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Extended Limit Analysis of Strain Softening Frames
Involving 2nd-Order Geometric Nonlinearity and Limited
Ductility

S. Tangaramvong' and F. Tin-Loi!

Abstract: Classical limit analysis is extended to include the effects of 2nd-order
geometric and material nonlinearities, as well as the inclusion of limited ductility
constraints. For the class of frame structures considered, the material constitutive
model adopted can simultaneously accommodate the effects of combined axial and
flexural force as well as local softening instability through the use of piecewise lin-
earized yield surfaces. The main feature of the approach developed is to compute,
in a single step, an upper bound to the maximum load. Corresponding displace-
ments and stresses can be obtained as a by-product of the analysis. The problem is
formulated as an instance of the challenging class of so-called mathematical pro-
grams with equilibrium constraints (MPECs). A number of numerical examples
are provided to validate the robustness and efficiency of the current approach, and
to illustrate some key mechanical features expected of realistic frames that exhibit
local softening behavior and geometric nonlinearity.

Keywords: Complementarity problem, geometric nonlinearity, limit analysis, lim-
ited ductility, material nonlinearity, nonconvex optimization

1 Introduction

There is no doubt that incrementally based analyses, e.g. Maier (1971); Bolzon and
Tin-Loi (1999); Cocchetti and Maier (2003); Tangaramvong and Tin-Loi (2007a),
which follow the evolution of structures under a given load regime can provide
a complete and rich spectrum of the possible structural responses. Such step-by-
step elastoplastic analyses can predict accurately the behavior of structural systems
that involve both material and geometric nonlinearities (see e.g. DeDonato and
Maier (1972); DeFreitas and LloydSmith (1984-85); Tangaramvong and Tin-Loi
(2007a); Tonkovié, Sorié, and Skozrit (2008)), as well as damaging or fracture
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interfaces [Bolzon and Corigliano (1997); Long, Liu, and Li (2008)]. However,
in the presence of strain softening coupled with geometrically nonlinear effects,
such evolutive analyses are typically computationally demanding, especially when
multiple equilibrium paths exist. For large-size softening structures exhibiting such
mechanically crucial phenomena as bifurcation and loss of overall stability, it is
not straightforward to capture all solutions, let alone trace the critical equilibrium
path. This, it must be noted, is different to the case of traditional (stable) perfect
or hardening plasticity for which various robust and efficient numerical techniques,
e.g. Maier (1970); DeDonato and Maier (1972); Franchi and Cohn (1980), are well
established and can be used.

The importance of including material nonlinearity (e.g. “work-softening” as is con-
sidered in this paper) in any structural analysis is well-known. For instance, when
any reinforced concrete member is simultaneously subjected to bending and suffi-
ciently high axial compression, compressive fracture can occur, and this leads to
a postpeak softening behavior. Examples are prestressed concrete beams, columns
loaded by heavy axial forces and frames or arches with high thrusts. Softening be-
havior can also occur in over-reinforced concrete sections, such as those retrofitted
with a fibre laminate bonded on the tensile face of the damaged reinforced concrete
beam. Even though the stress-strain relation of steel does not exhibit a softening
curve, local softening instability can exist as a result of, say, the local buckling
of stiffeners, lateral-torsional buckling due to inadequately provided torsional re-
straints and steel connections with semi-rigid joints.

A fruitful complementary analysis, especially for preliminary assessment or design,
is to compute some bound to the maximum load that the structure can sustain. The
use of so-called “direct” or “simplified” methods, which avoids a computationally
expensive time-stepping analysis, represents a useful, competitive and increasingly
appealing alternative. One important class of such methods is limit analysis. The
distinctive feature of classical limit analysis is the determination of the load fac-
tor (or more precisely in practice, its upper and/or lower bounds) at which a critical
event occurs, namely plastic collapse (see e.g. Massonnet and Save (1965); Kamen-
jarzh (1996); Carvelli, Maier, and Taliercio (2000); Leu and Chen (2006); Chen,
Liu, and Cen (2008)).

The upper and lower bound theorems underpinning classical limit analysis are,
however, strictly only applicable to structures that satisfy some rather restrictive
(often onerous) requirements, the main ones being rigid perfect plasticity (no hard-
ening or softening), geometric linearity and sufficiently large ductility. For in-
stance, in the presence of softening, the pair of well-known bound theorems under-
pinning classical limit analysis is inapplicable. Also, local failure may well precede
the plastic collapse of the structure predicted on the basis of unlimited ductility of
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plastic hinges.

The clear practical need to overcome such shortcomings of classical limit analysis
has motivated a number of research works, e.g. Ferris and Tin-Loi (2001); Tin-Loi,
Tangaramvong, and Xia (2007); Ardito, Cocchetti, and Maier (2008). However,
this is not a computationally easy task: the underlying mathematical program-
ming problem that needs to be solved is a challenging one, often considered to
be ill-posed in view of the numerical instabilities caused by lack of convexity and
smoothness. The development of robust algorithmic approaches is thus essential.

The main purpose of this paper is to extend classical limit analysis to account for
geometric and physical (softening) effects and limited ductility constraints. More
explicitly, we consider the effects of combined axial and flexural force, local soft-
ening material behavior and 2nd-order nonlinear geometry, simultaneously, while
at the same time satisfy some restrictions on ductility.

The present work was strongly motivated by Maier’s proposal for a single-step si-
multaneous load and deformation analysis (see e.g. Ardito, Cocchetti, and Maier
(2008) and listed references) and is a nontrivial extension of recent research [Tan-
garamvong and Tin-Loi (2009)] that considered 2nd-order geometric effects, albeit
within a perfect plasticity context.

The term “limited ductility”, it should be mentioned, is used in quite a general sense
and encompasses limits on such quantities as plastic strains (including rotations),
plastic work, total displacements at specific points of the structures, etc. As a result,
the proposed method is able to compute in a single step an upper bound on the
maximum load characterizing the proportionally applied loading. Deformations
corresponding to that load will be automatically recovered at the same time.

The computational approach proposed is founded on the reasonable premise that
the material behavior is holonomic or path-independent. This assumption, it is
recalled, has been fully validated for the class of structures considered, see e.g.
Tangaramvong and Tin-Loi (2007a). In fact, the holonomy assumption will often
provide a close or even exact prediction of the actual structural response.

The extended limit analysis approach proposed is conceptually simple in that it
aims to maximize the load factor (assumed to be a variable) under the same set
of conditions that would apply to a holonomic analysis under load control. The
difficulty lies in solving the resulting challenging optimization problem, referred
to, in the mathematical programming literature [Luo, Pang, and Ralph (1996)], as
a mathematical program with equilibrium constraints (MPEC). These equilibrium
constraints are more precisely, in the present case, complementarity constraints
and, in view of their nonconvexity and nonsmoothness, represent the main source
of difficulty in solving MPECs.
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The organization of the present paper is as follows. In Section 2, we describe
the basic ingredients required for the appropriate formulations. These include dis-
cretization, Lagrangian description of statics and kinematics, and softening law.
This is followed, in Section 3, by a review of the holonomic elastoplastic analysis
of structures. An event-by-event holonomic algorithm is proposed to trace the over-
all structural response. Using the same set of governing holonomic relations, we
develop, in Section 4, the required MPEC formulation for the extended limit anal-
ysis problem. In Section 5, we propose three nonlinear programming (NLP) based
algorithms to solve the MPEC. Direct solution of the MPEC with the complemen-
tarity constraints described as w'z =0, as done in Cocchetti and Maier (2003), will
only work in some cases. Three numerical examples of practical, reasonably-sized
structures are given in Section 6 to illustrate application of the proposed approach.
Finally, some pertinent conclusions are drawn in Section 7.

A word regarding notation is in order. Vectors and matrices are indicated in bold.
A real vector x of size m is indicated by x € R" and a real m X n matrix A by
A € R For brevity, a vector of functions f(x) : R — R”" is written simply as
fe R

2 Preliminaries
2.1 Discrete structural model

A conventional lumped plasticity model within a “line” finite element framework,
see e.g. DeDonato and Maier (1972); Bolzon and Corigliano (1997); Cocchetti
and Maier (2003), is adopted in this study. This is appropriate since, for the frames
under study, the plastic strains localize strongly in a limited number of fixed critical
zones, whilst the remaining part of the structure can be considered to be still in the
elastic regime.

The model for this kind of structural behavior then involves a special instance of
the class of discrete formulations consisting of an elastic solid with embedded in-
terfaces or loci of possible displacement discontinuities. These displacement dis-
continuities incorporate the localized dissipative effects observed in the failure of
the material in the large-scale problem (e.g. a localized softening law between
the bending moment and rotation), without the need to introduce explicitly the
small scales [Ehrlich and Armero (2005); Armero and Ehrlich (2006)]. In fact,
this generic representation [Bolzon and Corigliano (1997)] can be used to describe
softening hinges as well as decohesion and quasibrittle fracture processes, through
interface laws which relate tractions to displacement jumps.

An important implication of such finite element models is that mesh objectivity
is ensured [Maier, Zavelani, and Dotreppe (1973)] even in the presence of local
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Figure 1: Generic 2-D frame element i (a) generalized stresses, (b) generalized
strains.

softening behavior.

It is first assumed, as is usual, that the structure under consideration has been dis-
cretized as an aggregate of finite elements. In the present case, the material behav-
ior is directly reflected by the element behavior, since the class of finite elements
expressed in intrinsic, natural (in Prager’s generalized sense) variables is adopted
[Maier (1970)]. This implies that the scalar product of generalized stress and strain
vectors represents virtual work in the element concerned and is invariant with re-
spect to rigid body motion. In particular, the stress resultant or generalized stress
is obtained by integrating the assumed stress field across the section. Similarly, the
associated strain resultant is computed by a suitable kinematic assumption associ-
ating each physical component of strains with displacements in global coordinates.

To provide a better understanding, consider the generic self equilibrated 2-D frame
element i shown in Fig. 1. For this element, the generalized stress vector s' € R>
contains the three (independent) two end moments (s5,s5) and one axial force (s').
The corresponding generalized strain vector ¢’ € R> then consists of the corre-
sponding end rotations (¢},q4) and axial deformation (g}), which are explicitly
taken as summation products of the generalized elastic strain vector ¢/ € R> and
the generalized plastic strain vector p’ € 3. The effect of shear force is ignored.
Thus, it does not contribute to the internal work. Instead, the shear force is consid-
ered as a reaction, whilst its corresponding deformation is abandoned.

The external loads are proportionally applied at the model nodes only. For example,
distributed loads are simplified as concentrated forces and lumped to act on nodes.

For elastoplastic members, material nonlinearity is included through the traditional
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concept of the generalized plastic hinge model. More specifically, the formation
of such a hinge is confined only to the member ends. Thus, the material between
these ends remains purely elastic. Since the structure modeling is made on the basis
of well-known “line” frame elements, supplemented by the possibility of lumped
discrete plastic hinges forming at member ends, spreading of plasticity through
the depth of a cross-section is thus precluded. However, the spread of plasticity
along the member can be captured with suitably fine discretization in critical re-
gions. The locations of possible hinges are a priori ascertained, for instance, under
concentrated loads, at supports where yielding is likely to occur, etc. In the case
of distributed loading, a finer discretization is carried out in those regions where
hinges are likely to be formed, e.g. DeDonato and Maier (1972).

2.2 Lagrangian description of statics and kinematics

Two fundamental ingredients required to describe the structural behavior are equi-
librium and compatibility. Equilibrium involves the relations between the nodal
applied forces F' € RO and the elemental stress resultants s/, whilst the compat-
ibility condition relates the member deformations q' to the nodal displacements
u’ € RO,

Consider the generic self-equilibrated discretized 2-D frame element i of Fig. 2,
where / and 0 define respectively the undeformed member length and the original
inclined angle measured in an anticlockwise direction with respect to the horizontal
axis.

In view of geometric nonlinearity considerations, the general compatibility relation
is written as a nonlinear function of u' as follows:

q =q'(u’). (1)

The corresponding equilibrium relation is expressed through the compatibility ma-
trix C' € R3*6 by

F' =C"¢, 2)
where

9
C = agi' 3)

Clearly, the exact expressions for Egs. 1-3 are nonlinear, and can be consistently
approximated to any “order”. In particular, an nth-order formulation is generated
by retaining terms up to (n — 1)th powers.

A simplified approach is based on the reasonable 2nd-order geometry approxima-
tion often used for slender structures, e.g. Maier (1971); Tin-Loi and Vimonsatit
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Figure 2: Generic 2-D frame element i with 2nd-order geometric nonlinearity (a)
stresses, (b) strains.

(1996); Bolzon and Tin-Loi (1999), for which the 1st-power quantities of the ex-
act geometrically nonlinear formulation are retained. It is then assumed that dis-
placements from the undeformed state are geometrically small [Maier and Drucker
(1973)]. This assumption is sufficiently accurate for the class of structures consid-
ered herein.

The equilibrium condition for each elastic member i in the deformed state is then
established by using the so-called geometric stiffness matrix K& € R6*® [Przemie-
niecki (1985)]. This matrix accounts for change of configuration with loading.

For the frame element i, this 2nd-order geometric nonlinearity can be conveniently
described by introducing an additional transverse force n} as well as its conjugate
displacement 5}-, as shown in Fig. 2. Clearly, the force ﬂji and the displacement 5}
represent the configuration change of the member.

The equilibrium Eq. 2 of the element i can therefore be explicitly expressed as
follows:

F' =C{'s'+ Cf'nf, “4)
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where

FIo[F KO RO R

cos@ —sin@/l —sin6/l 7
sin 6 cos/l  cosB/]
T = 0 1 0
—cos6 sin6/I sin0/1
—sin® —cosB/l —cosB/I
0 0 1

=] —sin® cos® 0 sin® —cos® 0 ].

Obviously, C§ € R3*® is the conventional linear compatibility matrix and C; €

R1*6 the associated auxiliary compatibility matrix, respectively. It is clear that
Eq. 4 is described in the undeformed framework. Thus, the duality relationship be-
tween equilibrium and compatibility of the structural system is meaningfully pre-
served. Moreover, since 2nd-order theory assumes small deformations, the com-
patibility Eq. 1 can be simply given by the following linear function:

q = Cju', (5)

provided that an additional displacement &, linearly proportional to nodal displace-
ments u', is introduced as follows:

5} = C;}u". (6)

It is further assumed that the structure considered is controlled solely by a mono-
tonically increasing (or decreasing) single load multiplier o.. Hence, the external
nodal forces F' are defined by

F = af +f, (7

where f' € R and fi e RS are the given basic nodal load vector controlled through
o and the fixed nodal load vector, respectively.

By collecting Egs. 4-7, the governing Lagrangian static-kinematic description at an
element level becomes

Clf Ccf[ of +f,
C6 : : Sl. = ql ) (8)
C} . . njg ) y

where symbol (-) represents a null vector or zero matrix of appropriate size.
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For the entire structural system that has been discretized into n generic elements, d
degrees of freedom and m natural generalized stresses (or strains), the equilibrium
and compatibility conditions are

cy cf u af +£,
Cy - . S = q . 9)
¢ Ty of

Self-evident indexless matrices Cy € R"*4, C 1€ R™<4 and vectors £ € R, £, €
R9, u € R? are assembled by using appropriate location vectors. The concate-
nated vectors s € R™ and q € R™ collect respectively all their corresponding el-
emental vectors, e.g. sT = [s!T---s"T] and q" = [¢'T---q"T]. Vectors 7 € R"

and 0y € R" collect their n corresponding variables, e.g. n} = [ﬂ}, .. .,ﬂ?;'} and

5} = [51, e 5}’} , respectively.

2.3 Constitutive model

The key relations governing a complete specification of the constitutive behavior of
a generic element, leading to that of the entire structure, are now briefly presented.
In essence, these include strain decomposition, elasticity and plasticity. Further-
more, both 2nd-order geometric and nontraditional (softening) material nonlinear-
ities are considered. The focus is on frame elements for which combined bending
and axial force can affect yielding.

2.3.1 Strain decomposition

As clearly shown in Fig. 3, the additivity of member elastic and plastic strains is
written as follows:

q=e +p, (10)
and, for the entire structural system, as

q=e+p, an
where el = [elT . -e”T} and pT = [plT...p

nT] .

2.3.2 Elasticity

When a 2nd-order approximation is considered to be sufficiently accurate, the well-
known nodal geometric stiffness matrix K; [Przemieniecki (1985)], as mentioned
earlier, can be used. This, in particular, is generated by retaining terms up to and
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Figure 3: Generalized strain description.

including the Ist-power quantities of the exact formation, see e.g. DeFreitas and
LloydSmith (1984-85); Tin-Loi and Vimonsatit (1996).
The elastic stiffness formulation (in Fig. 2) then consists of two components, namely
the relation between stresses s’ and elastic strains e’ as well as that between an ad-
ditional force n} and its corresponding deformation 5;.

Firstly, the appropriate stiffness relation between s’ and €' is

s'=(S)+S}) ¢, (12)
where
‘ EAJI 0 0
Sy = 0 4EI/l 2EI]l |,
0 2EI/l 4El]I
0 0 0

i s
Sg:< 11> 0 22/15 —12/30
0 —1?/30 2%/15

It is noted that Sf, € ®3*3 is a conventional (symmetric and positive definite) elas-
tic stiffness matrix in the small deformation regime, and ng € R33 is an elemental
geometric stiffness matrix accounting for 2nd-order effects, symmetric but not nec-
essarily positive semidefinite. The total stiffness matrix S’ = S} + SZ,. Eq. 12 clearly
reduces to

s' =S'e'. (13)

Secondly, the relation between n]’} and 5]’} is

= S48, (14)
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where

i sli

It is useful to compare our 2nd-order formulation with the nodal force-displacement
relation of Przemieniecki (1985). By assuming 8 = 0, and collecting Egs. 8, 12 and
14 yields the following relationship between the nodal forces F' and the displace-
ments u’ of an elastic member i:

F' = (Cy'S)C)) u' + (C'S, Cyy + C $4:C ) o (15)
where
CiTSici =
[ A%/ 0 0 —AP/T 0 0 ]
0 12 6l 0 —12 6l
EI 0 6l 47 0 —61 22
Bl -AB/)T 0 0 ABR/ST 0 0 |”
0 —12 -6/ 0 12 -6l
| 0 6l 2% 0 —6l 41”7 |
chsio,_Cg,JrC;?S}c; = ]
0 0 0 0 0 0
0 6/5 /10 0 —6/5 1/10
si| 0 1/10 22/15 0 —1/10 —I%/30
I ) 0 0 0 0
0 —6/5 -1/10 0 6/5 —1/10
| 0 1/10 —I?/30 0 —I/10 2I*15

Clearly, Eq. 15 coincides with the nodal force-displacement equation of Przemie-
niecki (1985), provided that the nodal elastic stiffness matrix K} € R6%6 and the
nodal geometrical stiffness matrix K’G € RO*O are respectively

0 = Ci S/Co, (16)
¢ = Cy S;C)+ CIS}Cy. (17)
Hence, Eq. 15 can be rewritten as follows:
F' =Kiu' +K.u'. (18)

It should be noted that both Sé, in Eq. 12 and S} in Eq. 14 depend on the single

axial force s’i. Thus, a zero axial force (s’l = 0) implies geometric linearity, which
simply indicates S’ = Sj,.
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For the entire structural system, the elastic stiffness given by Eqs. 13-14 for all n
elements are assembled from

s Se. (19)
Ty = Sf6f, (20)
where

S =S0+8S,, 21

S € R, Spe R, Sp€ R™™ and Spe R

2.3.3 Softening

As indicated in the foregoing, the material behavior considered in this paper falls in
the category of elastoplastic softening constitutive laws. The focus of this subsec-
tion is on a mathematical description of the so-called holonomic (or path-independent)
plasticity model.

When, as in beams, it is accurate enough to represent the plastic hinge solely by
a moment-rotation relationship (as in Fig. 3), the softening laws proposed by Tin-
Loi and Xia (2001) can be used. However, when members (e.g. heavily loaded
columns) are subjected to significant combined axial and flexural forces, the ef-
fects of axial forces on the yield condition must be included. The mathematical
description as to how this is achieved is provided in the following.

In the first instance, the computationally advantageous piecewise linear approxi-
mation to a nonlinear yield surface has been adopted. In essence, a priori piece-
wise linearization of the nonlinear yield hypersurface is assumed, as popularized
by Maier and his group, e.g. Maier (1970); Maier (1971); DeDonato and Maier
(1972).

Without undue loss of generality, the present description refers specifically to the
commonly used hexagonal piecewise linear yield locus shown in Fig. 4 for the
“start” hinge a of an element i. This yield locus is typical of an I-steel section
under combined bending and axial force [Massonnet and Save (1965)], where y
is the angle defining the orientation of the inclined yield hyperplanes. It is also
assumed that positive and negative flexural/axial properties are identical, and that
a reduction of the pure bending capacity occurs when the axial force reaches some
fraction (specified through the factor r,, normally set to 0.15) of the pure axial
capacity.

In a similar manner to Cocchetti, Maier, and Shen (2002), when the material is sub-
ject to the softening (or hardening) behavior the adopted constitutive law describes
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Figure 4: Hexagonal piecewise linear yield locus.

the evolution of isotropic softening (or hardening) yield surfaces. More specifi-
cally, as shown by the inner dashed lines in Fig 4, the isotropic softening model
defines a uniformly shrinking yield locus without shape changes. In the same way,
the isotropic hardening model indicates a homothetically expanding of the yield
surface (i.e. outer dashed lines in Fig. 4).

The particular assumption of isotropic softening and hardening, it is worth men-
tioning, is not important for realistic structures under monotonically applied loads
since it is unlikely that progressive softening or hardening will activate the opposite
yield plane.

As mentioned earlier, the intrinsic material behavior is based on the holonomic or
path-independent elastoplastic assumption. Holonomy, in the spirit of the deforma-
tion theory of plasticity, implies that elastic unloading does not occur and that the
stress point (as indicated by the arrows in Fig. 5) is restricted to move along the
actual branches. Thus, any unloading from the active yield branch is reversible in
nature.

As indicated in Tangaramvong and Tin-Loi (2007a), a holonomic, rather than the

less tractable nonholonomic, analysis is sufficiently accurate in the prediction of
the response of such structures under monotonically applied loads. This is due to
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Figure 5: Piecewise linear softening law (a) interaction between bending and axial
forces, (b) typical holonomic behavior for yield plane j.

the fact that the overall structural behavior is largely unaffected by the occurrence
of nonholonomic unloading.

Underpinning the description of the holonomic law is the well-known mathemati-
cal structure known as “complementarity”. The complementarity conditions imply,
for total quantities, the componentwise relationship w; > 0, z; > 0, w;z; = 0 for all
j. For vectors w” > 0 and z* > 0, this condition is typically written as w1z = 0.
Mechanically, with w; representing a yield function and z; a plastic multiplier, it
implies that plastic yielding (w; = 0) can only occur if the stress point is actu-
ally on the yield surface (z; > 0), and hence wjz; = 0. Moreover, if the material
is still elastic (w; > 0) then there is no plastic flow (z; = 0), again satisfying the
complementarity condition w;z; = 0.

With reference to the hexagonal yield surface in Fig. 5, the dimensionless s /s,
versus s /s1, graph is used to represent the isotropic softening interaction between
axial force s’i and bending moment sé of a hinge a, where s1,, and s;, are respec-
tively their corresponding yield capacities. The homothetic shrinking (dashed lines)
of the yield domain is assumed to cease at the residual state r, (thin line).

The holonomic constitutive law describing this model is then as follows:

w = —NTs* t H%Z* +1¢ > 0,2° > 0,w" 2 = 0, (22)
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where

al __

wih= | wi w2 w3 wyg ws wg wy |,

sT=[s) 5],

T

4 = [Zl 2 3 24 75 6 Z7],

N — On n 0 —-n —-n O
11 -1 -1 -1 1 0}’

a a a3 a4 as ag —1
Tay Tapy 7Taz Tags Tas Tag —T
Tay Tapy 7Taz Tag Tas Tag —T
H* = h ai aj as ag as dg —1 s
Tay Tapy 7Taz Tags Tas Tag —7T
Tay Tap Taz 7Tag4 Tas Tag —7T
a ay a3 ag a5 ag —1

rf = [5214 TS TS Sou TS TS Sou(l— rr)] )

n = (sou/s1u)tany, h = —sy, (1 —r,)/pe, T=1+rptany, and a; = p./ |ch’ for all
Jj€{1,...,6}. Itis obvious that the softening matrix H is nonsymmetric.

For clarity, the softening behavior of a typical yield hyperplane j € {1,...,6} is
plotted on the combined stresses (NITJ-S"1 +N2Tjs§) versus scaled plastic strain a; | p’z}
space in Fig. 5; Nj; and N,; are normals projected respectively on the st and s}
axes; a; defines a scaling factor applied to the plastic multiplier z;. As is usual for
the hexagonal yield shape, the scalars 7;(j =2,3,5,6) =7, and 7;(j = 1,4) = 1.
For convenience, the breakpoint between the softening and flat portions for each
hyperplane j is defined by a single, arbitrarily assumed critical plastic strain p. (e.g.
Pe = Pet1), in which p; (j =1,...,6) are the actual critical plastic strain values.

The yield functions w; to wg essentially describe a softening evolution of their cor-
responding yield hyperplanes 1 to 6, as shown by the dashed lines in Fig. 5. An
additional yield function w7 is required to express the movement of a yield point
on the horizontal (residual) portion, as per the thin line in the hexagonal diagram.
This evolution, for instance, is illustrated by the stress point moving along AB, as
indicated in this figure. Physically, the elastic boundary is first reached at point A
on the activated hyperplane, and then the material softens isotropically. Since an
isotropic softening model is assumed, the other hyperplanes also simultaneously
shrink, with the result that the original hexagonal yield polygon becomes smaller
but still retains its shape. The stress point thus moves on the inclined softening
branch until it reaches the breakpoint B (corresponding to the smallest yield poly-
gon in Fig. 5), after which it moves along the horizontal (perfectly plastic) branch.
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These complementarity conditions, it should be noted, need to predict precisely the
various cases when no solution or multiple solutions arise. For example, for the
piecewise linear softening representation shown in Fig. 5, when 7,752, < NlT/s’l +
Nszsé < T;s7, the gomplementarity mode} should be able to recover precisely two
solutions for a; ‘ p’z‘ (i.e. one with a; ‘ p’z‘ = 0 on the vertical elastic branch and
the other with a; ’ p’2’ > 0 on the inclined softening branch). Additionally, for any
given 0 < a; ‘ p’z‘ < pe, the expression for the softening law should furnish, as is
clear, a unique solution for NlTjs’1 +N2TJS’2 However, when NlTjs’1 +N2Tjs’2 > TiS2us
there exists no solution for any a; ‘ D ‘

The softening constitutive relations for a typical frame element i are generated by
assembling the corresponding relations for the two end hinges a and b. For simplic-
ity, it is assumed that the inelastic properties of these hinges a and b are identical,
which means that a similar set of functions as in Eq. 22 can be collected for node
b, e.g. H* = H” and r* = r’. The softening laws at an element level can then be
written as follows:

w = -NTs+HZ +r >0,z > 0,w'z =0, (23)

where

WiT:[waT WbT]’SzT_[Sll s s3]’

ZiT: [ ZaT ZbT] I.iT [l‘aT l‘bT]
0 7” n 0 -7 -7 007 7 0 —-a —a 0

N= |11 -1 -1 -1 1. 000 0 0 0 0 O0f,
oo o0 0 0 0 011 -1 -1 -1 1 0

. [ He .

Hl: Hb

Finally, the holonomic constitutive relations for the entire discrete structure, made
up of n elements and y yield functions, can be suitably assembled as in conventional
finite element formalism as follows:

w=-Nls+Hz+r>0,z2>0,w'z=0. (24)

Obviously, the new and self-evident indexless symbols collect all i € {1,...,n} el-
ement vectors and matrices as concatenated vectors and block-diagonal matrices,
respectively. For instance, w' € %> = [w!T...w'T], 2T e R = [£!T...2"T], rT €
R =[r'T-.r"T], Ne R =diag (N',...,N"), and He R =diag (H',... . H").
The plastic deformation vector p for the entire structure, it is worth mentioning, is
defined through the associated flow rule. More explicitly, this expresses the fact that
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the plastic strains p are functions of the plastic multipliers z through the constant
matrix of outward normals N, as in the following:

p=Nz (25)

3 Holonomic elastoplastic analysis

In this section, the prescribed three basic ingredients, namely statics, kinematics
and constitution, are collected to formulate the holonomic state problem. These
form the basis for the analysis of the considered structure accounting for both ma-
terial (softening) and 2nd-order geometric nonlinearities simultaneously.

The governing holonomic Egs. 9, 11, 19, 20, 24 and 25 can be simplified by retain-
ing variables (s, 7y, u,z) as follows:

o) C]Tc : u . af+1,
—Cy S-! . N S B . N .
~Cy . S]jl . e || - . ’
. NT . H z w -r

w>0,2>0,wz=0. (26)

It should be noted that Eq. 26 constitutes an instance of the class of mathematical
programs known as a mixed complementarity problem (MCP) [Dirkse and Ferris
(1995)].

The MCP in effect represents the Karush-Kuhn-Tucker (KKT) conditions of typi-
cally some extremum principle. It is often computationally advantageous to solve
this MCP rather than an optimization problem, e.g. Maier (1970); Liu and Atluri
(2008).

A key advantage of using the fictitious forces 7 is now apparent in that it leads
to a standard MCP (nonsymmetric) form [Cottle, Pang, and Stone (1992)]. Not
only does this allow theoretical results, such as those concerning existence and
uniqueness, to be obtained, but it also presents a numerically more stable mathe-
matical structure to process, for instance by any one of available state-of-the art
solvers, such as GAMS/PATH [Dirkse and Ferris (1995)] which can be called, as
in our work, from within the powerful GAMS mathematical programming model-
ing environment. GAMS is an acronym for General Algebraic Modeling System
[Brooke, Kendick, Meeraus, and Raman (1998)].

A traditional holonomic analysis is typically performed in a single-step fashion.
For a given load o, the complete response of the structure for that state is simply
computed, and the multiple equilibrium branches (if they exist) can be captured
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by using, for instance, special enumerative algorithms [Tin-Loi and Tseng (2003);
Tin-Loi, Tangaramvong, and Xia (2007)]. Thus, the whole spectrum of structural
responses in a prescribed load regime can be mapped out through a series of single-
step MCP solves.

Even though it is conceptually simpler, this direct holonomic approach may not
be the most efficient computational approach. This is due to the fact that all yield
functions are simultaneously processed, thus leading to typically large problem
sizes.

Our algorithm attempts to solve the holonomic problem in a similar fashion to a
nonholonomic analysis. This approach traces event-by-event the holonomic struc-
tural responses so that all yield activations can be identified. In essence, the method
used follows the nonholonomic algorithm proposed in our recent work [Tangaramvong
and Tin-Loi (2007a)] for the small deflection case.

Instead of using Eq. 26, we retain only variables z leading to the following more
compact form that in effect is a linear complementarity problem (LCP) [Cottle,
Pang, and Stone (1992)]:

w=—NTSCoK ' (af +£;) + (H—N"ZN) z+r,

w>0,z2>0, wiz=0, 27)

where
Z=SCoK 'Cls—s, (28)
K= Ko + KG, (29)
Ko = C}SoCy, (30)
K¢ = CjS,Co+ C}SsCy. (31)

Matrix Kg is the well-known symmetric geometric stiffness of the assembled struc-
ture [Przemieniecki (1985)].

The algorithm adopted is outlined as follows. The aim is to calculate the configura-
tion change AX involving such variables as As, Au, Az, Aw from the previous known
state X described by quantities such as @,§,u,Z, W so that the current unknown state
¥ = X+ AZ can be found. Clearly,

a=0o+Aa,

S =S+As,

u=1u-+Au, (32)
z2=7+ Az,

W =W+ Aw,



Extended Limit Analysis of Strain Softening Frames 235

where the incremental step Ac is varied to capture exactly critical events, such as
activation of a new yield plane. By substituting Eq. 32 into Eq. 27, the following
standard LCP can be obtained:

w=AAz—bAo+¢c>0,z>0,w'z=0, (33)
where

A=H-NTZN,

b =NTSCoK'f, (34)

¢ = (H-NTZN)z - NTSCoK~ ! (af + ;) +r.

In the state X, it is straightforward to set up an active set {¢} (for which W = 0)
and a nonactive set {p} (for which W > 0). The set {¢} is further partitioned into
two subsets, namely the active set {a} having no plastic multipliers (z, = 0) and
the active set {b} containing some plastic multipliers (z; > 0). These two subsets
allow for reversal of plastic multipliers at the same time as prohibiting any elastic
stress unloading. Eq. 33 is then rearranged with respect to these three sets {a}, {b}
and {p}. During a step Ac, the nonactive set {p} is assumed to remain constant
(i.e. w, >0 and z, = 0), and only the active sets {a} and {b} are considered.
Hence, this leads to the following MCP:

wy, = AppAzy + ApeAzZ, —bpAcc+ ¢, = 0,
w, = Az, + AyAz, —b,Acc+ ¢, > 0, 35)
Az, >0, wiAz, =0,

where
Z, + Az, > 0. (36)

In the present case, Az, is sign unconstrained. This allows the yield functions in
{b} to stay active (at yield) while the associated plastic multipliers z;, can decrease
in a reversible fashion, provided that Eq. 36 is satisfied.

At variance with the geometrically linear problem, the governing vectors b, ¢ and
matrix A contain nonlinear components, namely S, K, Z for the 2nd-order geomet-
ric problem. This requires the use of iterative procedures to achieve convergence.
The basic approach is to approximate actual nonlinear quantities, for each iteration,
by using previously found solutions as data to form equivalent linear functions. The
minimum time step At is then iteratively calculated from an identification of either
an activation of new yield planes Az,, exhaustion of plastic multipliers At or a pre-
set step Az, that should be small enough to accurately trace the nonlinear structural
behavior.

The iterative procedures used are basically as follows:
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. Check convergence criterion: if max(abs(s; —s;_1)) < tol (e.g. 107°), then

terminate. Else, go to Step 2.

If f; is involved, go to Step 3. Else, set Aoy = (Acy—1/Ati_1)At;, Az; =
(Az;_1 /At;_y)At;, and recalculate s;. Then, go to Step 3.

. Seti=1i+1. Assume thats; =s;_;, and calculate the new S, K, Z as required

for the 2nd-order geometry case.
If £, is present, go to Step 5. Else, go to Step 6.

Use the elastic constitutive law to calculate relevant response variables (e.g.
s; and w;) when subjected to f; alone (i.e. o; = 0 and z; = 0). Repeat Step 1.

At the known stress state %, calculate A, b, ¢, W, using Eq. 34. If {a} U {b}
is empty, go to Step 7. Else, go to Step 8.

. Solve Eq. 33 for Ao; = Act;—1. Go to Step 10.

Formulate the corresponding A4, Aup, App, Apa, ba, bp, €4, Cp.

. Solve Eq. 35 for Ao, = A .

Update as usual: o = &+ A0, z; =7+ Az;, w; = AAz; —bAq; +c. Calculate
the new s;.

Compute the new time step At; at the load factor & + (Ao;_; /At;—1)At; from
the following linear predictions:

. Ati 1 (Wp) ~
AL, = 0, forall :
min { (NT(s1—5) — HAZ) > orall j € {p} 37)
At (Zp)k
Aty = e for all
1y mln{ (—az) > 0, forall k € {b}, (38)
Aty = min{At,, A, At} (39)

Then, repeat Step 1.

The overall algorithm is outlined in the following. Note that whilst the procedure
correctly identifies which hinges wish to elastically unload at Step (c), the holo-
nomic formulation precludes this from happening.

Step (0): Initialization
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* Set stopping criterion: load level, maximum number of equilibrium paths,
etc.

¢ Define the preset step Az, which is a positive constant value.

* Initialize variables (e.g. &« =0,s =0,z =0 and w =r). Go to Step (a).
Step (a): Account for fixed loads

* If fixed loads f; = 0, go to Step (b).
e Else, at i = 1, initialize s;_; = 0.

* Assume initially that s; = s;_;. Calculate S, K, Z relevant to the 2nd-order
geometry case.

» Use the elastic constitutive law to calculate relevant response variables (e.g.
s; and w;) when subjected to f; alone (i.e. a; = 0 and z; = 0). Then, iterate
until convergence using iterative procedures.

 Form the new stress state ., and update the following: o0 = ¢, s =s;, Z=1z;
and w = w;. Go to Step (b).

Step (b): Process empty active set

e Ati=1,initialize At; | = Ar,,, Ao;_1 = At;_y and s;_| =S§.

e Assume that s; = s;_;. Calculate S, K, Z relevant to the 2nd-order geometry
case.

+ At this known stress state , the structure contains solely inactive stresses.
Calculate A, b, ¢, w,, using Eq. 34.

Solve Eq. 33 for Ao; = Ac;—1. Then, go to Step (d).
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Step (c): Process active set

e Ati=1, initialize At; | = Az, and s; | =S.

* Assume that s; = s;_;. Calculate S, K, Z relevant to the 2nd-order geometry
case.

* At the known stress state X, calculate Aqq, Aap, App, Apa, ba, by, €a, €5, W),
using Eq. 34.

* Solve Eq. 35 for two load increments of Ao; = Aoy, where Ac; | = At
and Ao | = —At,, respectively.

* Collect all multiple solutions, if any. Choose one solution and go to Step (d).
Step (d): Identify activation

* Update: o; = a+ Ay, z; = Z+ Az;, w; = AAz; —bAq; + ¢. Calculate the new
S;.

* Compute the new time step At; from the three linear Eqs. 37-39. Then, iterate
until convergence using iterative procedures.

 Form the new stress state %, and update the following: ot = ¢, s =s;, Z = 2,
and w = w;. Go to Step (e).

Step (e): Check termination

* If the termination criterion has been reached, or all solutions found at Step (c)
have been exhausted, stop.

* Else if {a} U{b} is empty, return to Step (b) to continue with this empty
active set in the known state .

* Else, return to Step (c) to proceed with the current state T or to choose a
stored, as yet unexplored, solution found previously.

Two remarks are worth noting:

(a) As bifurcation, leading to multiple equilibrium paths, can exist at any load step,
the algorithm attempts to capture all of them by processing Step (c) for both Ag; =
At, and Aoy = —At,. This is achieved through a variant of the special scheme [Tin-
Loi and Tseng (2003); Tin-Loi, Tangaramvong, and Xia (2007)] to search for all
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multiple solutions at Step (c). For large structures, such a step-by-step analysis, as
expected, can be computationally demanding especially if key events such as new
plastic activations need to be captured exactly. Fortunately, it is invariably the case
that, for practical structures, multiple equilibrium paths do not exist [ Tangaramvong
and Tin-Loi (2007a)].

(b) For the 2nd-order geometrically nonlinear case, a small preset step Ar,, helps
the iterative procedures to converge. From our numerical experience, this event-
by-event holonomic algorithm handles well problems involving 2nd-order geom-
etry effects. Not only are all the critical events, such as limit points, identified
exactly, but also such instability phenomena as postpeak and snapback behaviors
can be mapped out. The convergence to each solution typically requires only a
small number of iterative resources to terminate.

4 Limit analysis under ductility constraints

The aim forming the focus of this section, indeed of the present paper, is to com-
pute an upper bound on the limit load of the structure for which given ductility
constraints are also satisfied. Various other quantities of interest, such as the cor-
responding displacements u and stresses s, will be obtained as a by-product. The
immediate practical application of this one-step analysis is in the safety assessment
of, for example, steel frames with softening constitutive laws; of structures with
low ductility reinforced concrete beams that have limited rotation capacities; and
of structures for which displacements at some specific points are limited.

The proposed approach is conceptually simple especially since the holonomic for-
mulation given by Eq. 26 provides all key ingredients that govern the structural
behavior for the entire proportionally applied load history. The very same relations
can be used to set up the extended limit analysis problem for finding the maximum
load. At variance with a holonomic analysis for which the load multiplier o is
known, the limit analysis assumes that ¢ is a variable. In particular, the aim is to
maximize o subject to the indicated constraints. Therefore, the proposed approach
involves solving the following optimization problem in variables (ot,s, 7, u,2):

maximize o

subjectto  Cys+Cimy —oaf —f; =0,
S~!s — Cou+Nz =0,
S;'mp—Cru=0,
w=-Nls+Hz+r>0,z>0, wz=0,
ductility constraints.

(40)

The general constraint set labeled ductility constraints” in Eq. 40, is used to im-
pose limits on such quantities as rotation capacities and total displacements at some
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specific points of structures.

The problem given by Eq. 40 is an MPEC [Luo, Pang, and Ralph (1996)]. In our
case, the equilibrium constraints are in fact complementarity constraints.

The systematic study of MPEC:s is a relatively new field in mathematical program-
ming, even though they appear to have originated as early as the 1970s in the form
of so-called “bilevel” programs. This class of optimization problems has increas-
ingly attracted research interest due to the fact that, in addition to being theoreti-
cally difficult and computationally challenging, MPECs find numerous applications
in economic and engineering problems involving equilibrium systems [Ferris and
Pang (1997)].

There are three main reasons why an MPEC such as the one given by Eq. 40 is ex-
tremely difficult to solve [Luo, Pang, and Ralph (1996)]. Firstly, as is well-known
from the integer programming literature, disjunctive constraints such as those em-
bodied by the complementarity conditions (namely, either w; = 0 or z; = 0) are very
difficult to handle. This, as a result, makes the MPEC disjunctive. More explicitly,
there is no feasible point for which all inequalities are strictly satisfied. Even un-
der restrictions, this makes the feasible region a union of finitely many closed sets.
Secondly, the feasible region of the MPEC may not be convex, so that the MPEC
itself is not convex. This implies that an MPEC may contain more than one lo-
cal minimizer. Finally, the feasible solution space of the MPEC may not even be
connected. Any subset of the above three difficulties often occurs and is expected
to show up as a severe numerical instability. Therefore, it is not surprising than
MPEC:s are said to be ill-posed.

In spite of these various difficulties, the authors have had considerable success in
solving similar MPECs, e.g. Tangaramvong and Tin-Loi (2007b). Our strategy is
to attempt solving the reformulated MPEC given by Eq. 40 as a standard NLP prob-
lem, after suitably treating the complementarity conditions. Various techniques that
can be adopted to achieve this are outlined in the next section.

Before presenting these approaches, it should be mentioned that the governing for-
mulations of the 2nd-order geometry problem (as discussed earlier) contain two
matrices S and Sy involving unknown stresses s. A series of iterative MPEC solves
are thus required. The basic iterative procedure is as follows:

1. Ati=0, initialize s; = 0.

2. Seti=i+1. Assume thats; =s; i, and calculate the new S and Sy. Then,
formulate Eq. 40.

3. Solve Eq. 40. Obtain new solution sets for o, s;, 7y, u; and z;.
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4. Check convergence criterion: if max(abs(s; —s;_1)) < tol (e.g. 10), then
terminate. Else, repeat Step 2.

5 NLP based approaches

An attempt to directly solve the MPEC given by Eq. 40 is likely to succeed only
for small-size problems, and not for realistic (often large-size) structures. A far
better approach, as is presented in this section, is to parameterize the nonconvex
complementarity constraints such that the original complementarity condition is
approached, as the governing parameter is increased or decreased. More explic-
itly, the reformulated MPEC is solved as a series of NLP subproblems that aim to
increasingly achieve complementarity. The attraction of this scheme, it should be
noted, is that each subproblem is a standard NLP problem, and general purpose
NLP codes such as GAMS/CONOPT [Drud (1994)] can be used.

In the following, three basic algorithms, essentially categorized by the way in which
complementarity is reformulated, are proposed for solving the MPEC given by
Eq. 40, where u is a positive parameter used to enforce complementarity.

(a) Penalization: The penalty algorithm has been successfully used in the context of
minimum weight design [Ferris and Tin-Loi (1999)] as well as for quasibrittle frac-
ture parameter identification [Tin-Loi and Que (2002)]. The basic idea is that the
complementarity term is transferred to the objective function and penalized. In par-
ticular, this involves adding the term —uw'z to the objective function; a negative
penalization is necessary in view of a maximization requirement. The algorithm
then increases the penalty parameter ( at each NLP iterate with the intention of
driving the complementarity term to zero.

(b) Fischer-Burmeister smoothing: The smoothing algorithm has been successfully
used for the solution of MPEC:s that arise in some minimum weight problems [Tin-
Loi (1999)]. The idea is to replace the complementarity conditions by the set of
smoothing equations ¢y (w;,z;) = 0 for all j. The particular ¢, function used is
the well-known Fischer-Burmeister function [Kanzow (1996)]

Qu(wjzj) = W5+ 25 +21 = (wj +2;). (41)

This function @y, has the property that ¢, (w;,z;) = 0 if and only if w; > 0, z; > 0,
w;zj = M. The parametrization @ is a smoothing of the mapping ¢, —o implying
that it is differentiable for nonzero p. The algorithm then consists of solving a
series of NLP subproblems that iteratively decrease the smoothing parameter U in
order to drive the complementarity term to zero.
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(c) Relaxation: The relaxation method has been successfully used in the collapse
load evaluation of block assemblies in frictional contact [Ferris and Tin-Loi (2001)].
The key idea consists in replacing the original complementarity constraints w'z = 0
by the relaxed constraints w'z < u. Consequently, the algorithm solves a series of
NLP subproblems for successively smaller values of y until the complementarity
condition is satisfied.

All these three NLP based approaches had no difficulty whatsoever in solving the
MPEC described by Eq. 40 for all the problems tested. The penalty approach,
in view of its noticeably better robustness, is the preferred scheme. The particular
algorithmic implementation of the penalty approach is straightforward. The penalty
subproblem

maximize o — uUw'z

subjectto  Cys+Climy —af —f, =0,
S~!s—Cou+Nz =0,
S;'mp—Cru=0,
w=-Nls+Hz+r>0,z>0,
ductility constraints.

(42)

is processed in accordance with the following pseudocode:

* Set: initial u (e.g. 0.1), maximum iterations (maxiter), and w'z = 100.

* For k = 1 to maxiter
if wl'z < 107°, then exit
solve Eq. 42
increase U (e.g. u = 10u)

end.

As indicated earlier, Eq. 42 is solved for successively higher values of y until a
preset tolerance on the complementarity condition (e.g. w'z < 107°) has been met.
Typical starting values of u are within the range 0.1-1, with an update of u = 10u
after each NLP solve. A good specification of initial variables (e.g. w = r) often
helps in solving the NLP problems.

6 Illustrative examples

Three numerical examples are provided to illustrate application of the proposed
extended limit analysis approach. For each of the three examples, four analysis
cases have been run as follows:
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Case a: Holonomic analysis, perfectly plastic, geometric linearity.

Case b: Holonomic analysis, softening, geometric linearity.

Case c: Holonomic analysis, softening, 2nd-order geometric nonlinearity.
Case d: Extended limit analysis, softening, 2nd-order geometric nonlinearity.

The primary aims of this study were as follows. Firstly, the justification of the
proposed limit analysis approach Case d is revealed by using the associated holo-
nomic response Case c. Secondly, the effects of softening instability can be as-
sessed through a comparison of the softening Case b with the perfectly plastic
Case a. Finally, the necessity to include the effects of geometry changes is as-
sessed by comparing the results of the 2nd-order geometry Case ¢ with those of the
geometrically linear Case b.

In all cases, positive and negative yield properties were assumed to be identical.
Moreover, the parameters adopted in Fig. 5 were: r, =0.15, tany =1/0.85, a; = 1
for all j, and p. = p.1. For a perfectly plastic hinge a, the yield functions w1 to
wob, as expressed in Eq. 22, were used, with the softening parameter & set to zero
leading to H* = 0.

The proposed extended limit analysis has been implemented as a MATLAB code.
The code sets up appropriate text files for the MPEC algorithm developed, namely
penalty algorithm, and is interfaced with GAMS using the MATLAB-GAMS envi-
ronment [Ferris (1998)]. The GAMS/CONOPT solver [Drud (1994)] was chosen
in view of its robustness. In the MPEC runs, parameter y was updated at every
iteration by u = 10u; the initial 4 = 0.1 for Example 1; u = 1 for Examples 2 and
3. Computational times are not reported since the various MPEC solves took only
a few seconds to process all problems.

For the holonomic runs, the event-by-event holonomic algorithm described was
adopted to trace complete responses for the structures considered. The code was
again developed within the MATLAB and GAMS environments. GAMS/PATH
[Dirkse and Ferris (1995)] was used as the MCP solver.

6.1 Example 1: Single bay eccentrically braced frame

The three story, single bay eccentrically braced frame shown in Fig. 6, with the
same geometry as in Karakostas and Mistakidis (2000), was analyzed. The frame
was subjected to vertical and horizontal loads (kN) controlled by load factor a; v
denotes the top right story sway displacement (m).

The discrete structural model consisted of 21 elements, 14 nodes and 36 degrees
of freedom. Steel with E =2 x 108 kKNm~—2 was assumed. The particular sections
employed were: 310UC118 for all columns, s;, = 548.80 kNm, 51, = 4200 kN;
200UB18.2 for all beams, 57, =57.60 kKNm, s1,, = 742.40 kN; SHS125/125/9 for all
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Figure 6: Examplel: single bay eccentrically braced frame.

bracings, s, = 57.75 kNm, s, = 1365 kN. In all runs, bracing members were as-
sumed to be made of a perfectly plastic material. For the softening runs, the simple
bilinear softening model of Fig. 5 was adopted. In particular, it was assumed that:
for all columns, & = —202.79 kNm, r,, = 0.7; and for all beams, # = —41.04 kNm,
r,=0.7.

In all Cases a to c, only a single equilibrium path was identified, as expected of
practical structures. These holonomic responses are compared in Fig. 7, namely
Case a (dashed line), Case b (dashed dot line) and Case ¢ (solid line). The extended
limit analysis Case d was successfully solved after a total of 15 MPEC iterates. In
particular, the maximum load computed, namely 0g,ax = 102.283 with v =0.269 m,
is plotted as a dot on the associated holonomic Case c response in Fig. 7. The
collapse load oo = 124.148 obtained from a classical limit analysis (about 21%
higher than the load considering softening and 2nd-order geometric nonlinearity)
is also shown as a dotted line in Fig. 7. Hinge dispositions at the maximum loading
states for all cases are drawn in Fig. 8. Identical hinge dispositions were obtained
for Cases c and d.

For the geometrically linear Cases a and b, the initial elastic responses were iden-
tical until o = 57.853 when some beam section started to yield. The subsequent
progress was then as follows.

In Case a, some further perfectly plastic hinges formed in various beams. When
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Figure 7: Examplel: holonomic o — v responses.

o =118.478 and o = 119.921, two consecutive hinges appeared respectively at
base columns due to the heavy axial forces applied. Then, a bracing member started
to yield at oo = 122.616, followed by another at & = 122.639. The analysis was
stopped at v =0.75 m when o = 122.982.

In Case b, softening hinges initially formed at beam sections. Two column hinges
were respectively formed at o = 115.789 and o¢ = 116.932. The maximum load
was approached at o = 117.617 when the bottom bracing started to form a perfectly
plastic hinge. Clearly, the presence of softening behavior led to some reduction
(about 5%) in the load carrying capacity of the structure as compared with the
perfectly plastic assumption Case a.

The 2nd-order geometry Case ¢ was solved by using the proposed iterative proce-
dures, in which a preset step Az, = 5 was applied throughout. In Fig. 7, the overall
structural behavior of this Case ¢ showed yielding at increased load but reduced
stiffness initially and then softening after the limit point. As expected, some de-
viation from the small deformation Case b was noticed early due to the effects of
geometric nonlinearity. The load capacity of the Case ¢ was found to be lower than
that of Case b. In particular, first yield was reached at some beam section when
o = 56.586. This was followed by the successive activation of softening hinges at
some other beams, until at & = 101.992 when a softening hinge was formed at some
base column. In contrast to the small deformation Case b in which the peak load
was attained by yielding of some bracing, the limit point of this 2nd-order geome-
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Figure 8: Examplel: hinge dispositions at limit load (a) Case a, (b) Case b, (c)
Cases c and d (e denotes hinge on perfectly plastic or descending yield branch).

try Case ¢ was reached earlier by yielding at another base column at ¢ = 102.283,
some 15% less than that of Case b. Clearly, accounting for geometric nonlinearity
is significant as it indicated collapse of the structure at a lower load factor than the
prediction of a small deformation analysis. Interestingly, pseudo-mechanisms, in-
dicating configuration changes within a constant load level [Maier, Giacomini, and
Paterlini (1979)], were found during the postpeak behaviors in both Cases b and c.
These were efficiently handled by the computational strategies implemented; see
Tangaramvong and Tin-Loi (2007a) for details.

6.2 Example 2: Nine story portal frame

The nine story portal frame shown in Fig. 9 was subjected to the increasing vertical
point loads of 6 (kN) and increasing lateral loads (kN) governed by load factor «;
v denotes the corresponding top story sway displacement (m). In this example, the
ductility constraints applied were limits on the sway displacement of —0.148 <v <
0.148 (m). The structure was discretized into 126 elements, 93 nodes, 261 degrees
of freedom and 213 critical sections (at column ends, beam ends and mid-span).
Steel sections with E = 2 x 103 kNm=2 were adopted: 400WC328 for all columns
(s2, = 1988 kNm, s1,, = 11704 kN) and 460UBS82.1 for all beams (s, = 552 kNm,
s1x = 3150 kN). For the softening Cases b to d (Fig. 5), the parameters employed
were: for columns 2z = —18418.78 kNm, r, = 0.7; for beams &7 = —4852.04 kNm
at beam ends, h = —2426.02 kNm at mid-span, r, = 0.7.

As in the previous Example 1, the holonomic responses in Fig. 10 of each case,
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Figure 9: Example 2: nine story portal frame.

namely Case a (dashed line), Case b (dashed dot line) and Case c¢ (solid line),
exhibited only a single equilibrium path. The extended displacement constrained
limit analysis Case d was successfully solved in 12 MPEC iterates. The maximum
load computed, namely 04,ax = 58.960 with v = 0.148 m, is plotted as a dot on
the associated holonomic behavior Case ¢ in Fig. 10. This result clearly satisfies
the imposed displacement constraint (thin line). Hinge dispositions at the peak
load for all cases are plotted in Fig. 11. A classical (rigid perfectly plastic) limit
analysis approach, it should be noted, estimated a far higher collapse load, namely
Ocol = 93.724 (dotted line in Fig. 10), than that predicted in Case d.

In the small deformation Cases a and b, the initial elastic responses were similar.
When o = 55.359 and 55.374, first and second hinges formed respectively at some
beam sections. In Case a, a column section first yielded at oo = 69.981. The anal-
ysis was terminated at o = 91.754 with v = 0.75 m. In Case b, the first column
hinge formed at & = 69.351. The maximum load was attained at o = 79.709, ap-
proximately 15% less than that of the perfectly plastic Case a. The corresponding
hinge formations (Fig. 11) showed that all column hinges were formed due to the
effects of both softening and combined stresses.

In the 2nd-order geometry Case c, the iterative procedures were used with a preset
step of Az, = 5. As shown in Fig. 10, the overall load behavior showed a weaker
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Figure 10: Example 2: holonomic & — v responses.

structure than that of the small deformation Case b. The responses of two Cases b
and c started to differ in the early elastic state. Not only was a smaller maximum
load attained for Case c, but the postpeak behavior also showed a sharper drop,
as when compared to Case b. More specifically, beams and columns developed
their first hinge at o« = 51.949 and 65.167, respectively. The maximum load was
reached at o« = 69.616, some 15% less than that of Case b. The corresponding hinge
dispositions (Fig. 11) also showed that some beam and column hinges previously
reported for Case b did not form in Case c. This implies that Case b has provided
an unsafe prediction since geometric nonlinearity has been neglected.

6.3 Example 3: Fourteen story braced frame

The last example concerns the practical braced frame shown in Fig. 12. This four-
teen story frame was subjected to increasing vertical loads of 5o (kN) as well as
lateral loads (kN) governed by the load factor o as shown; v denotes the corre-
sponding top sway displacement (m). This sway displacement was further limited,
for serviceability reasons, to —0.224 <v < 0.224 (m).

The adopted model consisted of 196 members, 130 nodes and 378 degrees of
freedom. Steel sections with E = 2 x 103 kNm~2 were employed as follows:
350WC258 for all columns, s, = 1246 kNm, s, = 9212 kN; 410UB59.7 for
all beams, s, = 360 kNm, s1,, = 2292 kN; and 200UC59.5 for all braces, sp, =
197 kNm, s1,, = 2286 kN. For the softening cases, the yield model shown in Fig. 5
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Figure 11: Example 2: hinge dispositions at limit load (a) Case a, (b) Case b, (c)
Case c and (d) Case d (e denotes hinge on perfectly plastic or descending yield
branch).

was adopted with the following parameters: for all columns, & = —11435 kNm,
rr = 0.7; for all beams, i = —3192 kNm at beam ends, # = —1596 kNm at interval-
span load points, r, = 0.7; and for all braces, h = —1748 kNm, r, = 0.7.

As is expected of realistic structures, the holonomic behaviors in Fig. 13 of each
case, namely Case a (dashed line), Case b (dashed dot line) and Case c (solid line),
exhibited, as in the previous examples, a single equilibrium path. However, at vari-
ance with these two previous examples, the holonomic responses of the softening
Cases b and ¢ showed physically unstable snapback behaviors. This is evidenced by
a reduction in load factor at the same time as a decrease of the sway displacement.
Moreover, these softening responses exhibited two local maximum loads.

In Fig. 13, the extended limit analysis approach (Case d) captured exactly the max-
imum load factor of opmx = 37.890 at v = 0.089 m after 6 MPEC solves. Fig. 13
validates our single-step limit analysis approach which clearly shows that the max-
imum load (plotted as a dot on its associated holonomic Case c behavior) has been
exactly computed and also that the corresponding displacement v has satisfied the
serviceability limit (thin line). A classical limit analysis (dotted line in Fig. 13)
again provided a higher collapse load estimation of ¢, = 48.293. Hinge disposi-
tions at peak load for all cases are displayed in Fig. 14.

The initial elastic responses of the two geometrically linear Cases a and b were
identical. They started to differ, as a result of the difference in material properties,
after @ = 36.713, coinciding with first yield at some base column. This was then
followed by yielding of various cross-sections, as detailed in the following.
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Figure 12: Example 3: fourteen story braced frame.

In Case a, the load factor kept increasing with further yielding at columns until
o =40.112, where some beam formed its first perfectly plastic hinge. Yielding
at columns and beams continued with the increase in load factor, but decrease in
stifftness. The bottom brace hinge formed at o¢ = 42.684. The holonomic analysis
Case a was terminated when v = 0.75 m and o = 47.359.

In Case b, the maximum load was attained at oo = 38.141, some 24% less than that
of Case a, after yielding of some column. Then, the load factor dropped sharply
with holonomic reversal of plastic strains at columns, thus leading to the snapback
equilibrium path. The load capacity was recovered by yielding of two consecutive
softening hinges formed in a beam and a brace at oo = 31.146 and 33.841, respec-
tively. The second peak load was reached at o = 35.120, just prior to another
softening of the equilibrium path.

The 2nd-order geometrically nonlinear Case ¢ analysis was carried out using a pre-
set step of Az, = 5. As compared to the linear Case b, the effect of geometric
nonlinearity reduced only slightly the overall load capacity of the structure. How-
ever, this effect was more significant as the displacement v increased. Thus, the
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Figure 13: Example 3: holonomic & — v responses.

first yield at some column section was reached at o = 36.513. The maximum load
was attained at o = 37.890, approximately 1% less than that of Case b. Soften-
ing hinges formed at some beam and brace when o = 30.844 and o = 33.244,
respectively. Finally, the second peak load was reached at oo = 34.084.

7 Concluding remarks

An extended limit analysis approach, suitable for plane frames accounting for the
effects of 2nd-order geometric nonlinearity and limited ductility, has been devel-
oped. The material model adopted can accommodate the effect of local softening
instability, for which plasticity can be caused by interaction of flexural and axial
forces. The scheme can simultaneously compute an upper bound to the limit load,
and the corresponding deformations and stresses. As with classical limit analyses,
the computation is performed in a single-step fashion, without the need for step-
by-step evolutive analyses. In this respect, the extended limit analysis computation
represents a useful, simplified analysis for preliminary safety assessment or design.

The formulation of the extended limit analysis takes the form of a notoriously diffi-
cult to solve instance of a nonconvex and nonsmooth optimization problem known
as an MPEC. Reformulation of this MPEC into a standard NLP problem allows
robust and efficient solution of the MPEC. Various ways of achieving this reformu-
lation has been described. The one adopted, in view of its superiority, is a penalty
based approach.
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Figure 14: Example 3: hinge dispositions at limit load (a) Case a, (b) Cases b to d
(e denotes hinge on perfectly plastic or descending yield branch).

A number of numerical examples concerning practical, reasonably sized structures
are presented to illustrate application and validity of the proposed approach, as
well as to highlight the effects of softening and geometric nonlinearities. A num-
ber of pertinent observations can be made. Firstly, when there exists, as is typical
of realistic frames, only a single equilibrium path, the upper bound solution is in
effect the exact limit load solution. Secondly, the effects of both local softening
and geometric nonlinearities need to be taken into account for the realistic analysis
of structures, since any of these can reduce not only the overall load carrying ca-
pacity but also the postpeak ductility. Thirdly, accounting for any limited ductility
exhibited by structures is essential, since ignoring such limitations often leads to
violations of some serviceability requirement or even to a premature failure of the
structure.
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