 55036-100294, respectively. Meanwhile, three different
arrangements of nanospring crystallographic orientations are considered as shown
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Figure 1: The schematic presentation of the normal nanospring. (a) The geometry
and (b) the atomic model.
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Figure 2: The schematic presentation of the binormal nanospring. (a) The geometry
and (b) the atomic model.

in Fig. 3 to illustrate the crystal orientation dependence.

Molecular statics simulations are implemented using the conjugate gradient method
to carry out the energy minimization process so that the equilibrium atomic struc-
ture could be obtained. The considered energy includes the potential energy of
interatomic interactions and potential energy due to external loading. Because the
initial atomic positions of the nanospring might not be in their equilibrium condi-
tion, the model is fully relaxed by adjusting the periodic length in the z direction
to eliminate the nonzero initial stresses. Since there is no constraint applied in the



An Atomistic Study of Elliptic Cross-Sectional Nanosprings 99

 
(a)        (b)  (c) 

 

z[100] 

y[001] 

x[010] 

z[111] 

y[110] 

x[112] 

z[110] 

y[110] 

x[001] 

Figure 3: The schematic presentation of the nanosprings with different crystallo-
graphic orientations: (a) [100], (b) [110], and (c) [111] nanosprings.

x and y directions, the stresses in these two directions will automatically approach
zero. After reaching the equilibrium, the system energy of the nanospring model
will be the lowest, which is also set as the zero-energy point.

Then, a small uniform tensile or compressive displacement along z direction is
applied step by step on the equilibrated atomic model. The application of loading
displacement is accomplished by uniformly expanding or contracting the periodic
length in the direction of deformation. After each step of the loading process,
the atoms are allowed to equilibrate within the changed dimensions and current
minimum energy positions are computed. Following each loading step, the system
energies of the nanospring are recorded as in Fig. 4. It is found that the system
energies increase as the tensile or compressive loadings increase and the energy-
loading curve is a parabola. Using the parabolic equation, U = 1

2 Kd2, to curve
fit the energy-loading relation, the spring constant of the nanospring, K, could be
calculated. The spring constant is determined from the parabolic curve best fit to
the displacement-energy curve.

3 Results

Molecular statics approach is utilized to simulate the uniaxial tensile and compres-
sive test of elliptic cross-sectional nanosprings. The size and crystal orientation
effects on elastic behaviors are studied and the elastic constants calculated from
the energy-loading relation are systematically compared. The atomic structures of
nanosprings at the equilibrium are examined and it is found that the initial shapes
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Table 1: The geometric parameters of the normal and binormal nanospring models

Model R (nm) 2a (nm) 2b (nm) P (nm) α (˚)
N 6 8 5 20 27.9

NR1 7 8 5 20 24.5
NR2 8 8 5 20 21.7
NR3 9 8 5 20 19.5
Nt1 6 5 5 20 27.9
Nt2 6 6 5 20 27.9
Nt3 6 7 5 20 27.9
NP1 6 8 5 25 33.6
NP2 6 8 5 30 38.5
NP3 6 8 5 35 42.9

B 6 5 8 20 27.9
BR1 7 5 8 20 24.5
BR2 8 5 8 20 21.7
BR3 9 5 8 20 19.5
Bt1 6 5 5 20 27.9
Bt2 6 5 6 20 27.9
Bt3 6 5 7 20 27.9
BP1 6 5 8 25 33.6
BP2 6 5 8 30 38.5
BP3 6 5 8 35 42.9

are preserved as plotted in Fig. 5(a). Moreover, it is noticed that the equilibrated
nanosprings still maintain the crystalline fcc structure from the radial distribution
function (RDF) as depicted in Fig. 5(b).

As illustrated in Fig. 6(a), the spring constants of both normal and binormal
nanosprings increase as the wire semi-axis length become larger irrespective to the
crystal orientations. It is noted that the stiffness increases more drastically as the
semi-axis a increases for normal nanosprings (N, Nt series) than the semi-axis b for
binormal ones (B, Bt series). As the radii and pitches of the nanosprings increase,
the stiffness of the nanosprings becomes smaller as shown in Fig. 6(b) and 6(c).
It is observed that [100] nanosprings are stiffer than both [110] and [111] ones for
both normal and binormal nanosprings. Moreover, the normal nanosprings (N, Nt,
NR, NP series) always behave stiffer than the binormal ones (B, Bt, BR, BP series)
for the same radius, pitch and cross-sectional geometry in the comparison.
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Figure 4: The relationship between the nanospring system energy and loading dis-
placement for nanospring model.
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Figure 5: [100] nanospring at the equilibrium: (a) the atomic structure for normal
(model N) and binormal (model B) nanosprings and (b) RDF.

4 Discussion

In this research, the geometric size, cross-sectional shape (normal and binormal)
and crystal orientation effects on the elastic behaviors of nanosprings are systemat-
ically studied using molecular statics method. Without consideration of the veloc-
ity term, the computation time for molecular statics method is relatively shorter as
compared to those for other molecular methods. However, molecular statics sim-
ulation is limited to 0 K temperature also due to its lack of velocity term and the
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loading process is considered quasi-static unlike the high loading rate in molecular
dynamics simulation. As discussed by Chang and Chen (2007), molecular stat-
ics method could adequately calculate the elastic properties of nanomaterials as the
molecular dynamics simulation at low temperature and the trend in size dependence
of elastic behavior would not be altered by temperature.

The dependences of nanospring stiffness on the geometric parameters (radius, wire
semi-axis length and pitch) are further analyzed based on the derived expression
by Da Fonseca, Malta, and Galvao (2006a,b) using the continuum Kirchhoff rod
model

K =
Ea3bcosα

8NR3

where E is Young’s modulus of the nanospring material and N is the number of
turns. Indeed, a linear relationship is observed between the elastic constants and
the simulated wire semi-axis length (a3b), the inverse of the third order of radii
as well as the cosine of the rising angle irrespective to the crystal orientations as
shown in Fig. 7(a), (b) and (c). It is noticed that [100] nanosprings are always
stiffer than both [110] and [111] ones for the same geometric size no matter normal
or binormal nanosprings.

Besides, it is found that the simulation results collapse into individual master lines
for respective crystal orientations and cross-sectional shape (normal and binormal)
as illustrated in Fig. 8, which suggests that the classic equation predicts well the
relationship between the stiffness and the nanospring radius and wire semi-axis
length combining with the rising angle as K ∝

a3b
R3 cosα for elliptic cross-sectional

nanosprings. However, the slopes of individual master curve are different, which
indicates that the Young’s modulus is not the same for different crystal orientation.
This can be realized by the amorphous material assumption made by Da Fonseca,
Malta, and Galvao (2006b) in their derivation while the single crystalline copper
nanosprings investigated in our research are not made of isotropic materials.

5 Concluding remarks

In this work, molecular statics method with EAM potential is employed to study
single-crystalline copper nanosprings with elliptical cross sections. Several geo-
metric sizes, cross-sectional shape (normal and binormal) and crystal orientations
of nanosprings are systematically simulated in order to investigate the elastic con-
stant dependence. It is shown consistently that the elastic constants of nanosprings
are observed to increase as the semi-axis length increases, while the radius and
pitch decrease irrespective to the crystal orientation of the nanospring. It is shown
that two nanosprings of the same cross-sectional geometry, radius and pitch but
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Figure 6: The size dependences of elastic constants for 
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Figure 6: The size dependences of elas-
tic constants for normal and binormal
nanosprings with different crystal ori-
entations. (a) Wire semi-axis length, (b)
radius, and (c) pitch.
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Figure 7: The size dependences of
elastic constants for different crystallo-
graphic oriented nanosprings: (a) wire
semi-axis length, (b) radius, and (c) ris-
ing angle.
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Figure 8: The size dependences of elastic constants for different crystallographic
orientated nanosprings.

differing by the fact that one is a normal structure and the other is binormal, have
different stiffness. In our study, the normal nanospring is always stiffer than the bi-
normal one. Furthermore, it is concluded that the classical equations derived based
on continuum theory could predict the elastic behavior of elliptic cross-sectional
nanospring quite well.
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