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Stress Analysis of 3D Generally Anisotropic Elastic Solids
Using the Boundary Element Method

C. L. Tan1, Y.C. Shiah2 and C.W. Lin2

Abstract: The explicit, closed-form expressions of the Green’s functions for
generally anisotropic elastic solids in three-dimensions that have been derived using
Stroh’s formalism are employed in a formulation of the boundary element method
(BEM). Unlike several other existing schemes, the evaluation of these fundamental
solutions does not require further numerical integration in the BEM algorithm; they
have surprisingly not been implemented previously. Three numerical examples are
presented to demonstrate the veracity of the implementation and the general appli-
cability of the BEM for the 3D elastic stress analysis of generally anisotropic solids.
The results are compared with known solutions in the literature where possible, or
those obtained by another numerical method, namely, the finite element method; in
all cases, very good agreement is shown to be achieved.

Keywords: Fundamental solutions, Green’s functions, anisotropic elasticity, Stroh’s
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1 Introduction

The determination of accurate stress distributions in structural details such as those
near stress concentrations is very important in the design and safe-life assessment of
many engineering components. To this end, the boundary element method (BEM)
is well recognized as a very efficient numerical tool for the linear elastic stress
analysis of isotropic solids (see, e.g. Aliabadi, 2002). This is also true for treating
problems of anisotropic solids in two-dimensions (see, e.g. Tan and Gao, 1992;
Tan, et al., 1992; Shiah and Tan, 2000; Shiah, et al., 2006). However, the advances
that have been made of this method on its application to three-dimensional (3D)
anisotropic elastic solids had been rather limited and quite sporadic. This is in spite
of the increasing use of such materials in engineering over the past few decades.
Thus, the finite element method remains a popular numerical tool for treating 3D
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anisotropic elastic solids despite some of its drawbacks. In this regard, the other
techniques that have also been employed include the strip element method (Li and
Achenbach, 1994), and the finite difference method (Paik et al., 2004); meshless
methods have been developed for 2D anisotropic elasticity (see, e.g., Sladek, et al.,
2004; Li and Atluri, 2008) as well, but to a much lesser extent for the 3D case.

The main reason for the relatively slow pace of development of the BEM for 3D
anisotropic elasticity is the mathematical complexity of the fundamental solutions
to the governing equations. These fundamental solutions, or Green’s functions,
are a necessary item in the formulation of the boundary integral equation (BIE).
An efficient and accurate means of evaluating them is a key to the successful im-
plementation of the BEM, as well as of other numerical techniques (such as the
method of fundamental solutions and the meshless local BIE method). The fun-
damental solution of the displacement field due to a unit point load in a 3D gen-
erally anisotropic infinite solid in elastostatics has been derived by Lifschitz and
Rozentsweig (1947). It was expressed as a contour integral around a unit circle and
its integrand contains the Christoffel tensor defined in terms of the elastic material
constants. No closed-form expression for this Green’s function was available for
the generally anisotropic case. Thus, the focus of several investigators over the
past several decades has been to evaluate this integral and its derivatives into as
simple and explicit an analytical form as possible (see, e.g., Synge, 1957; Barnett,
1972; Ting and Lee, 1997; Nakamura and Tanuma, 1997; Wang, 1997; and Lee,
2003). The development of computationally efficient schemes for their numerical
evaluation has also been a subject of several investigations in the context of BEM
development (see, e.g., Wilson and Cruse, 1978; Chen and Lin, 1995; Sales and
Gray, 1998; Tonon et al., 2001; Pan and Yuan, 2000; Phan et al., 2004; and Wang
and Denda, 2007).

A numerical formulation of the BEM for 3D stress analysis of a generally anisotropic
solid was first implemented by Wilson and Cruse (1978). In their algorithm, the
contour integral in the Green’s function of Lifschitz and Rozentsweig (1947) is
numerically evaluated for a given material, and a large database of numerically
evaluated point load solutions and their derivatives is generated. Interpolation of
these pre-calculated values is performed in the BEM calculations. It is, however,
computationally quite demanding and its accuracy for highly anisotropic materi-
als may also be questionable. Sales and Gray (1998) improved significantly on
the efficiency of the Wilson-Cruse approach by transforming the integrand of the
line integral for the Green’s function into a rational function using the method of
residues. A concern of the Sales–Gray algorithm on its numerical instability when
there are multiple poles of the residue was overcome by Phan et al.(2004). There
was no report of any implementation into a BEM algorithm in these works, how-
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ever. Tonon et al. (2001) have also developed a BEM formulation for 3D generally
anisotropic media. It is based on the theoretical solution of the Green’s function
for displacements derived by Wang (1997) who employed the Radon transform
and the calculus of residues to derive an explicit algebraic expression for the fun-
damental solution. The algorithm to compute the fundamental solution involves
contour integration over a rectangular parallelepiped; it is arguably quite complex
and cumbersome. Their implementation was verified by some very simple numer-
ical examples in the paper. Recently, Wang and Denda (2007) have also developed
a 3D BEM algorithm in which the fundamental solution is expressed in terms of a
line integral over a semi-circle instead. Flat triangular boundary elements are em-
ployed in their formulation, and the Green’s function is analytically integrated over
each of these flat elements to obtain the system matrices.

An alternative, explicit algebraic form of the fundamental solution for the displace-
ments and its derivatives in a 3D anisotropic body has also been presented by Ting
and Lee (1997) and Lee (2003), respectively. They can be expressed primarily in
terms of Stroh’s eigenvalues which are the only quantities that need to be numeri-
cally solved for. Being explicit in algebraic form, these fundamental solutions can
be numerically evaluated in a fairly straightforward manner; this has been demon-
strated very recently by Shiah et al. (2008a, b). Surprisingly, it is only very recently
that the BEM formulation utilizing these explicit-form fundamental solutions has
been reported and even then, only for the special case of transverse isotropy (Tavara
et al., 2008). Indeed, as has been noted by Tavara et al. (2008) as well, to the
present authors’ knowledge, no BEM formulation employing them has hitherto
been published in the literature.

In this paper, the explicit-form fundamental solutions for the displacements and its
derivatives by Ting and Lee (1997) and Lee (2003) are used in the conventional
BEM formulation for the general case of 3D elastic anisotropy. The implemen-
tation has been successfully carried out by modifying a BEM code based on the
quadratic isoparametric element formulation that has been previously developed
for 3D isotropic elastostatics (Tan and Fenner, 1978, 1979; Tan, 1983). In the fol-
lowing sections, the fundamental solutions employed will first be reviewed. Some
aspects of the numerical implementation into the BEM code will also be discussed.
This will then be followed by three examples, including test problems and those
with stress concentrations.

2 Anisotropic fundamental solutions

The details of the derivation of the BIE in elastostatics are well documented in the
literature and hence will not be reviewed here. The BIE is an integral constraint
equation which relates the displacements u j and tractions t j at the surface S of the
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homogeneous elastic domain. It may be written in indicial notation as

Ci jui(P)+
∫

S
ui(Q)T ∗i j(P,Q)dS = ∫

S
ti(Q)Ui j(P,Q)dS +

∫
Ω

Xi(q)Ui j(P,q)dΩ (1)

where the leading coefficient Ci j(P) depends upon the local geometry of S at the
source point P; Ui j(P,Q)≡U(x), and T ∗i j (P,Q) represent the fundamental solutions
of displacements and tractions, respectively, in the xi-direction at the field point Q
due to a unit load in the x j-direction at P in a homogeneous infinite body. For a
generally anisotropic material, the point load solution for the displacement field
may be written as (Barnett, 1972; Synge, 1957)

Ui j =
1

8π2r

∫ 2π

0
Z−1 dψ, (2)

where r is the radial distance between the source point P at the local origin x = 0
and the field point Q at x = (x1,x2,x3). In eq. (2), the integral is taken around the
unit circle |n∗| = 1 on the oblique plane normal to xQ; the unit vector n∗ on the
oblique plane can be written in terms of an arbitrary parameter ψ as

n∗ = ncosψ +msinψm (3)

where the vectors n, m along with x/r form a right-handed triad [n,m,x/r]. With
reference to Figure 1, the general form of n and m can be expressed as

n = (cosφ cosθ , cosφ sinθ , −sinφ), m = (−sinθ , cosθ , 0), (4)

where 0≤ θ < 2π and −π/2≤ φ ≤ π/2.

The integrand Z−1 in eq. (2) is the inverse matrix of Z≡ Zi jwhich can be expressed
as (Ting and Lee, 1997)

Zik(ψ) = Ci jks(n j cosψ +m j sinψ)(ns cosψ +ms sinψ). (5)

where Ci jks ≡ C is the elastic stiffness tensor of the anisotropic material.

By introducing the following three tensors (Ting, 1996),

Q≡ Qik = Ci jksn jns, R≡ Rik = Ci jksn jms, T ≡ Tik = Ci jksm jms, (6)

eq. (5) can be rewritten into a simple form,

Z(ψ) = cos2
ψΓΓΓ(p), (7)

where p = tanψ , and the matrix ΓΓΓ(p) is given by

ΓΓΓ(p) = Q+ p(R+RT )+ p2T. (8)
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Figure 1: Definition of the unit vectors n, m

By letting V=(R+RT ), eq. (8) may be rewritten as

ΓΓΓ(p) = Q+ pV+ p2T. (9)

A sextic equation in p is obtained by setting the determinant, |ΓΓΓ(p)|, to zero, the
six independant roots of which are the Stroh’s eigenvalues. These roots must be
complex for positive strain energy, and they appear as three pairs of complex con-
jugates. It can be proved (Hagedorn, 2000) that the sextic equation is not analyti-
cally tractable, however the computational effort to obtain the roots, such as by the
Laguerre method, is not overly demanding.

By defining a matrix, H[x], which depends only on the direction of x and not its
magnitude (the notation [x] instead of (x) in the term is used for this reason), as

H [x] =
1
π

∫
π

0
Z−1(ψ)dψ, (10)

the Green’s displacements can be expressed as

U(x) =
1

4πr
H[x]. (11)

H[x] is the Barnett-Lothe tensor and it remains symmetric and positive definite on
an oblique plane; hence, so is the Green’s function U(x). By writing the complex
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roots as

pv = αv + iβv,βv > 0,(ν = 1,2,3), (12)

where both αv and βν are real, Ting and Lee (1997) has further shown that H[x]
can be expressed as

H[x]≡ Hi j =
1
|T|

4

∑
n=0

qnΓ̂(n), (13)

and qn is given by

qn =


−1

2β1β2β3

[
Re

{
3
∑

t=1

pn
t

(pt−p̄t+1)(pt−p̄t+2)

}
−δn2

]
for n = 0,1,2,

−1
2β1β2β3

[
Re

{
3
∑

t=1

pn−2
t p̄t+1 p̄t+2

(pt−p̄t+1)(pt−p̄t+2)

}]
for n = 3,4

(14)

In eq. (14), the subscript t follows the cyclic rule t= (t−3) ift>3; Γ̂ is the adjoint of
Γ which can be shown to be a polynomial in p of degree four; and the over-bar in p̄
denotes the complex conjugate. Also, Re{} represents the operation of taking real
part, and δmn is the Kronecker delta. The components of Γ̂(n), namely, Γ̂(n)

i j , may
then be expressed as (Shiah et al., 2008a, b)

Γ̂(n)
i j = Γ̃(n)

(i+1)( j+1)(i+2)( j+2)− Γ̃(n)
(i+1)( j+2)(i+2)( j+1), (i, j = 1, 2, 3), (15)

after some basic algebraic manipulation, and the 4-order tensor Γ̃(n) can be shown
to be given by

Γ̃(4)
pqrs = TpqTrs,

Γ̃(3)
pqrs = VpqTrs +TpqVrs,

Γ̃(2)
pqrs = TpqQrs +TrsQpq +VpqVrs,

Γ̃(1)
pqrs = VpqQrs +VrsQpq,

Γ̃(0)
pqrs = QpqQrs.

(16)

The calculations involved in eqs. (13)-(16) to obtain U(x) using eq.(11) are rela-
tively straightforward; the only numerical approach required in any of the steps is
for the solution of the sextic equation for p.

The numerical evaluation of the fundamental solution for tractions T ∗i j is also re-
quired. This may be carried out using

T ∗i j = (σ∗ikNk) j, (17)
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where σ∗ik is the fundamental solution for stresses at a field point due to a concen-
trated force applied in the x j direction at the source point, and Nk is the outward
normal vector on the surface at the field point. These stresses, denoted also by σσσ∗j
here, can be determined using the generalized Hooke’s law, as follows,

σσσ
∗
j = Cεεε

∗
j , (18)

where

σσσ
∗
l = (σ∗11, σ

∗
22, σ

∗
33, σ

∗
23, σ

∗
13, σ

∗
12)

T
l , (19)

εεε
∗
l = (ε∗11, ε

∗
22, ε

∗
33, 2ε

∗
23, 2ε

∗
13, 2ε

∗
12)

T
l , (20)

In eq. (20), the strains (ε∗ik) j are computed using the strain-displacement relations:

(ε∗ik)l =
(
Uil, j +U jl,i

)
/2. (21)

In this paper, the analytically exact, explicit expression of the derivatives of Ui j

as obtained by Lee (2003), following the work in Ting and Lee (1997), is adopted.
The first derivative of Ui j can be written as follows (Lee, 2003; Shiah et al., 2008b):

Ui j,l =
1

4π2r2

[
−π yl Hi j +Cpqrs

(
ysMlqipr j + yqMslipr j

)]
(22)

In eq. (22), yi are the components of the unit position vector y = x
r in a spherical

coordinate system and are given by

y1 = sinφ cosθ , y2 = sinφ sinθ , y3 = cosφ . (23)

Furthermore, the explicit expression of Mi jklmn is given in terms of the Stroh’s
eigenvalue pt as

Mi jklmn =
2π i

|T |2
3

∑
t=1

1

(pt − pt+1)
2 (pt − pt+2)

2[
Φ′i jklmn(pt)−2Φi jklmn(pt)×

(
1

pt − pt+1
+

1
pt − pt+2

)]
, (24)

in which the prime denotes differentiation of Φ with respect to the argument p; and
the function Φi jklmn(p) can be shown to be

Φi jklmn(p) =
Bi j(p) Γ̂kl(p)Γ̂mn(p)

(p− p̄1)2(p− p̄2)2(p− p̄3)2 , (25)
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where Bi j(p) is given by

Bi j(p) = ni n j +(ni m j +mi n j) p+mi m j p
2. (26)

In eq. (24), pt+1 and pt+2 follow the cyclic rule for t > 2 as indicated earlier.
It should perhaps also be mentioned that it is not necessary to rewrite the term
Φ′i jklmn(pt) as a fully explicit expression, since it is a relatively simple matter to

program the functions B(p), Γ̂(p), (p− p̄t)2 and their derivatives into subroutines in
the computer code and then apply the chain rule in the differentiation. Although eq.
(24) appears to be in a complex form, its imaginary part will eventually disappear
to yield real variables. It should be mentioned that, unlike eq. (13), eq. (24)
becomes invalid when repeated roots of the sextic equation occurs (i.e. pt = pt+1 or
pt = pt+1 = pt+2). However, this situation is not commonly encountered, occurring
only for specific field points of materials with very particular properties. A simple
way to overcome this problem if it happens is to introduce a small perturbation to
one of the repeated roots when computing eq. (24). Work to resolve this issue
analytically remains ongoing.

3 Numerical implementation

The above fundamental solutions have been implemented into a conventional 3D
BEM code which was developed previously for the solution of the corresponding
BIE, eq. (1), for 3D isotropic elastostatics. It is based on the quadratic isopara-
metric element formulation in which 8-node quadrilateral and 6-node triangular
elements are used. The numerical algorithm in this regard for anisotropic elasticity
is the same as for the case of isotropy. Thus, the necessary modifications to the
code pertain primarily to the material properties and the evaluation of the funda-
mental solutions. Due to their explicit algebraic forms, the latter are relatively easy
to implement; indeed, this is an important merit of the present algorithm. For the
numerical evaluation of the high-order tensors in the formulation, it is also expe-
dient to exploit the symmetry property of these tensors which significantly reduces
the computational effort in their numerical evaluations.

In the formation of the system equations, integration of the terms involving the
displacement and traction fundamental solutions is carried out over each bound-
ary element in turn using standard quadrature. No special adaptive scheme was
employed here, and the numerical integration is carried out with standard 4× 4
Gauss quadrature for quadrilateral elements and 13-point Hammer-Stroud quadra-
ture for triangular elements. At each field point, the sextic equation, which arises
from equating to zero the determinant of the matrix in eq. (9), is solved numer-
ically for the Stroh’s eigenvalues. The accuracy and efficiency of computing the
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Green’s displacements and stresses depend to a significant extent on the numerical
solution of this equation. In the present work, Laguerre’s method is employed for
the numerical solution of the sextic equation. It is generally accepted as one of the
most straightforward and simple methods with which convergence of solution is
guaranteed (see, e.g., Press et al., 1990). The process is usually accompanied by
the use of polynomial deflation whereby the polynomial is factored into a product
involving the root and a reduced polynomial of degree one less than the original. A
possible modification of Laguerre’s method to enhance the efficiency of the sextic
equation solution is to compute first, one pair of conjugate roots; the reduced 4th

degree polynomial can perhaps then be solved analytically. It should however be
remarked here that no attempt is made in the present study to evaluate and quan-
titatively assess the computational efficiency of the implemented algorithm; the
primary focus has hitherto been to establish its correctness and integrity. It should
also be reminded that repeated roots or closely-spaced roots may pose difficulties
for the Green’s function for the stresses used here. In the general case, it is not pos-
sible to establish the pathology displayed by repeated roots from simply examining
the coefficients of the sixth-degree polynomial. In practice, the difficulties associ-
ated with repeated roots can be easily overcome by introducing a small perturbation
to one of the repeated roots as mentioned earlier.

4 Numerical examples

Three numerical examples are presented here to demonstrate the veracity of the for-
mulations implemented and the application of the BEM to three-dimensional stress
analysis in anisotropic elasticity. As an initial check of the BEM models employed
for these problems, the established BEM code for isotropy was first used to solve
each of them using isotropic material properties. The analysis was repeated using
the implemented anisotropic algorithm; identical numerical results were obtained
in all cases. The first example considered, Problem A, is a rectangular prism of
alumina crystal (Al2O3) subjected to pure shear for which an exact analytical so-
lution of the displacements has been derived by Lekhnitskii (1963). In Problem
B, the stress distributions around a spherical cavity and in a hollow sphere sub-
jected to remote hydrostatic stress are determined. The problem of a cylindrical
bar with a spherical cavity and under remote tension is then analyzed in the last
example, Problem C. Using Eshelby’s equivalent inclusion method, Chiang (2007)
has investigated the stress concentrations around a spherical cavity in an infinite
cubic medium under different uniform loading conditions; his solutions are used
for comparison with the present BEM results in Problems B and C using the prop-
erties of niobium (Nb) crystal which is cubic. In the analysis of these problems, the
principal material axes of the crystals are taken be coincide with the global Carte-
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sian axes, unless indicated otherwise. In Problem C, additional analyses involving
rotations of the principal material axes were further carried out as will be explained
later. These were done solely for the purpose of further demonstrating the suitabil-
ity of the present BEM program to treat fully general anisotropic materials. The
elastic constants (stiffness coefficients) for the Nb and Al2O3 crystals are taken to
be as follows (Huntington, 1958):

For Nb crystal, C11= 246 GPa; C12= 134 GPa; C44= 28.7 GPa.

For Al2O3 crystal, C11= 465 GPa; C33= 563 GPa; C44= 233 GPa; C12= 124 GPa;

C13= 117 GPa; C14= 101 GPa.

4.1 Problem A

Figure 2 shows a rectangular alumina crystal parallelepiped which is subjected to a
unit uniform shear stress τ23 = τo= 1 on four of its sides. The BEM mesh employed
is shown in Fig.3; it has 10 quadrilateral elements and 32 nodes. To preclude rigid
body motion in the analysis, the node at the origin was fully constrained, while
that at coordinates (0, 0, 3a) was fixed in the x1- and x2-directions; all the other
(mid-side) nodes in the x1= 0 plane are also restrained in the x1-direction. The
displacements, ui, obtained from the present BEM analysis at the five points A – E
indicated in Fig. 2 are listed in Table 1. The numerical values are compared with
those calculated using Lenitskii’s (1963) exact analytical solution, where it can be
seen that there is excellent agreement between the two sets of results.

Table 1: Displacements, ui, at points A – E in Problem A.

Point Result u1 u2 u3

A (-0.5, -1.0 , 1.0)
BEM 0.85546E-3 -0.17105E-2 -0.57737E-2
Exact 0.85519E-3 -0.17104E-2 -0.57747E-2

B (0.5, 0.0 , 1.0)
BEM -0.85530E-3 0.10165E-6 0.67901E-6
Exact -0.85519E-3 0 0

C (0.5, 1.0 , 1.0)
BEM -0.85533E-3 0.17105E-2 0.57747E-2
Exact -0.85519E-3 0.17104E-2 0.57747E-2

D (-0.5, -0.5 , 0)
BEM 0.85533E-3 -0.85585E-3 -0.28864E-2
Exact 0.85519E-3 -0.88519E-3 -0.28874E-2

E (-0.5, 1.0 , 0.5)
BEM 0.85499E-3 0.17105E-2 0.57748E-2
Exact 0.85519E-3 0.17104E-2 0.57747E-2
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Figure 2: A rectangular alumina crystal prism
under uniform shear stress: Problem A

 
 
 
 
 
 
 
 
 

Figure 3: BEM mesh for Prob-
lem A : 10 elements, 32 nodes

4.2 Problem B

In the second example, the stress distributions at the inner and outer surfaces of a
thick-walled sphere subjected to uniform hydrostatic tensile stress, σo, at the outer
surface are determined for a cubic material. Referring to Fig. 4, the radius ratios
considered were K = R2/R1= 1.5, 2, 3, 4 and 20. The same basic mesh design
shown in Fig. 5 and the material properties of niobium crystal were used in the
BEM analysis; the BEM mesh contains a total of 64 elements and 156 nodes, the
exterior surface being modeled with just 16 triangular elements with 34 nodes. It
should be remarked that advantage can be taken of the symmetry of the material
properties for the cubic medium and the loading conditions, and only a fraction
of the physical problem needs to be modeled. However, the whole sphere was
modeled to establish the suitability of the mesh design which can then be employed
for more general anisotropic properties in future studies. Table 2 lists the computed
normalized stresses, kθ = σθ /σo and kz = σφ/σo, at the four nodal points along
the inner surface of the sphere in the plane of the “horizontal” equator (i.e. in
the x1-x2). Also shown in the table are the corresponding analytical solution and
BEM results using the same mesh for the case of isotropy; it is evident that the
anisotropic material properties has a significant influence on the stress distributions
in the sphere. Unlike in isotropy, the direct stresses σθ and σφ are no longer of the
same magnitude in the sphere of Nb crystal under the hydrostatic stress loading. A
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comparison of the BEM results for the case of R2/R1 = 20 with Chiang’s (2007)
analytical solution can be made; the errors introduced by the finite external radius
in the BEM analysis for this case are not expected to be significant. The deviations
between the two sets of results at the nodal points are all within 1.0% for kz and
1.5% for kθ , demonstrating the veracity and accuracy of the present formulation.
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Figure 4: A thick-walled sphere subject to re-
mote hydrostatic stress, σo- Problem B

 

Figure 5: BEM mesh for the
case of K = 2, Problem B: 64
elements, 156 nodes

4.3 Problem C

The third example considered is a cylindrical bar with a spherical cavity under
remote tension, σo, as shown in Figure 6. The range of cavity sizes considered
was a/R = 0.1 to 0.5, where a and R are the radii of the cavity and the cylindrical
bar, respectively; also, the half-length of the bar H = 2R. A typical BEM mesh
used is shown in Figure 7; the same basic mesh configuration was used in all cases
of a/R. The problem was first solved for a cubic medium where a check of the
results for the case of a/R = 0.1 can be made with the solution by Chiang (2007)
for an infinite body using the properties of Nb crystal. Table 3 shows the computed
BEM results of the normalized stresses, kz = σ33/σo and kθ = σθ /σo, around the
horizontal equator for a niobium crystal cylindrical bar with the spherical cavity.
A comparison of the BEM anisotropic results and Chiang’s (2007) solution is also
shown. Again, excellent agreement was obtained between the two sets of results;
the deviations for kz were all within 1.0% while those for the significantly smaller
magnitudes of kθ were less than 3.0%.
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Figure 6: A cylinder with a spherical cavity un-
der remote tension- Problem C

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Typical BEM
mesh of the cylinder for
Problem C: 88 elements;
288 nodes

For the same cylindrical bar made of alumina crystal under the remote tension, the
computed stress concentration factor was found to be uniform around the horizontal
equator at the surface of the cavity. Figure 8 shows the variation of the stress con-
centration factor, kz = σ33/σo, for the various a/R ratios considered. Also shown
for comparison are the results obtained using ANSYS FEM analysis, where it can
be see that there is excellent agreement between them; a typical FEM mesh em-
ployed is shown in Fig. 9. For isotropy, the stress concentration factors are de-
pendent on the Poisson’s ratio; the results for the case of Poisson’s ratio of 0.3
are plotted in Fig. 8 as well. Interestingly, the deviations of corresponding values
of kz between the anisotropic and isotropic cases are relatively small. In addition,
the magnitudes of σθ /σo are typically two orders of magnitude smaller than kz,
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and hence are not presented here. This is not too surprising in view of the near
quasi-isotropy in the x1-x2 plane.

As a demonstration of the applicability of the BEM program to treat full general
anisotropy, the principal material axes in the x1-, x2- and x3-directions of the alu-
mina are rotated clockwise by 30◦, 45◦ and 60◦, respectively. These rotations are
arbitrarily chosen; they result in a fully populated stiffness matrix in the Cartesian
coordinate system for the physical problem as follows:

[C] =



544.8 153.6 57.3 10.5 65.7 −81.2
153.6 531.1 28.4 −14.7 −18.1 89.7
57.3 28.4 654.4 19.8 −6.4 10.4
10.5 −14.7 19.8 106.4 24.8 13.3
65.7 −18.1 −6.4 24.8 167.9 22.5
−81.2 89.7 10.4 13.3 22.5 243.5

 (27)

The BEM analysis was repeated for all the cases of a/R treated above, and the
ANSYS FEM analysis was also carried out for comparison of the results. It was
found that even with the rotation of the three principal material axes, the stress
concentration factor kz does not vary significantly around the horizontal equator of
the spherical cavity, with the deviations of the nodal values from one another being
less than 2.5% for all the geometries analyzed. Thus it may, for all intents and
purposes, be considered to be also uniform. The variation of kz with a/R is also
shown in Fig. 8. What is clearly evident is the elevation of its magnitude with the
change in orientations of the material axes. The BEM and FEM results again show
very good agreement indeed.

5 Conclusions

A BEM formulation based on closed-form algebraic expressions of the fundamental
solutions for the elastostatic three-dimensional stress analysis of solids with general
anisotropy has been presented in this paper. These Green’s functions have been de-
rived by Ting and Lee (1997) and Lee (2003) and are expressed in terms of Stroh’s
eigenvalues; they have never been previously employed in BEM formulations for
general anisotropy. Their explicit algebraic forms allow relatively simple imple-
mentation into an existing BEM code which had been developed for 3D isotropic
elasticity. Three example problems have been presented to illustrate the veracity of
the numerical implementation. They include those with stress concentrations for
which the BEM is well known to be very well suited to treat. Where possible, the
numerical results obtained from the BEM analysis have been compared with known
solutions in the literature or with those obtained by the finite element method, and
very good agreement between them have been obtained.
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 Figure 8: Variation of the stress concentration factors with a/R- Example C

 

Figure 9: Finite Element meshes in ANSYS (2940 SOLID5 elements; 6826 nodes)-
Example C
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