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Adaptive Support Domain Implementation on the Moving
Least Squares Approximation for Mfree Methods Applied

on Elliptic and Parabolic PDE Problems Using
Strong-Form Description

G. C. Bourantas1, E. D. Skouras2,3,4, and G. C. Nikiforidis1

Abstract: The extent of application of meshfree methods based on point collo-
cation (PC) techniques with adaptive support domain for strong form Partial Dif-
ferential Equations (PDE) is investigated. The basis functions are constructed us-
ing the Moving Least Square (MLS) approximation. The weak-form description
of PDEs is used in most MLS methods to circumvent problems related to the in-
creased level of resolution necessary near natural (Neumann) boundary conditions
(BCs), dislocations, or regions of steep gradients. Alternatively, one can adopt Ra-
dial Basis Function (RBF) approximation on the strong-form of PDEs using mesh-
less PC methods, due to the delta function behavior (exact solution on nodes). The
present approach is one of the few successful attempts of using MLS approxima-
tion [Atluri, Liu, and Han (2006), Han, Liu, Rajendran and Atluri (2006), Atluri
and Liu (2006)] instead of RBF approximation for the meshless PC method using
strong-form description. To increase the accuracy of the MLS interpolation method
and its robustness in problems with natural BCs, a suitable support domain should
be chosen in order to ensure an optimized area of coverage for interpolation. To
this end, the basis functions are constructed using two different approaches, perti-
nent to the dimension of the support domain. On one hand, a compact form for the
support domain is retained by keeping its radius constant. On the other hand, one
can control the number of neighboring nodes as the support domain of each point.
The results show that some inaccuracies are present near the boundaries using the
first approach, due to the limited number of nodes belonging to the support domain,
which results in failed matrix inversion. Instead, the second approach offers capa-
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bility for fully matrix inversion under many (if not all) circumstances, resulting
in basis functions of increased accuracy and robustness. This PC method, applied
along with an intelligent adaptive refinement, is demonstrated for elliptic and for
parabolic PDEs, related to many flow and mass transfer problems.

Keywords: Meshless Methods; Point Collocation Methods; Strong Form de-
scription; MLS; Adaptive Support Domain;

1 Introduction

In recent years, research on meshless (meshfree) methods has made significant
progress in science and engineering, particularly in the area of computational me-
chanics. The finite element method (FEM), which has been the most frequently
used numerical method in engineering during the past 30 years, has faced ineffi-
ciencies in further development and optimization. More specifically, the lack of a
robust and efficient 3D mesh generator makes the calculation of a general solution
of 3D problems a difficult task. Furthermore, mesh-based methods are not suited
for problems having large deformations [Liu (2002)]. Thus, much attention has
been focused on the development of meshes methods, such as the Smooth Parti-
cle Hydrodynamics (SPH) [Gingold and Monaghan (1977)], the Diffuse Element
Method (DEM) [Nayroles, Touzot and Villon (1992)], the Element Free Galerkin
Method (EFG) [Belytschko, Lu and Gu (1994)], the Reproducing Kernel Particle
Method (RKPM) [Liu, Chen, Jun, Chen Belytschko, Pan, Uras and Chang (1996)],
the Finite Point Method (FP) [Onate, Idelsohn, Zienkiewicz and Taylor (1996)], the
hp Clouds Method (HP) [Liszka, Duarte and Tworzydlo (1996)], the Meshless Lo-
cal Petrov-Galerkin method (MLPG) [Atluri and Zhu (1998), Atluri (2004), Atluri
and Shen (2002)], as well as the Local Boundary Integral Equation method (LBIE)
[Atluri, Sladek, Sladek and Zhu (2000)].

Two methods of discretization, namely the collocation method and the Galerkin
method, have been dominant in existing meshless methods. Both methods are pro-
duced by the implementation of the weighted residuals method. The latter is one of
the most general procedures for solving numerically Partial Differential Equations
(PDEs). Collocation method usually solves the strong form of the Partial Differ-
ential Equations, while the Galerkin method deals with the weak formulation. At
the first case, the solution obtained is commonly referred to as the strong solution,
while the second as the weak. One of the most challenging tasks in the solution
of partial differential equations is the selection of the strong or the weak formula-
tion. The strong formulation is usually easy to implement, however it suffers from
certain inaccuracies when singularities exist at the boundaries (Neumann boundary
conditions). The weak formulation instead, has some complications as far as the
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implementation issues are concerned, however it is often stated as to be more stable
when dealing with natural boundary conditions.

In general, a strong solution is always a full solution of the weak formulation; how-
ever a weak solution is not always a complete strong one. Numerical methods that
are dealing with integration, such as finite element method, boundary element equa-
tion method, Element Free Galerkin (EFG) meshless method, and meshless local
Petrov-Galerkin (MLPG) method, all provide a weak solution. Instead, pointwise
collocation methods result mainly in strong solutions. A crucial point is whenever
to use a strong or a weak form of the partial differential equation. From mathe-
matical point of view, the answer to that question is that depends on the boundary
conditions and the selection of the trial functions. For the first case, when the ge-
ometry of a domain Ω has irregularities, such as incoming corners, even if the data
functions f Ω and f ∂Ω are smooth, there may be singularity of the approximation
function at the boundary. Concerning the second case, non-smooth data at certain
boundary points lead to inaccuracies for the solution in contrast to the weak for-
mulation that uses a weighted average values for the boundary data. Things are
different when applications in science and engineering insist on distributional data
where the weak forms are unavoidable. Many of the strong form techniques can be
transferred to weak forms. The meshless local Petrov-Galerkin (MLPG) method is
a good example of a weak meshless technique with plenty of successful applica-
tions in engineering. However, it is weak and unsymmetric, and not until recently
a solid theoretical formation was given [Schaback (2007)].

In the present work we purposely used the strong form meshless collocation method
for solving two-dimensional partial differential equations of the elliptic and the
parabolic type, as well. The authors insist on strong form description, as it can pro-
vide point-wise accurate solutions for time dependent problems (parabolic), as the
pulsatile flows in constrictions (blood flow in aneurisms and stenoses, [Kagadis,
Skouras, Bourantas, Paraskeva, Katsanos, Karnabatidis and Nikiforidis (2008)]),
but can be particularly useful in multiscale problem when used “in-line” with other,
“less” continuum, methods. Such multiscale or interdimentional, coupled meth-
ods include mixed Computational Fluid Dynamics (CFD) and Direct Simulation
Monte Carlo (DSMC) approaches with Dirichlet-Dirichlet type boundaries [Gar-
cia, Bell, Crutchfield and Alder (1999)], description of particles-liquid-solids in-
teractions, as in porous materials [Burganos, Skouras, Paraskeva, and Payatakes
(2001), Skouras Paraskeva, Burganos, and Payatakes (2007)], in gas-liquid interac-
tions (solution-evaporation) and gas-solid interactions (sorption-catalysis) [Navas-
cués, Skouras, Nikolakis, Burganos, Tellez and Coronas (2008)]. Meshless meth-
ods can be used to obtain diffusivities, permeabilities, sorption constants and other
transport and separation parameters from their microscopic origins in compressible
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and non-continuum flows [Michalis, Kalarakis, Skouras and Burganos (2008)], in
microfluidic filters [Aktas and Aluru (2002)], and in vacuum technology [Garcia,
Bell, Crutchfield and Alder (1999)].

The Moving Least Square method for the approximation of the field variable is
applied. An exponential weight function is used for the construction of the approx-
imated function, which is applied on a constant number of support nodes, instead of
a constant node density support domain. An automated procedure for node refine-
ment is proposed, based on a strong form error finding approach. More specifically,
nodes on which the error of the calculated field property is above a user-defined
threshold are extracted and surrounded by additional nodes, which are added with a
predefined formulation; overall, an approach which obtains convergence for the so-
lution of the governing equations. The refining method reduces the computational
cost and time, while leading to more accurate and significantly stable results. The
procedure is fully automated and robust. Finally, a two-dimensional Stokes fluid
flow problem is presented and the results are compared with the results obtained
with the commercial package ANSYS CFX.

The weighted residual method provides a flexible mathematical framework for the
construction of a variety of numerical solution schemes for the differential equa-
tions arising in the field of both science and engineering. Its application, in conjunc-
tion with the Moving Least Square (MLS) approximation method, yields powerful
solution algorithms for the governing equations.

Considering a problem governed by a differential equation

L[u(x)] = f in Ω, (1)

with Neumann boundary conditions

B[u(x)] = t on Γt , (2)

and Dirichlet boundary conditions

u−up = 0 on Γu, (3)

studied over the domain Ω, which is a sufficiently smoothed, closed, and sur-
rounded by a continuous boundary ∂Ω = Γu ∪Γt . In equations (1)-(3), L and B
are the corresponding differential operators, u(x) is the dependent variable of the
problem (a function of independent spatial variables), up is the prescribed value of
the unknown function over the boundary Γu, while f and t are the forces and the
source or sink terms acting over the domain Ω and the boundary Γt respectively.
In the absence of an exact analytical solution for equation (1) one may seek to
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represent the field variable u(x) approximately as

uh (x) =
m

∑
i=1

aiΦi (4)

where ai are a set of coefficients (constants), whereas Φi represents a set of geo-
metrical functions, usually called basis functions.

Accuracy and convergence of the defined approximation will depend on the se-
lected basis functions and (as a rule of thumb) these functions should be chosen
in a way that the approximation gradually becomes more accurate as m increases.
Substitution of equation (4) into equation (1) gives

L
[
uh (x)

]
− f = RΩ (5)

where RΩ is the residual that appears through the insertion of an approximation
instead of an exact solution for the unknown function u(x).
The residual RΩ is a function of position inside Ω. The weighted residual method
is based on the minimization of this residual over the entire domain. For this mini-
mization procedure to be achieved the residual is weighted by an appropriate num-
ber of position-dependent functions and a summation is carried out. The latter is
written∫
Ω

WjRΩdΩ = 0, j = 1,2,3, . . . ,m (6)

where Wj are the independent weight functions and dΩ is an appropriate integration
interval. Applying the weighted residual method to the above equations one gets∫
Ω

Wi

(
Luh−b

)
dΩ+

∫
Γt

W̃i

(
Buh− t

)
dΓ+

∫
Γu

(
uh−up

)
dΓ = 0 (7)

with the weighted functions Wi,W̃i,i defined in appropriate ways. Theoretically, the
above equation should provide a system

Ku = f (8)

of m linear equations to be solved, in order to calculate the coefficients ai in equa-
tion (4).

In cases where W i ≡ δi , δi being the Dirac delta function, equation (7) can be
written:

Luh
i = b; i ∈Ω,
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Buh
j = t; j ∈ Γt , (9)

uh
k = up; k ∈ Γu,

leading to a linear system as the one in equation (8).

2 Moving Least Squares

2.1 Moving Least Square Approximation

Let u(x) be the unknown function of the field variable defined in the domain Ω. The
function uh (x) is the approximation of function u(x) at point x. The field function
is defined using the Moving Least Square (MLS) approximation as

uh (x) =
m

∑
i=0

pi (x)ai (x)≡ pT (x)a(x) (10)

where m is the number of terms of monomials (polynomial basis), and a(x) is a
vector of coefficients given by

aT (x) = {a0 (x)a1 (x) ...am (x)} (11)

which are functions of x.

Given a set of n nodal values, of a field function u1,u2, ...,un, at n nodes x1,x2, ...,xn

inside the support domain, equation (10) can be used for the calculation of the
approximated values of the field function at these nodes:

uh(x,xi) = pT (xi)a(x) i = 1,2,3, . . . ,n (12)

The coefficients ai (x) are calculated by the minimization of the quadratic functional
J (x) given by

J (x) =
n

∑
i=1

w(x− xi)

{
m

∑
j=1

p j (xi)a j (x)−ui

}2

(13)

The minimization condition requires

∂J
∂a

= 0 (14)

which results in the following linear equation system:

A(x)a(x) = B(x)Us (15a)
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where A is the (weighted) moment matrix, expressed by

A(x) =
n

∑
i=1

Wi (x)p(x)pT (xi) (15b)

where

W i (x)≡W (x− xi) (16)

In equation (15a), matrix B has the form

B(x) = [B1,B2, ...,Bn] (17)

where

Bi = W i (x)p(xi) (18)

and Us is the vector that collects the nodal parameters of the field variables for all
the nodes in the support domain

Us = {u1, u2, ..., un}T (19)

After solving equation (15a) for a(x), one gets

a(x) = A−1 (x)B(x)Us (20)

Substitution of equation (11) at the above equation leads to

uh (x) =
n

∑
i=1

m

∑
j=1

p j (x)
(
A−1 (x)B(x)

)
ji ui (21)

or

uh (x) =
n

∑
i=1

Φi (x)ui (22)

where the Moving Least Square function Φi (x) is defined by

Φi (x) =
m

∑
j=1

p j (x)
(
A−1 (x)B(x)

)
ji = pT A−1Bi (23)

We have to note that m is the number of the monomial terms of the polynomial
basis p(x), and n is the number of nodes in the support domain, which is used for
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constructing the shape function. The requirement that n� m must be fulfilled for
the moment matrix A to be invertible.

In order to obtain the spatial derivatives of the approximation function uh (x), it is
necessary to obtain the derivatives of the MLS shape functions Φ(x).

∂

∂xi
uh (x) =

∂

∂xi

n

∑
i=1

Φi (x)ui =
n

∑
i=1

{
∂

∂xi
Φi (x)

}
uixi = x,y,z (24)

The derivative of the shape function is given as

Φi,x (x) =
(
pT A−1Bi

)
,x = pT

,xA−1Bi +pT (A−1)
,x Bi +pT A−1 (Bi),x (25)

xi = x,y,z

where(
A−1)

,x = A−1 (x)A(x)A−1 (x) (26)

2.2 Weight Function Description

The weight function is non-zero over a small neighborhood of xi, called the support
domain of node i. The choice of the weight function w(x− xi) affects the resulting
approximation uh (xi) significantly. In the present paper a Gaussian weight function
is used [Liu (2002)], yet the support domain does not have a standard point density
value. Instead, a constant number of nodes are used for the approximation of the
field function.

W (x− xi)≡W
(
d
)

=

[
e
−
(

dI
a

)2

0

]
(27)

where I=1, 2, 3, . . . , q are the nodes that produce the support domain of node xi,
and

d = |x−xi|
a2

0
with a0 a prescribed constant (often a0 = 0.3).

3 Numerical Examples

3.1 Elliptic type: Poisson equation

In order to investigate the behavior of the constant nodal density support domain
versus the constant nodal number support domain, we first examined a classical
elliptic type PDE problem, Poisson equation with Dirichlet boundary conditions:

∆u(x,y) =
(
x2 + y2)exy, Ω = (0,1)× (0,1)u(x,y) = exy,∂Ω (28)



Adaptive Support Domain Implementation 9

The exact solution of this problem is the function exy. The above type form is
known as the continuous problem (CP). A unique solution exists if the criteria of
the Theorem 6.13 in [Gilbarg and Trudinger (1983)] are fulfilled, i.e. if Ω is a
bounded domain satisfying an exterior sphere condition at every boundary point
and f ∈Cs−2,a (Ω) for s = 3,4 and up ∈C (∂Ω). Then, the solution of the contin-
uous problem is u ∈ C0

(
Ω
)
∩Cs,a (Ω), where C0

(
Ω
)

is the vector space of all
bounded and uniformly continuous functions on Ω, and Cs,a (Ω) represents the
Holder space of exponent 0 < a < 1 equipped with the norm

‖u‖cs,a(Ω) ≡ max
0≤|β |≤s

sup
x∈Ω

∣∣∣Dβ u(x)
∣∣∣+ max

0≤|β |≤s
sup

x,y∈Ω,x 6=y

∣∣Dβ u(x)−Dβ u(y)
∣∣

|x− y|a
(29)

In the present work, we solved the aforementioned Poisson equation numerically,
using the strong form meshless point collocation method. Thus, the continuous
problem had to be discretized. The field variable u(x,y) was approximated with the
MLS method described above, and the polynomial basis was of the second order,
since Poisson equation is also a second order partial differential equation. Using
the procedure described in [Kim and Liu (2006), Armentano and Durán (2001)] we
formulated the discrete Poisson problem (DP)

(DP)
[

uh ∈Vg ≡
{

uJ ∈ R|uK = g(xK) for all xK ∈ Λb
}

∆puh = i( f ) , on Λ0

]
(30)

with ∆p being an operator called the strong meshfree Laplacian operator, Λ =
Λ0∪Λb are sets of well distributed interior and boundary nodes, respectively, and
Vg is the finite dimensional space, subspace of C

(
Ω
)
, of functions defined on Λ.

The aforementioned procedure leads to a linear system of the unknown field vari-
able. The system was solved with a direct method, providing the results for regular
distributed 121 (Fig.1) and 441 (Fig.2) nodes given in the next section.

A crucial point concerning the meshfree methods is the domain representation.
The latter is represented using sets of nodes distributed either regularly or irreg-
ularly, in its interior region and boundaries. The nodal distribution is usually not
uniform and a denser distribution of nodes is often used in areas with high gra-
dients or at discontinuities. Nevertheless, the discrete form of the above prob-
lem must converge in order to obtain a stable solution. Thus, the moment matrix

A(x) =
n
∑

i=1
Wi (x)p(x)pT (xi) for the given set Λof nodes must be invertible. To

calculate the moment matrix and its inverse, one needs to focus on some class of
node distributions. In the present work, we used the so-called Type I point distri-
bution (i.e. staggered locally (p,4)-layered (p=2,3)) at each interior node, which is
implemented on an open square domain. The second one used is of the Type II (i.e.
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Figure 1: Grid of 121 regular dis-
tributed nodes

 
Figure 2: Grid of 441 regular dis-
tributed nodes

locally (p,6)-layered (p=1,2)) at each interior node on a hexagonal domain (Fig.3).

 
Figure 3: Possible layered node distributions (a) Type I (b) Type II

Each of these two distributions provides convergence and accuracy, since an error
estimation analysis is obtained for the Poisson problem on the two specific domains
[Kim and Liu (2006), Armentano and Durán (2001)].

The following Tables 1(a-b) and 2(a-b) show the accuracy of the numerical solution
for the constant density and constant number support domain formulation using 121
and 441 regular distributed nodes.

Clear trends in the local and global accuracies are evident in Tables 1 and 2, in view
of the total number of nodes and the effect of the type of the support domain on the
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Table 1a: Constant Density Support Domain for 121 total nodes

Support
domain

Average
number of
nodes in SD

max(|uh-ui|) max(|uexact-
uh|)

2.0 121 4.033 10+4 5.94
1.0 113 19 0.02
0.5 52 1.99 10−3 3 10−3

0.25 17 1.274 10−4 2.06 10−4

0.2 10 2.065 10−5 1.53 10−4

0.15 8 2.084 2.084
0.1 4 7.73 10+6 7.73 10+6

Table 1b: Constant Number Support Domain for 121 total nodes

Support
domain

Average
number of
nodes in SD

max(|uh-
ui|)

max(|uexact-
uh|)

121 121 72 0.09
113 113 3.49 0.04
52 52 7.19 10−3 5.09 10−3

17 17 4.31 10−4 4.31 10−4

10 10 5.60 10−5 1.55 10−4

8 8 2.29 10−5 4.79 10−4

4 4 7.73 10+6 7.73 10+6

behavior of the solution. A lower cut-off in the magnitude of the support domain
can be seen in the Tables, both for the 121 and the 441 total number of nodes cases,
as proved by Kim and Liu (2006) and Armentano and Duran (2001) seems to be the
optimum (minimum) number of nodes for the given node distribution type, Type I
[Kim and Liu (2006)].

The improved behavior of the constant number of nodes formulation at low-numbered
support domain cases can be noticed in the comparison of the accuracies in the re-
sults displayed at Tables 1 and 2. At average number of nodes 8, the constant
number support domain formulation for 121 nodes, Table 1b, furnishes better re-
sults, that is, offers convergence i.e. stability. At the same conditions, the widely
used constant density support domain formulation, shown in Table 1b, fails. The
very same can be stated by direct comparison of Tables 2a and 2b (441 nodes) at
average number of nodes 10, and at 8. Both the results shown at Tables 1(a-b) and
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Table 2a: Constant Density Support Domain for 441 total nodes

SD Average num-
ber of nodes in
SD

max(|uh-
ui|)

max(|uexact-
uh|)

2.0 441 5.47 10+7 5.94
1.0 422 3.21 10+2 9 10+2

0.5 200 0.25 4 10−3

0.25 63 3.02 10−4 5.40 10−4

0.2 40 1.46 10−4 2.57 10−4

0.15 24 4.97 10−5 8.80 10−5

0.12 20 1.39 10−5 6.02 10−5

0.10 10 5.89 10−6 1.32 10−4

0.08 8 15.48 15.48

Table 2b: Constant Number Support Domain for 441 total nodes

number
of nodes
in SD

Average num-
ber of nodes
in SD

max(|uh-
ui|)

max(|uexact-
uh|)

441 441 2.73 10+10 1.66 10+6

422 422 1.86 10+11 6.8 10+3

200 200 15.22 42 10−3

63 63 27.00 10−4 13.45 10−4

40 40 4.44 10−4 4.45 10−4

10 10 9.11 10−6 1.40 10−4

8 8 6.34 10−4 0.23

the corresponding ones at Tables 2(a-b) can be used to claim the convergence to the
Kronecker property for each nodal value in the present methodology by increasing
the number of nodes in the domain Ω.

3.2 Parabolic type: Convection-Diffusion equation

Convection-diffusion problems are of great significance and very challenging in
computational mechanics. However, only a handful of numerical methods are used
to solve these kinds of problems. Examples are the widely used finite element
method (FEM) and the closely related finite volume method (FVM). Neverthe-
less, significant problems had arisen using the aforementioned methods, which
could be overcome by the so-called meshless methods. In particular, the Mesh-
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less Local Petrov-Galerkin (MLPG) method was used quite often to solve steady
state convection-diffusion problems [Lin and Atluri (2000)]. The MLPG method
is based on a weak form computed over a local sub-domain. As in FEM, the trial
and test functions spaces can be different or the same, with Galerkin and Petrov-
Galerkin upwinding, respectively. As far as the strong form of the convection-
diffusion problems is used, very few works were reported [Gu and Liu (2006)].
However these techniques have faced several problems concerning the stability
and the accuracy of the solution. The Reproducing Kernel Point Met (RKPM)
Method, combined with the Streamline Upwind Petrov-Galerkin (SUPG) form of
variational formulation was used in order to obtain more accurate results [Onate,
Idelsohn, Zienkiewicz, and Taylor (1996)]. The stability problem is discussed in
the analysis of the convection dominated problems using meshfree methods in [Gu
and Liu (2006)]. Several techniques are proposed, including the enlargement of the
support domain, the upwinding support domain, the adaptive upwinding support
domain and the nodal refinement. The meshless point collocation method is used
for discretization, and radial basis functions are used to approximate the unknown
field variable [Sarler (2005), Mai-Cao and Tran-Cong (2005), Mai-Duy (2004)].
All the above techniques are developed in order to overcome the stability and ac-
curacy problems, and the final goal is the enhancement of the accuracy for high
gradient problems. Particularly for problems dominated by high regularities at the
boundaries, such as high gradients, the weak form is usually preferred instead of the
strong form. In this paper we try to solve the 1D and 2D convection-diffusion prob-
lem using meshless point collocation method with Moving Least Square (MLS)
approximation. We use a constant number support domain for the weight func-
tion, and we propose a fully automated nodal refining procedure based on theorems
proved in Kim and Liu (2006) and Armentano and Duran (2001). The upwind
method provides stable and accurate results with a very clear physical meaning.
Nevertheless, to the authors’ attention, the upwind method lacks of a pure math-
ematical convergence and stability analysis, as far as the meshless methods are
concerned. Thus, we used a strong mathematical proof for defining the concept
of well distributed nodes, and implemented it for nodal refinement at nodes where
the absolute value of the strong form error R =

∣∣Luh (x,y)− f
∣∣ is larger than a user

defined threshold (e.g. R<10−2).

3.3 1D Convection-Diffusion

In this section a one-dimensional (1-D), steady-state, convection-diffusion problem
is considered. The governing equation is:

V
du
dx
− d

dx

(
Dm

du
dx

)
+q = 0,x ∈ (0,1) (31a)
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where u is the field scalar variable, V , Dm, q are all given constants, having different
physical meaning for each engineering problem.

The following Dirichlet boundary conditions are considered:

u|x=0 = 0
u|x=1 = 1

(31b)

The exact solution for this problem can be easily obtained by solving this second
order ordinary differential equation (ODE), with essential boundary conditions, an-
alytically. It is well known that the stability of the numerical solution of the above
problem is defined by a number, called the Peclet (Pe) number:

Pe =
V ds

2Dm
(32)

with ds being the nodal spacing for two neighbor nodes. It has been shown [Gu
and Liu (2006)] that, when Pe is very large (V ds� Dm), Eq. (30a-b) becomes
convection-dominated, and the accuracy of the standard numerical results becomes
oscillatory. The second term in the equation becomes negligible, resulting in that
the boundary condition u|x=1 = 1 affects only a very narrow region of the domain.
Thus, a thin boundary layer is formed causing stability problems to the obtained
numerical solution. These stability problems make the thin boundary layer diffi-
cult to be reproduced (resulting in an oscillatory unstable solution) by the standard
numerical methods if no special care is considered. This kind of instability can
occur in many numerical methods, such as FEM, FVM, FDM and meshfree meth-
ods. In order to overcome this problem, the upstream information of the field vari-
able approximation has to be prescribed with great accuracy. Several strategies for
meshless methods were developed, such as nodal refinement, enlargement of the
local support domain, fully upwind support domain, and adaptive upwind support
domain [Gu and Liu (2006)]. All the aforementioned methods have several advan-
tages and disadvantages. For nodal refinement, the increase at the number of nodes
decreases the nodal spacing ds and the Peclet number, although there is an increase
in computational time. By enlarging the local support domain one captures the
upstream information but reduces the accuracy of the solution [Liu (2002)]. This
can be more evident when regions with high gradients are present. By using an
upwind support domain, the accuracy and stability is improved for problems with
high Peclet number, still it gives very poor results for smaller Peclet numbers. Us-
ing constant number support domain obtained a solution with inaccuracies for 40
regular distributed nodes, as it is clear at (Fig.4).

By defining the nodes with a strong error value greater than a defined threshold
(Fig.5), a local refined is implemented providing the solution at (Fig.6)
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Figure 4: Exact solution (blue line) and numerical solution

 
Figure 5: Red spots: Nodes for refine-
ment

 
Figure 6: Exact and numerical solution
(green spots) with max |unum−uexact |=
0.02

3.4 2D Convection-Diffusion

We next consider the two-dimensional convection-diffusion equation

−ε∇
2u+−→w ∇u = f (33)

where ε > 0. The above equations arise in numerous models of flows and other
physical phenomena. The unknown field function u may represent the concen-
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tration of a polymer being transported (or ‘convected’) along a stream moving at
velocity −→w and subject to diffusive effects. It also may represent the temperature
of a fluid moving along a heated wall, or the concentration of electrons in models
of semiconductor devices. Typically, diffusion has less significant physical effect,
compared to convection. Thus, for most practical problems, ε � |−→w |. As it is well
known, a boundary layer is formed when the convection term is dominated. The
crucial point for a numerical method is to describe the very boundary layer with ac-
curacy. In this work, we solve a convection-diffusion problem on a square domain
Ω = (−1,1)× (−1,1) with source term f = 0 and ε = 1

200 � 1. Since the Peclet
number is inversely proportional to ε , the problem is convection dominated. The
velocity −→w is constant with −→w = (0,1) and the Dirichlet boundary conditions are:

u(x,−1) = x,u(x,1) = 0 u(−1,y)≈−1,u(1,y)≈ 1 (34)

where the latter two approximations hold everywhere in the domain except near
y = 1. On the boundaries x =±1 the boundary values vary dramatically near y = 1,
changing from (essentially) -1 to 0 on the left and from +1 to 0 to the right. For
small ε , the solution u is very close to that of the reduced problem uh ≡ x except
near the outflow boundary y = 1, where it is zero. This dramatic change constitutes
a boundary layer. The exact solution of the problem is

u(x,y) = x

(
1− e

y−1
ε

1− e
−2
ε

)
(35)

A solution is obtained for a regular grid 11x11 (Fig.7).

 

Figure 7: Numerical solution for 121 nodes

By calculating the absolute value of the strong form error |Lu− f | we point out the
nodes with values greater than a user defined threshold value θ = 0.01 (Fig.8).

It follows the refinement of the nodes by using a rectangular orientation of the
added nodes surrounding the prescribed nodes (Fig.9).
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Figure 8: Nodes for local refinement

 

Figure 9: Node distribution after refine-
ment

Finally, the new solution is calculated and the errors are estimated (Fig.10).

 
Figure 10: Solution of the refined nodes

 
Figure 11: Exact solution

The strong form errors are presented. First in (Fig.12) the errors before the re-
finement are plotted and then those after the refinement (Fig.13), showing the error
decreasing and the greater accuracy for the numerical solution. The prescribed pro-
cedure is fully automated, giving the opportunity for following refinements until the
desirable accuracy (e.g R<0.0001) is obtained.

3.5 2D Steady State Stokes Equations

The Stokes equation system

−v.∇2−→u +∇p =
−→
f ∇

−→u = 0 (36)

is a fundamental model of viscous incompressible flow. The variable −→u is a
vector-valued function representing the velocity of the fluid, and the scalar func-
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Figure 12: Strong Error before refine-
ment

 
Figure 13: Strong Error after refinement

tion prepresents the pressure. The first equation represents the conservation of the
momentum of the fluid (momentum equation), whereas the second one enforces
conservation of mass. The crucial modelling assumption made is that the flow is
“low-speed”, so that convection effects can be neglected. Such flows arise in cases
where the fluid is very viscous or where it is tightly confined. An example is the
flow of blood in parts of the human body. For the purpose of our study we choose
to solve the 2D flow of a fluid passing a stenosed region (Fig.14) with Dirichlet
boundary conditions. The length at the inlet and outlet region is 0.6 mm and the
point of the stenosis the length is 0.2 mm. The distance L of the central axis is 1
mm. The dynamic viscosity µ is 1 cP and the density ρ is 1 kg/m3 (Stokes condi-
tions). The pressure difference is the driving force for the fluid flow, with pressure
set to 1 kPa at the left entrance, and 0 kPa at the right one. The gravity is neglected,
thus f = 0.

 

Figure 14: Stenosed 2D region geometry
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The unknown field approximation was implemented with the MLS method and
the discretization scheme is the meshless point collocation method. For each node
the degrees of freedom are three, the two velocity components ux and uy, and the
pressure value p. The differential operator L≡∇2 +∇ is an elliptical type operator
and thus, the maximum principle method implies that this operator should converge
when used with meshless point collocation method and well-distributed nodes [Kim
and Liu (2006)]. The nodal distribution used is a regular one (Fig.15) of Type I, as
already pointed out, so that the moment matrix A is invertible.

 

Figure 15: Regular node distribution at
a bounding box of the geometry

 

Figure 16: Final node distribution. Blue
nodes are the interior nodes

A comparison took place between the solution obtained and the solution provided
by the finite element method. The latter implemented with the commercial software
package ANSYS CFX 5.1. Results are shown in Figs.17-19.

4 Discussion

In the present work we restrict our study to numerical methods that can solve par-
tial differential equations problems without integration. This implies that we ignore
boundary integral equation methods and finite elements, and insist on truly mesh-
less methods. Thus, the MLS approximation was used herein of the construction of
the trial functions during a strong-form description of several physical problems.
To the authors’ attention, this is one of the few attempts for unknown function ap-
proximation with the meshless collocation technique. We examined the behavior
of the solution with regular and irregular node distribution, combined with either
constant density or constant number support domain, by the implementation of
the collocation method at elliptic type (Poisson equation) partial differential equa-
tions. As it has been proved with the maximum principle method [Kim and Liu
(2006)], the Laplacian operator of the elliptic problem converges. The accuracy is
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Figure 17a: ANSYS pressure plot

 

Figure 17b: Meshless pressure plot

 

Figure 17c: ANSYS-Meshless pressure
plot

increased using greater number of nodes, and using constant number of nodes for
the support domain. It has also pointed out [Armentano and Durán (2001)] that a
well-distributed set of nodes should be used, in order to obtain a stable solution.

The constant number technique for convection-diffusion problems was used for
parabolic type of partial differential equations, during the evaluation of the support
domain for the construction of the approximation function. The improved behavior
of the constant number of nodes formulation, proposed in the present work, fur-
nishes more stable results at the low-numbered (optimum) support domain cases,
where the widely used constant density support domain formulation occasionally
fails.

A fully automated procedure was developed, based on the error of the strong form
description evaluation for the nodal refinement while keeping the well-distribution
of nodes, provided a solution with great stability and accuracy, reducing the overall
computational cost of a global refinement. Finally, it is has been shown [Ciarlet and
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Figure 18a: ANSYS [u] velocity plot

 

Figure 18b: Meshless [u] velocity plot

 

Figure 18c: ANSYS-Meshless [u] veloc-
ity plot

Raviart (1973)] that the existence of a maximum principle for the discrete problem
implies the possibility of obtaining uniform convergence of the approximates solu-
tions to the exact solutions, for three of the most popular approximation schemes
for solving second order Dirichlet problems, i.e., classical finite differences, varia-
tional finite differences, and finite element methods. A mathematical background
has been developed recently for the convergence [Kim and Liu (2006)] and for the
error bounds [Armentano and Durán (2001)] of meshless collocation methods. One
can use this method for elliptic and parabolic type of problems, in conjunction with
smart refinement techniques, as the one proposed in this paper. Proof of the above
hypothesis has been shown for (at least) elliptic type of operators (Laplacian) and
for MLS trial functions.

Future work involves the mathematical treatment and the implementation of the
Neumann type boundary conditions. Also, the convergence analysis for nodal dis-
tribution has to be extended to irregular geometries for 2D and 3D space dimen-
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Figure 19a: ANSYS [v] velocity plot

 

Figure 19b: Meshless [v] velocity plot

 

Figure 19c: ANSYS-Meshless [v] veloc-
ity plot

sions. As far as problems with Stokes flow are concerned, comparison of the results
of the meshless PC method using MLS approximation with the results obtained by
ordinary FE methods indicates that the two methods are directly comparable both
in accuracy, and in computational time. However, a strict mathematical proof of the
PCM performance in Stokes flow problems has still to be examined. Strong form
of PDEs provides the “complete” solution of the problem, a solution that is both
unique and stable. For elliptic type of problems, MLS discrete strong form point
collocation methods can nowadays be used with sufficient accuracy and stability,
in order to be applied in coupled, multiphase and/or multiscale problems.
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