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Abstract: We develop a Monte-Carlo simulator for phonon transport in nanos-
tructured semiconductors, which solves the phonon Boltzmann transport equation
under the gray medium approximation. Proper physical models for the phonon
transmission/reflection at an interface between two different materials and proper
numerical boundary conditions are designed and implemented carefully. Most of
all, we take advantage of geometric symmetry that exists in a system to reduce the
computational amount. The validity and accuracy of the proposed MC solver was
successfully verified via a 1D transient conduction problem and the cross-plane
(1D) and in-plane (2D) phonon transport problems associated with Si/Ge superlat-
tice thin films.
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1 Introduction

Low-dimensional materials such as superlattice thin films, nanowires, and nanopar-
ticle composites, received great attention over the past two decades for their poten-
tial application in thermoelectric devices and microelectronics (Venkatasubrama-
nian, Siivola, Colpitts, and O’Quinn, 2001; Dresselhaus, Chen, Tang, Yang, Lee,
Wang, Ren, Fleurial, Gogna, 2007; Hochbaum, Chen, Delgado, Liang, Garnett,
Najarian, Majumdar, and Yang, 2008). In particular, it is found the largely re-
duced thermal conductivity of these nanostructured materials comes mainly from
the sequential interface scattering of phonons rather than the coherent superpo-
sition of phonon waves. Analytic thermal conductivity models are usually de-
veloped based on the phonon Boltzmann transport equation (PBTE). Commonly
considered scattering mechanisms include the three-phonon Umklapp scattering,
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the mass-difference scattering, the phonon-electron scattering, the boundary scat-
tering, and so on (Ziman, 2001); the Matthiessen’s rule is then employed to sum
up these scattering rates. Above all, two boundary effects deserve great attention.
One is the modification of the phonon dispersion due to the spatial confinement
(Khitun, Balandin, and Wang, 1999; Balandin and Wang, 1998; Kiselev and Kim,
2000) and the other is the change in the non-equilibrium phonon distribution due
to the totally or partially diffuse boundary (Hyldgaard and Mahan, 1996; Chen,
1997, Chen, 1998; Walkauskas, Broido, Kempa, and Reinecke, 1999). Some in-
vestigations took both effects into consideration (Zou and Balandin, 2001; Huang,
Chong, and Chang, 2006; Huang, Chang, Chong, 2007). Evgrafov, Maute, Yang,
and Dunn (2009) demonstrated the differences between the optimal distributions
of two constituents predicted by Fourier’s law and kinetic theory, which give the
maximization of a temperature difference between certain points. Theoretical stud-
ies are available nonetheless only for systems with simple geometry and involve
more or less unrealistic assumptions. The analysis becomes intractable when the
materials possess complicated nanostructures and when realistic conditions such as
deficiency must be taken into consideration. Based on the same physical models,
numerical solutions of the associated governing equations are naturally the next
choice.

Over the last two decades, there has been tremendous advancement in the devel-
opment of solution techniques for the BTE of charge carriers. Limited progress
nonetheless has been made in the BTE solutions of phonons. Among all, the
Monte Carlo simulation has a significant advantage that it allows the study of quasi-
particle transport in peculiar geometry from nano- to micro- scale over other direct
Boltzmann equation solvers such as the discrete ordinate method (Yang, Chen,
Laroche, and Taur, 2005), the finite volume method (Murthy and Mathur, 2002),
traditional molecular dynamics simulation (Hoover, 1983; Gomes, Madrid, Goic-
ochea, and Amon, 2006; Volz, Saulnier, Chen, Beauchamp, 2000), and combined
methods (Shen and Atluri, 2004). Peterson (1994) first proposed to simulate the
phonon flows in solids by Monte-Carlo (MC) method. The boundary cells were
maintained at constant temperatures by updating the local phonon properties every
time step. The phonon distribution was discretized in the space as well as in the
frequency domain. Phonons were then drifted at their group velocity and scattered
based on a constant mean free path. Mazumder and Majumdar (2001) proposed
a scattering probability that is a function of the frequency and the local temper-
ature. The N and U processes were lumped into a single relaxation time. The
scattering by impurities was treated in isolation. A genetic algorithm was carefully
designed by Chen, Li, Lukes, and Majumdar (2005), in which both the momen-
tum and the energy are conserved during N processes and only energy is conserved
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during U processes. Moreover, the constant-temperature boundary condition was
maintained by injecting phonons carrying properties at the prescribed temperatures
from the boundaries. It was found the confinement effect is significant when the Si
nanowire diameter is reduced to the sub-100 nm scale and a confined phonon dis-
persion should be used in order to accurately evaluate nanowire thermal conductiv-
ity. Lacroix, Joulain, and Lemonnier (2005) proposed a new distribution function
accounting for the collision processes. Phonons’ directions are not changed if they
suffer an N process to approximately preserve momentum. Yang, Chen, Laroche,
and Taur (2005) proposed a ballistic-diffusive heat conduction equation (BDE) and
solved it via the discrete ordinate method. A better prediction from BDE, com-
pared to the prediction from the phonon Boltzmann equation, was claimed. Es-
cobar, Ghar, Jhon, and Amon (2006) developed a gray lattice Boltzmann method
under the Debye assumption. The multi-length-and-time scale heat conduction in
thin films from continuum to sub-continuum regimes was investigated. Jeng, Yang,
Song, and Chen (2008) solved the gray-phonon Boltzmann equation also via the
MC method. Averaged phonon properties over frequency at the local tempera-
ture (gray medium approximation) and a lumped relaxation time characterizing all
kinds of scattering mechanisms were used to simplify the simulations. Their in-
vestigations suggested the interfacial area per unit volume is the key parameter that
characterizes the size effect on the thermal conductivity of nanocomposites. Tian
and Yang (2007), based on the same numerical tool, found the thermal conduc-
tivity of compacted Si embedded with Ge nanoparticles is around half of that of
compacted Si embedded with Ge nanowires at the same atomic composition and
characteristic size. They (2008) further demonstrated that when the characteristic
size of the nanoparticles in the nanocomposites is comparable to or smaller than
the phonon mean free path, the thermal conductivity of the nanoparticle compos-
ites significantly deviates from the predictions of the percolation theory due to the
phonon scattering at interfaces.

Although the accuracy may be scarified a little, the gray medium approximation
does save a lot of computational time and the MC tool becomes a quick analyzer
for the design and choice of processing parameters in the preparation of nanostruc-
tured materials. In this study, we aim at improving the MC tool developed by Jeng,
Yang, Song, and Chen (2008) for an even higher computational efficiency by tak-
ing advantage of the geometric symmetry in a system and for a higher accuracy by
developing more physically reasonable models for heterogeneous interfaces as well
as boundaries. The rest of this paper is arranged as follows. In Sec. 2, we introduce
the physical models adopted in the present work. We discuss the development of
the proposed numerical boundary condition and the usage of the geometric symme-
try in Sec.3. The so-developed fast MC solver is first verified through a transient



110 Copyright © 2009 Tech Science Press CMES, vol.42, no.2, pp.107-129, 2009

problem and then applied to the cross-plane and in-plane phonon transports in a
Si/Ge superlattice thin film in Sec.4. Conclusions are given at last in Sec.5.

2 Physical models

2.1 Phonon Boltzmann transport equation

The PBTE is written as follows

∂n
∂ t

+~υg ·∇n = (∂n/∂ t)s (1)

where n is the phonon population having a group velocity ~υg and (∂n/∂ t)s is the
intrinsic scattering rate. To compute the intrinsic scattering rate, a single relaxation
time (τ) characterizing all kinds of scatterings is assumed. The possibility that a
phonon suffers an intrinsic scattering during a time period ∆t is thus

PS = 1− exp(−υg∆t/Λ) (2)

where Λ = υgτ is the phonon mean free path.

2.2 Gray medium approximation

In the present study, the media are assumed to be gray; that is phonon properties are
averaged over frequency. The temperature dependence of these average properties
relies on the adopted phonon dispersion relation. In the present study, we adopt the
experimentally measured one (www.ioffe.rssi.ru/SVA/NSM /Semicond/) for bulk
Si and Ge. Note the size confinement effect on the phonon dispersion relation
is not considered because it is a minor effect compared to the interface scattering
effect. Besides, the phonon dispersion relation is assumed to be isotropic and as the
same as that in the 100 direction. When a system is at equilibrium at a temperature
T , its energy per unit volume and specific heat are

U = ∑
p

kBθD,p/h̄∫
0

n0h̄ω ·D(ω)dω (3)

and

C = ∑
p

kBθD,p/h̄∫
0

∂n0h̄ω

∂T
·D(ω)dω (4)

where kB and h̄ are Boltzmann constant and Plank constant divided by 2π; ω is the
phonon frequency; θD,p is the Debye temperature for the pth polarization; D(ω) =
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q2∂q/2π2∂ω is the phonon density of states, and n0 is the equilibrium phonon
distribution, namely n0 = 1/(exp(h̄ω/kBT )−1). The total number of phonons per
unit volume (n̄), the average phonon energy (h̄ω̄), and the average phonon group
velocity (ῡg) are now defined respectively as

n̄ = ∑
p

kBθD,p/h̄∫
0

n0D(ω)dω (5)

h̄ω̄ = U/n̄ (6)

and

ῡg =
1
C ∑

p

kBθD,p/h̄∫
0

∂ω

∂q
∂n0h̄ω

∂T
·D(ω)dω (7)

Note herein we propose a specific-heat-weighted averaged phonon group velocity
instead of the phonon population (Jeng, Yang, Song, and Chen, 2008), because
from the kinetic theory the lattice thermal conductivity is related to the phonon
mean free path, the specific heat, and the group velocity by

kbulk =
1
3

CῡgΛ (8)

In fact, Equation (8) is also used to compute the overall phonon mean free path
based on the experimentally measured bulk thermal conductivities (Glassbrenner
and Slack, 1964).

A table of these temperature-dependent properties is thus pre-prepared and linear
interpolations are employed whenever phonon properties at some temperature are
required during the simulation.

2.3 Transmission models

When a phonon hits a Si/Ge interface, it may be transmitted or reflected, diffusely
or specularly. A parameter p, the specular fraction, is usually employed to char-
acterize the roughness of the interface and is defined as the fraction of phonons
that are specularly transmitted or reflected. We compute the specular transmissiv-
ity according to the inelastic acoustic mismatch model proposed by Chen (1998) as
follows

τ12 =
4Z1Z2 cosθ1 cosθ2

(Z1 cosθ1 +Z2 cosθ2)
2 for 0≤ θ1 < θcr (9)
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and τ12 = 0 for θcr ≤ θ1 < π/2, where θ1 is the incident angle and Z = ρῡg is
the acoustic impedance (ρ is the density). Besides, the transmitted angle θ2 is
determined by

sinθ2

sinθ1
=

√
U1ῡg,1

U2ῡg,2
(10)

From Equation (10), the critical angle θcr for full reflection is thus

sinθcr =

√
U2ῡg,2

U1ῡg,1
(11)

On the other hand, if a phonon is diffusely transmitted or reflected, we compute the
associated transmissivity as

τ12 =
U2ῡg,2

U1ῡg,1 +U2ῡg,2
(12)

When there is a nonzero heat flux, a temperature jump is expected across a het-
erogeneous interface. Because of the hyperbolic characteristic of the PBTE, we
propose to evaluate these transmissivities at the temperature on the incident side.
In other words, all variables in Equations (9)∼(12) are evaluated at the instanta-
neous temperature on the incident side. Consequently, when the interface is totally
diffuse for instance, the net energy flux across the interface is estimated to be

q1→2 = f (T1)− f (T2) (13)

f (T ) =
1
4
·

U1 (T ) ῡg,1 (T )U2 (T ) ῡg,2 (T )
U1 (T ) ῡg,1 (T )+U2 (T ) ῡg,2 (T )

(14)

where T1 and T2 are the temperatures on the two sides of an interface. It can be
shown that the function f (T ) is a monotonically increasing function of tempera-
ture T . Therefore, heat flows from side 1 to side 2 when T1 > T2 and a thermal
equilibrium is reached when T1 = T2.

3 Monte-Carlo solver

We are now ready to develop a MC tool for solving the PBTE based on the physical
models described in the previous section. To begin with, the system of interest is
divided into many cells as illustrated in Fig.1 (distinguished by the dotted lines).
Each cell is constituted of one material (called “cell material”). A heterogeneous in-
terface thus exists between two neighboring cells if the cell materials are different.
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Initially, phonons are randomly uniformly distributed within each cell according
to the given temperature and the cell material. Each phonon possesses an energy
of either h̄ω̄Si or h̄ω̄Ge and flies in a uniformly random direction. For the sake
of having a reasonable computational amount, phonons are sometimes grouped as
bundles; a “simulated phonon” actually represents a bundle of phonons. The num-
ber of phonons per bundle (W ) is chosen to be the same for both Si and Ge in all
the following simulations.

 
(a) 

 
(b) 

 
(c) 

 

x 

x 
y

x
y 

Figure 1: The 1D (a) and 2D (b,c) grid systems employed for phonon transport in
a superlattice thin film and a compact material embedded with regularly aligned
square nanowires.

3.1 Operator splitting

We adopt the operator splitting technique as usual. Phonons are first drafted at
their instantaneous group velocity. A uniform random number between 0 and 1 is
then drawn for each phonon. If this random number is less than PS, the phonon is
judged to suffer an intrinsic scattering: its moving direction is randomly reassigned
and other properties are made to comply with the local temperature. To conserve
the total energy, the energy imbalance due to scattering is traced for each cell. A
phonon will be added to or deleted from the cell whenever the amount of the energy
imbalance exceeds half the energy per phonon bundle at the local temperature.
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A judgment is made whether a phonon reaches the cell boundary on the way of its
flight. If yes, the cell boundary is examined whether it is a heterogeneous inter-
face (whether the cell materials on the two sides of the cell boundary are differ-
ent). If yes again, two uniform random numbers, r1 and r2, between 0 and 1 are
drawn. When r1 < p, the phonon will be specularly transmitted (r2 < τ12) or re-
flected (r2 > τ12); otherwise, it will be diffusely transmitted (r2 < τ12) or reflected
(r2 > τ12). The moving direction of the phonon must be changed accordingly (spec-
ularly or diffusely) and its group velocity is updated according to the new cell ma-
terial. Furthermore, we keep the energy of the phonon unchanged, no matter it is
transmitted or reflected, specularly or diffusely, in order to be consistent with the
inelastic acoustic mismatch model. Consequently, phonons in a cell may carry an
energy of either h̄ω̄Si or h̄ω̄Ge, regardless of the cell material. To distinguish them,
we attach one additional property to each phonon, named “the energy material” Si
(or Ge) if its energy is h̄ω̄Si (or h̄ω̄Ge).

3.2 Symmetry condition

The computational amount can be significantly reduced by taking advantage of geo-
metric symmetry. For instance, the phonon transport in the cross-plane (x) direction
of a superlattice thin film, as shown in Fig.1a, can be modeled as a one dimensional
problem, because due to the symmetry the probability of finding a phonon locating
at (x,y,z) is as the same as that at (x,0,0). We can, from the statistical viewpoint,
replace a phonon located at (x,y,z) by one having exactly all the same properties but
located at (x,0,0). Therefore, although phonons are moving in a three dimensional
space, only the x coordinate needs time-marching and recording and consequently
a one dimensional grid system is sufficient.

Two two-dimensional examples are the in-plane (x−z) phonon transport in a super-
lattice thin film and the cross-wire phonon transport in a compact material embed-
ded with regularly aligned nanowires as shown in Figs.1b and 1c (Yang and Chen,
2004; Yang, Chen, and Dresselhaus 2005). Supposed heat flows in the x-direction,
the probability of finding a phonon locating at (x,y,z) is as the same as that at (x,y,0)
so that we can replace a phonon located at (x,y,z) by another one located at (x,y,0).

3.3 Numerical boundary conditions

We prefer a prescribed heat flow rate in the system instead of prescribed boundary
temperatures because the temperature on the boundary cross section is usually not
uniform. In order to maintain a steady heat flow rate in the system, phonons must
be injected into the domain from the boundaries. Due to the existence of nanostruc-
tures, the heat flux is again usually non-uniform and phonons leaving the compu-
tational domain very likely possess directional dependence. Boundary conditions
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that are inconsistent with either one could cause inaccurate or even unreasonable
results. The pseudo-periodic boundary condition proposed by Jeng, Yang, Song,
and Chen (2008) is a good choice but not sufficiently accurate. We thus propose a
modified one herein. Like what they did, data sets pool(s, j,k) are built at each time
step that record the moving directions, locations, remaining flight time, and “en-
ergy material” of leaving phonons from the cell (s, j,k), where s=1 or Nx represents
the left or right boundary. The total energy leaving the computational domain from
the cell (s, j,k) and the net amount of heat flowing across some referenced cross sec-
tion during one time step ∆t are also recorded and denoted as E(s, j,k) and q(r, j,k)
respectively (r represents the referenced plane). The total amounts of energies that
should be injected into the cell (s, j,k) from the boundaries at next time step are thus
set to be equal to

J (s, j,k) = E (s, j,k)±

(
q(r, j,k)/∑

j,k

q(r, j,k)

)
Q0∆t (15)

where + for s=1 and - for s = Nx , and Q0 is the prescribed total heat flow rate. In-
stead of assuming a heat flux distribution proportional to E(s, j,k) as done by Jeng,
Yang, Song, and Chen (2008), we measure and use the actual distribution on the
referenced cross section. To be reasonable, the referenced and the boundary cross
sections must be geometrically equivalent, for instance the middle plane in between
two neighboring nanowires in Fig.1c. The profiles of E(s, j,k) and q(r, j,k) may be
similar because they are both dominated by the layout of the nanostructures. They
are not exactly the same nonetheless because E(s, j,k) represents energy flux com-
ing from one side of a cross section and is determined mainly by the local tempera-
ture while q(r, j,k) instead is dominated by the temperature gradient. A comparison
of them obtained from a two-dimensional simulation of in-plane phonon transport
in a Si(100nm)/Ge(100nm) superlattice thin film is shown in Fig.2 ( E(s, j) and
q(s, j) for the 2D case). It is found the actual heat flux is particularly low near
the totally diffuse interfaces (p=0). Without these dips near the interfaces, the
old method (a heat flux distribution proportional to E(s, j,k)) generates unexpected
temperature jumps across the interfaces and thus an unwanted heat transfer in the y
direction.

Phonons to be injected from one boundary are then randomly selected from the
data set pool(s, j,k) collected on the other boundary. Attached by the energy per
phonon bundle of the recorded “energy material” and the group velocity of the cell
material at the instantaneous boundary temperature, phonons are injected into the
computational domain from the recorded positions and directions and drafted for
the recorded remaining flight time. The total amount of energy injected must be
as close to J(s, j,k) as possible. Any energy imbalance at the boundaries is again
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recorded and is to be complemented in next time step. The importance of the use
of the property “energy material” will be highlighted in the subsection 4.2.2.

4 Simulation results

The validity and accuracy of the proposed MC solver are tested in this section. We
first test it with a simple one-dimensional transient problem and then apply it to
simulate the cross-plane (1D) and in-plane (2D) phonon transport phenomena in
a Si/Ge superlattice thin film. The simulation results will be compared with theo-
retical predictions. The proposed MC solver can be easily applied to 3D problems
by giving up the symmetry condition. The related simulation results are not shown
herein because the authors would like to highlight the advantage of using the sym-
metry condition.

 
Figure 2: A comparison of the imposed heat flux distributions at the boundaries
according to E(s, j) (triangles) and q(r, j) (circles).

4.1 Transient thermal conduction

The thermal diffusion problem of a thermally insulated bulk silicon, which is ini-
tially 200K on the left half part and 400K on the right half part, is simulated and the
results are shown in Fig.3. A finite-difference solution is also obtained by solving
the transient diffusion equation

∂U
∂ t

=
∂

∂x

(
kbulk

∂T
∂x

)
(16)
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where the temperature dependences of the thermal conductivity and the internal
energy U are taken from the MC simulation. It is seen the MC solution diffuses
slower than the finite-difference solution at very early times. This is because un-
like the immediate diffusion assumed in the traditional diffusion equation, it takes
time for phonons to draft in a MC simulation. As time increases, after phonons
have suffered many enough scatterings, the difference between the two solutions
disappears gradually.

4.2 Cross-plane phonon transport

As discussed before, the cross-plane phonon transport in a superlattice thin film is
a statistically one dimensional problem and thus the cells are in a line. Phonons
are still moving in a three dimensional space but whenever a phonon leaves the
x-axis, it is replaced by one located at (x,0,0) carrying all the same properties. In
other words, only the x-coordinates of the phonons need being time-marched and
recorded in the computer memory. The cross-sectional area A serves as a free
parameter that can be adjusted to control the number of phonons per bundle.

 

Figure 3: The temperature evolution obtained by a MC solver (symbols) and a
finite-difference scheme (lines) at t= 0, 40, 120, 400, 900, and 3000ps.

4.2.1 Theoretical analysis

We attempt to compare the simulation results with the predictions by Chen (1998),
in which the PBTE is solved analytically also under the single-relaxation-time ap-
proximation and the gray-medium approximation. Several differences are nonethe-
less existent between this analysis and the simulation. In Chen’s analysis, the
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phonon properties such as the acoustic specific heat (C), the group velocity (υg),
and the mean free path (Λ) are all assumed to be constant and have their values at
300K; the interface thermal resistances are all assumed to be the same; the trans-
missivities are calculated in use of specific heat instead of internal energy and con-
sequently they are temperature-independent. The last difference results in not only
different values of transmissivities but also different critical angles for full reflec-
tion. In short, Chen’s model counts the temperature gradient effect but not the
temperature dependence of all phonon properties except the energy.

4.2.2 Directional dependence

Before investigating the heat transfer in a superlattice thin film, we explore the
directional dependence of phonons that is very likely existent due to the interface
scattering and the spectral responses of transmission/reflection. This directional
dependence is expected particularly strong when the phonon transport is in ballistic
regime and must be carefully implemented into the numerical boundary conditions.

We investigate the directional dependence in an insulated Si(25nm)/ Ge(25nm) su-
perlattice thin film, which is in equilibrium at 300K. Six periods are simulated. The
directional distributions of the energy and the number of phonons incident on the
middle plane of each Si layer from both sides are collected and shown in Fig.4,
in which µ = cosθ and θ is the angle between the phonon moving direction and
the x-axis. It is found regardless of specular or diffuse interfaces, the incident en-
ergy distribution is always linear, implying the system does remain at equilibrium.
On the other hand, the directional pdf (probability density function) of the phonon
population is nearly linear when p=0 except a short parabola near the origin but an
obvious jump is observed at the critical angle (µcr ≈ 0.57) when p=1. This jump
arises from the fact that h̄ω̄Si is greater than h̄ω̄Ge and the fact that there are only
Si phonons below µcr (all transmitted Ge phonons are confined within the cone
µ > µcr). The magnitude of the jump decreases with decreasing specular fraction p
and increasing layer thickness d as shown in Fig.5, because of increasing interface
or intrinsic scatterings. Such a directional dependence must be preserved when
phonons are injected from the boundaries. The pseudo-periodic boundary condi-
tion discussed in Sec. 3.3 must and should be able to capture it automatically via
the use of the property “energy material”. However, the limited size of the data
pools may cause a failure. Noticing the directional dependence is much weaker in
the Ge layers (the layer in which no full reflection occurs), we choose Ge to be
the material of the boundary cells. In all the followings, simulations are thus so
performed.
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Figure 4: The directional probability density functions of phonon numbers and
energy.

4.2.3 Number of simulated periods

To further reduce the possible contamination due to the numerical boundary con-
ditions, sufficiently many periods should be simulated for each specimen. Fig-
ure 6 shows the computed thermal conductivity of a Si(25nm)/Ge(25nm) super-
lattice thin film, compared with the analytical prediction against the number of
simulated superlattice periods. In these calculations, numerical parameters em-
ployed are ∆x=2.5nm, ∆t=0.25ps, and A=10nm2. The prescribed heat flow rate are
Q0/∆t = 10 and 20meV/nm2 · ps for p=0 and 1 respectively. Initially the tempera-
ture is 330K and 1944 and 1000 phonon bundles are placed within each Ge cell and
each Si cell respectively. The lattice thermal conductivity is obtained according to
the Fourier’s law and based on the temperature difference across the middle super-
lattice period (labeled by “mid”) or the whole computational domain (labeled by
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Figure 5: The directional probability density functions of phonon numbers in a
Si(d)/Ge(d) superlattice thin film. The arrows indicate the increasing direction of
the relevant parameter.

“total”). Several temperature distributions are also shown in Fig.7 for illustration.
Figure 6 shows the computed thermal conductivity is nearly independent of the
number of simulated superlattice periods, implying the proposed pseudo-periodic
boundary condition works very successfully.

4.2.4 Interface roughness and superlattice period

We are now ready to study the dependence of the lattice thermal conductivity of
a Si(d)/Ge(d) superlattice thin film on the interface roughness (p) and the super-
lattice period (2d). The computational domain for each case is chosen to be two
periods. The computed thermal conductivities agree excellently with the analytical
predictions as seen in Fig.8 and Fig.9. The temperature jumps at the four interfaces
are only slightly different, although they are larger across the Si-Ge interfaces than
across the Ge-Si interfaces in all cases.

4.3 In-plane phonon transport

We now consider the situation in which the main heat flow direction is one (x) of
the in-plane directions of a superlattice thin film. It is reasonable to assume the
phonon statistics is the same along the other in-plane direction (z) and thus 2D
simulations are wanted. The grid system as shown in Fig.1b is employed. The pe-
riodic boundary condition is imposed in the y-direction; that is, whenever a phonon
leaves the computational domain from the top (bottom) surface, it will immediately
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Figure 6: The computed cross-plane thermal conductivities of a
Si(25nm)/Ge(25nm) superlattice thin film against the number of superlattice
periods simulated.

 
Figure 7: The temperature distribution in a two-period specimen of a
Si(25nm)/Ge(25nm) superlattice thin film.

re-enter the computational domain from the bottom (top) surface. The pseudo-
periodic boundary condition on the other hand is imposed in the x-direction. It is
the width w now that serves as a free parameter to control the number of phonons
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Figure 8: The temperature jumps at the Ge-Si (solid symbols) and Si-
Ge (open symbols) interfaces and the cross-plane thermal conductivity of a
Si(25nm)/Ge(25nm) superlattice thin film against the interface roughness.

 
Figure 9: The cross-plane thermal conductivity of a Si(d)/Ge(d) superlattice thin
film against the film thickness d.

per bundle.

4.3.1 Theoretical analysis

An analysis similar to that done by Chen (1997) is performed to predict the in-
plane thermal conductivity. In the analysis, a linear dispersion relation and Hol-
land’s model (Holland, 1963) for the frequency- and temperature-dependent relax-
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ation time are employed. Unlike the MC simulations, the elastic acoustic mismatch
model is used for the spectral transmissivity, which is also frequency-dependent.
Full reflection occurs not only when the incident angle is larger than the critical
angle but also when the incident frequency is larger than the Debye frequency on
the transmitted side. Most of all, diffusely scattered phonons are assumed to be
in equilibrium with the local temperature and make no contribution to the heat
transfer. This is not true in the simulations, in which a nonzero net heat flow
rate, proportional to f (T1)− f (T2), is allowed when the interface is totally dif-
fuse. Consequently, the bulk thermal conductivities calculated based on this the-
oretical model are 149.35W/mK and 69.76W/mK at 300K for Si and Ge respec-
tively, slightly different from the experimentally measured ones (156W/mK and
60W/mK). A poorer agreement between the analytical predictions and simulation
results is thus expected.

4.3.2 Length of simulated domain

Because of the co-existence of two different materials on the cross section, a direc-
tional dependence of the phonon population and a non-uniform cross-sectional dis-
tribution of heat flux are expected, particularly when the interface is very smooth or
the layer thickness is very small. We thus test the validity of the proposed pseudo-
periodic boundary condition by varying the length (L) of the computational domain
of a Si(2nm)/Ge(2nm) superlattice thin film with perfectly specular interfaces. The
middle cross section at x = L/2 is selected as the reference plane for capturing
the heat flux distribution. To avoid a too large temperature difference, the speci-
fied heat flow rate cannot be too large; consequently, the collected instantaneous
heat flux distribution may fluctuate violently. To solve this problem, we average
the heat flux distribution over several thousands of previous time steps and impose
the result at the boundaries. Figure 10 shows the simulation results at 300K (ini-
tial temperature). It is seen the heat flux is larger in the Si layer because its bulk
thermal conductivity is larger. When the length of the sample is not long enough,
unreasonable temperature jumps are observed across the heterogeneous interfaces
near the inlet and outlet boundaries (not shown herein), resulting in a smaller ther-
mal conductivity. The situation gets improved as L increases. In this special case,
Si(2nm)/Ge(2nm) and p=1, L=400 nm is seemingly necessary for a convergence of
the thermal conductivity.

4.3.3 Interface roughness and superlattice period

After carefully testing and choosing the numerical parameters, we investigate the
dependence of the in-plane thermal conductivity of a Si(d)/Ge(d) superlattice thin
film on the interface roughness and the superlattice period. The simulation results
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Figure 10: The heat flux distribution and the in-plane thermal conductivity of a
Si(2nm)/Ge(2nm) superlattice film against the length of the simulated sample.

are shown in Fig.11, compared with the analytical predictions. Some differences
are observed. Because the agreement is better when the interfaces are smooth or
when the layer thickness is small, it is conjectured the deviation arises from the
ignorance of the contribution of the diffusely scattered phonons to the heat transfer
in the theoretical analysis. Besides, the computed thermal conductivities with p=1
are slightly larger than the predictions. This is attributed to the larger bulk thermal
conductivity of Si used in the MC simulations. Finally, it is very surprising to
see that the simulation data collapse very well with the theoretical curves at lower
temperatures (320K for p=1 and 236K for p=0) than the initial one (330K). It
implies both the simulation and the theoretical models capture the size effect in
a similar way, although there are some differences in the physical models.

4.3.4 Ratio of layer thicknesses

It is believed the ratio of the layer thicknesses also plays an important role in
the in-plane phonon transport, because the thermal resistances of layers are con-
nected in parallel now. In spite of having a larger bulk thermal conductivity, the
Si layer may have a larger thermal resistance when its thickness is too thin (im-
plying not only a too small cross sectional area but also enhanced interface scat-
terings). We show in Fig.12 the heat flux distributions over the thickness direction
associated with a Si(dSi)/Ge(dGe) superlattice thin film with p=0 and a fixed pe-
riod of dSi + dGe = 20nm. It is observed the layer taking care of the major part
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of heat transfer is changed from the Si layer (the middle layer) to the Ge layer as
dSi/dGe gradually decreases. The computed in-plane thermal conductivity against
the thickness ratio is shown in Fig.13. Again, it is seen the simulation data collapses
very well with the theoretical prediction at a lower temperature than the prescribed
one (330K). Interestingly, there exists an optimum ratio that results in a minimum
in-plane thermal conductivity. If the interface scattering is ignored, the effective
in-plane thermal conductivity of a Si(dSi)/Ge(dGe) superlattice thin film should be
ke f f = (kSidSi + kGedGe)/(dSi +dGe), which is a monotonically increasing function
of dSi/dGe because kSi > kGe. The existence of the minimum conductivity there-
fore must arise from the interface scattering and can be explained by a competition
between the reducing interface scattering and the increasing intrinsic scattering in
the Ge layer as dSi/dGe decreases. This explanation is supported by the observation
also from Fig.13 that the larger the superlattice period or the larger p (i.e. the less
important the interface scattering), the smaller the optimum ratio dSi/dGe is.

 
Figure 11: The computed in-plane thermal conductivity of a Si(d)/Ge(d) superlat-
tice thin film. The dash lines are the theoretical predictions at 320K for p=1 and
236K for p=0.

5 Conclusions

We have established a quick MC simulation tool for analyzing the phonon transport
phenomenon in nanostructured materials. Geometric symmetries that exist in the
systems are employed to reduce the dimension in problem and consequently the
computational amount. The MC tool is thus identified as a 1D, 2D, or 3D solver.
A quasi-periodic boundary condition is properly designed to generate a prescribed
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 Figure 12: The heat flux distributions for a Si(dSi)/Ge(dGe) superlattice thin film
with p=0 and a fixed period of dSi +dGe = 20nm.

 
Figure 13: The in-plane thermal conductivity against the layer thickness ratio for
superlattice thin films having a fixed superlattice period, dSi +dGe, and p=0.

heat flow rate in the system, which is capable of capturing the directional depen-
dence of phonon populations and the non-uniformity of the heat flux distribution
due to the existence of the heterogeneous interfaces. We have successfully verified
the validity and accuracy of the proposed MC solver by applying it to a 1D transient
conduction problem and the cross-plan and in-plane phonon transports in Si/Ge su-
perlattice thin films. The simulation results show good agreement with theoretical
predictions, in spite of slight differences which can be reasonably explained by the
discrepancies in the physical models between the simulation and the analysis. The
simulation results also indicate the cross-plane thermal conductivity of a Si/Ge su-
perlattice thin film increases monotonically with the smoothness of the interfaces
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and the superlattice period. A minimum value on the other hand is found associ-
ated with the in-plane thermal conductivity of a Si/Ge superlattice thin film as the
ratio of the layer thicknesses is varied and the superlattice period is fixed. This may
be explained by a competition between the decreasing interface scattering and the
increasing intrinsic scattering with the increasing Ge-layer thickness.
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