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Vibration suppression of a moving beam subjected to an
active-control electrostatic force

Shueei-Muh Lin1

Abstract: In this study, the mathematical model of a moving beam is estab-
lished. This model is composed of a governing differential equation and three
homogenous boundary conditions and one non-homogenous boundary condition
including a time-dependent inertia force and a nonlinear active control force. Ob-
viously, a moving mass problem with nonlinear and time dependent boundary con-
dition is very complicated. One solution method is here developed to derive the
exact solution for this system. By taking a change of dependent variable with
a shifting function the original system is transformed to be a system composed
of one non-homogeneous governing differential equation and four homogeneous
boundary conditions. Further, based on an orthogonality condition of the eigen-
functions the mode superposition method is used to derive the exact solution for
the transformed system. It should be noted that the transformed system is proved
to be non-self-adjoint. Its orthogonality condition of eigenfunctions is different to
the conventional one. Based on this orthogonality condition, the mode superposi-
tion method can be used to solve the transformed problem. The effects of different
accelerations of a moving beam on the dynamic positioning and vibration of beam
are significant. For suppressing vibration, two simple designs of active control of
electrostatic force against the vibration are presented here. These are verified to be
very effective.

Keywords: moving beam; analytical solution; vibration; control

1 Introduction

In general, four kinds of moving mass problems are studied by many researchers.
The first is the dynamic behavior of beam structures, such as bridges on railways,
subjected to moving loads or masses. Mostly, a uniform beam is simply supported
and carried a moving load [Fryba (1996), Nikkhoo et al. (2007)]. The second is
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the vibration characteristics of a rotating shaft subjected to a moving load or mass
[Gu and Cheng (2004)]. This model can simulate dynamic behavior of a ball screw
and a nut moving along it, which are the key components of a feed drive system
for a machine tool. The third is the axially moving beams problem. The belt
drives, high-speed magnetic tapes and fiber winding are its typical examples [Lee
and Jang (2007)]. The fourth is the transverse moving beam problem. It can be
used to simulate a moving scanning probe or a transversely moving spindle. This
mathematical model is different to the previous ones and investigated here.

The model of the transverse moving beam is composed of a governing differential
equation and a time-dependent boundary condition due to the tip mass inertia force
without any external control force. The literatures investigated the time-dependent
boundary condition are listed as follows:

The vibrations of uniform Bernoulli-Euler beams with classical time dependent
boundary conditions can be solved by using the method of Laplace transform [Noth-
mann (1948)] and the method of Mindlin-Goodman (1950). In the Mindlin-Goodman
method, a change of dependent variable together with four shifting polynomial
functions of the fifth order is introduced. In general, by properly selecting these
shifting polynomial functions, the original system will be transformed to be a sys-
tem composed of a nonhomogeneous governing differential equation with four ho-
mogeneous boundary conditions. Consequently, the method of separation of vari-
ables can be used to solve the problem. Lee and Lin (1996) gave the dynamic anal-
ysis of a nonuniform Bernoulli-Euler beam with general time dependent bound-
ary conditions. They generalized the method of Mindlin-Goodman and introduced
four shifting functions with the physical meaning instead of those functions with no
physical meaning given by Mindlin and Goodman (1950). The vibrations of uni-
form Timoshenko beams with classical time dependent boundary conditions were
studied by Herrmann (1955) and Berry and Nagdhi (1956) by using the method
of Mindlin-Goodman. Lee and Lin (1998) extended the previous study made by
Lee and Lin (1996) and further generalized the method of Mindlin-Goodman to de-
velop a solution procedure for studying the vibrations of a nonuniform Timoshenko
beams with general time dependent boundary conditions. Lin (1998) studied the
force vibration of an elastically restrained nonuniform beam with time-dependent
boundary conditions. Lin (2002) investigated the forced vibration and the boundary
control of the pretwisted Timoshenko beam with time dependent elastic boundary
conditions. Lee et al. (2008) studied the large static deflection of a beam with
nonlinear boundary conditions. All above studies are not for a long-distance mov-
ing beam and the dynamic positioning. So far, little literatures investigated the
transverse moving beam problem.

In addition, the vibration suppression is important for engineering applications
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and investigated by several literatures. Lin et al. (2008) studied the vibration of
the blade of a Horizontal-Axis Wind Power Turbine. Vadiraja and Sahasrabudhe
(2008) investigated Vibration suppression of Rotating Tapered Thin-Walled Com-
posite Beam by using Macro Fiber Composite Actuator. Lin et al. (2007) and Lin
(2008) studied the proportional and derivative controls of vibration of a rotating
beam by using a pair of piezoelectric sensor and actuator layers.

In this study, the mathematical model of a transverse moving beam is established.
The exact solution for this system is derived. The effects of several geometry and
material parameters on the dynamic positioning and vibration of a moving beam
are investigated. Especially, the comparison of different ways of acceleration to
a specific position is made. For more effective suppressing vibration, a uniform
control law and a proportional control law of electrostatic force are investigated..

2 Governing equations and associated conditions

It is well known that the vibration of a high-speed moving beam will occur, as
shown in Figure 1. The vibration induces the error of dynamic positioning. In
general, the designs for the suppressing vibration of a moving beam include (a)
increasing passive structure damping, (b) choosing a smooth acceleration and de-
celeration way, and (c) applying the active control of structure. These methods of
suppressing vibration are investigated here. Because this mathematical model in-
cludes one non-homogenous boundary condition composed of a time- dependent
inertia force and a nonlinear active control force, this system is very complicate.
Without the loss of generality, a uniform beam with a tip mass is considered here.
This mathematical model is established as follows:

In terms of the following dimensionless quantities

M =
Mtip

ρAL
, s(τ) =

S(t)
L

, w(ξ ,τ) =
W (x, t)

L
,

ξ =
x
L

, τ =
t

L2

√
EI
ρA

, fe =
FeL2

EI
, (1)

the dimensionless governing differential equation of a moving beam with a tip mass
and time dependent root position s(t), is expressed as

− ∂

∂ξ

[
n

∂w
∂ξ

+
s(ξ )

µ

(
∂w
∂ξ
−Ψ

)]
+m(ξ )

(
∂ 2w
∂τ2 −wα

2 sin2
θ

)
= p(ξ ,τ), (2)

where c is the dimensionless damping coefficients. p(ξ ,τ) is the dimensionless
inertia force due to the movement of beam, −d2s/dτ2. W (x, t) is the flexural dis-
placement, E is the Young’s modulus. x is the coordinate along the beam, t is time
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Figure 1: Geometry and coordinate sys-
tem of a moving beam with a concen-
trate electric charge Q at the tip and a
tip mass M in a electric intensity Ee.
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Figure 2: The first six mode shapes of
a cantilever beam with a tip mass [c =
0.5, M = 0.2]

and L is the length of the beam. Iand A denote the area moment of inertia and the
cross sectional area, respectively. ρ is the mass density per unit volume and Mtip is
the tip mass.

The associated boundary conditions are
At ξ = 0:

γ11w− γ12n
∂w
∂ξ
− γ12

1
µ

(
∂w
∂ξ
−Ψ

)
= 0, (3)

γ21Ψ− γ22
∂Ψ
∂ξ

= 0. (4)

At ξ = 1:

b
∂Ψ
∂ξ

+δ1
∂ 2Ψ
∂τ2 = f1(τ), (5)

−δ2

(
α

2 sin2
θw− ∂ 2w

∂τ2

)
+n

∂w
∂ξ

+
q
µ

(
∂w
∂ξ
−Ψ

)
= f2(τ). (6)

where fM is the inertia force due to the tip movement,−Md2s/dτ2. fe is the dimen-
sionless electrostatic force, FeL2/EI where Fe is the adjustable electrostatic force,
QEe,in which Q is a concentrated electric charge at the tip and Ee is the electric
intensity. The direction of the electric intensity is adjusted against the direction of
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beam displacement which can be measured by a piezoelectric sensor on the beam,
as shown Figure 1. Therefore, this design can afford the restoring force to beam
such that the vibration can be suppressed. In section 5, the effects of two control
laws on the suppressing vibration are investigated.

The corresponding initial conditions are expressed as

w(ξ ,0) = w0 (ξ ) , (7)

∂w(ξ ,0)
∂τ

= ẇ0 (ξ ) . (8)

It should be noted that this system is nonlinear and non-conservative, because of
the non-homogenous and nonlinear term, f(τ), including the tip inertia force fM

and fe in Eq. (6). The mode superposition method can not be used to directly
solve this problem. However, after this original system is reasonably transformed,
the transformed system can be solved by using this method. Therefore, the exact
solution of this system can be obtained.

3 Solution method

3.1 Change of variable

By taking a change of dependent variable with a shifting function the original sys-
tem can be transformed to be one system composed of one non-homogeneous gov-
erning differential equation and four homogeneous boundary conditions. The rela-
tion among variables is assumed to be

w(ξ ,τ) = w̄(ξ ,τ)+g(ξ ) f (τ) (9)

where g(x) is the shifting function and chosen to satisfy the following conditions

g(0) = 0,
dg(0)

dx
= 0, g(1) = 0,

d2g(1)
dξ 2 = 0,

d3g(1)
dξ 3 =−1,

d4g(1)
dξ 4 = 0. (10)

If the shifting function is

g(ξ ) = α0 +α1ξ +α2ξ
2 +α3ξ

3 +α4ξ
4 +α5ξ

5, (11)

it can be found based on the conditions (10) as follows:

g(ξ ) =−1
3

ξ
2 +

2
3

ξ
3− 5

12
ξ

4 +
1
12

ξ
5. (12)
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Substituting Eqs. (9) and (12) into Eqs. (2-8), the transformed differential equation
and corresponding boundary conditions are

∂ 4w̄
∂ξ 4 + c

∂ w̄
∂τ

+
∂ 2w̄
∂τ2 = p̄(ξ ,τ) (13)

where p̄(ξ ,τ) =−d2s/dτ2− d4g
dξ 4 f (τ)− cg(ξ )d f

dτ
−g(ξ )d2 f

dτ2 .

At ξ = 0:

w̄(0,τ) = 0, (14)

∂ w̄(0,τ)
∂ξ

= 0, (15)

At ξ = 1:

∂ 2w̄(1,τ)
∂ξ 2 = 0, (16)

−∂ 3w̄(1,τ)
∂ξ 3 +M

∂ 2w̄(1,τ)
∂ξ 2 = 0. (17)

The transformed initial conditions (7) – (8), become

w̄(ξ ,0) = w0 (ξ )−g(ξ ) f (0) , (18)

∂ w̄(ξ ,0)
∂τ

= ẇ0 (ξ )−g(ξ )
d f (0)

dτ
. (19)

So far, all the transformed boundary conditions are homogenous. In order to solve
the transformed system by using the mode superposition method, the orthogonal
condition of eigenfunctions must be found.

3.2 Orthogonal condition of eigenfunctions

Consider the free vibration of an undamped beam. Its governing equation is

∂ 4w
∂ξ 4 +

∂ 2w
∂ξ 2 = 0. (20)

The associated boundary conditions are
At ξ = 0:

w = 0, (21)
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∂w
∂ξ

= 0, (22)

At ξ = 1:

∂ 2w
∂ξ 2 = 0, (23)

−∂ 3w
∂ξ 3 +M

∂ 2w
∂τ2 = 0. (24)

Assume w(ξ ,τ) = w̄(ξ )cosωτ . Substituting it into Eqs. (20-24), Eq. (20) becomes

d4w̄
dξ 4 −ω

2w̄ = 0. (25)

The boundary conditions (21-24) become
At ξ = 0:

w̄ = 0, (26)

dw̄
dξ

= 0. (27)

At ξ = 1:

d2w̄
dξ 2 = 0, (28)

d3w̄
dξ 3 +ω

2Mw̄ = 0. (29)

Multiplying d4w̄i/dξ 4 by w̄ j and integrating it from 0 to 1, and based on the bound-
ary conditions (26-29), the following relation is obtained∫ 1

0
w̄ j

d4w̄i

dξ 4 dξ = (ω2
j −ω

2
i )Mw̄i(1)w̄ j(1)

∫ 1

0
w̄i

d4w̄ j

dξ 4 dξ . (30)

Due to Eq. (25), the equation (30) becomes

(ω2
j −ω

2
i )
[∫ 1

0
w̄iw̄ jdξ +Mw̄i(1)w̄ j(1)

]
= 0. (31)

Because ω2
j 6= ω2

i , i 6= j, the following orthogonal condition is obtained∫ 1

0
w̄iw̄ jdξ +Mw̄i(1)w̄ j(1) = 0. (32)
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Obviously, because there exists ‘Mw̄i (1) w̄ j (1)’ in Eq. (32), the system is not self-
adjointness. Further, the orthogonal condition can be generalized as

∫ 1

0
w̄iw̄ jdξ +Mw̄i(1)w̄ j(1) =

{
εi j = 0, i 6= j

εii 6= 0 i = j
. (33)

Based on this condition and using the mode superposition method, the transformed
system can be decoupled into several independent subsystems which are easily
solved.

3.3 Mode superposition

The solution of the transformed system composed of Eqs. (13-19) can be expressed
in the following eigenfunction expansion form

w̄(ξ ,τ) =
∞

∑
i=0

w̄i (ξ )Ti (τ) (34)

where w̄i (ξ ) is the ith eigenfunctions of the undamped beam derived in section
3.2. Substituting Eq. (34) back to the transformed governing equation (13) and
the conditions (14-19), multiplying by ‘w̄k (ξ ) [1+Mδ (ξ −1)]’ and integrating in
accordance with the orthogonality condition (33), one obtains

d2Tk(τ)
dτ2 + c

dTk(τ)
dτ

+ω
2
k Tk(τ) = Fk(τ), (35a)

where

Fk (τ) =
1

εkk

∫ 1

0
w̄k (ξ ) [1+Mδ (ξ −1)]p̄(ξ ,τ)dξ , (35b)

Moreover, the corresponding initial conditions are

Tk (0) =
1
εk

∫ 1

0
w̄k (ξ ) [1+Mδ (ξ −1)] [w0 (ξ )−g(ξ ) f (0)]dξ , (36)

dTk (0)
dτ

=
1
εk

∫ 1

0
w̄k (ξ ) [1+Mδ (ξ −1)]

[
ẇ0 (ξ )−g(ξ )

d f (0)
dτ

]
dξ . (37)

Further, the solution of Eq. (35) is derived as follows:
Letting x1 = Tk and x2 = dx1/dτ , Eq. (35a) can be written as

dX
dτ

= AX +Bu (38a)
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where

X =
[

x1

x2

]
, A =

[
0 1
−ω2

k −2ζkωk

]
, B =

[
1 0
0 1

]
, u =

[
0

Fk(τ)

]
. (38b)

The solution of Eq. (38) is easily derived [Kailath (1980)]

X (τ) = eA(τ−τ0)X (τ0)+
∫

τ

τ0

eA(χ−τ0)Bu(χ)dχ (39)

where the transfer function can be expressed in the polynomial form

eA(τ−τ0) =
∞

∑
k=0

1
k!

Ak (τ− τ0)
k . (40)

But the calculation of the transfer function is complicate. For simplicity, the fol-
lowing relation is applied and proved in Appendix

eA(τ−τ0) =
[
V1 (τ− τ0) V2 (τ− τ0)
V̇1 (τ− τ0) V̇2 (τ− τ0)

]
, (41)

where Vi are the two fundamental solutions of Eq. (35a)

V1 (τ) = e−ζkωkτ

[
cosωdkτ +

ζkωk

ωdk
sinωdkτ

]
,

V2 (τ) =
1

ωdk
e−ζkωkτ sinωdkτ, ωdk = ωk

√
1−ζ 2

k . (42)

Substituting Eq. (41) into Eq. (39), Eq. (39) becomes

Tk (τ) = V1 (τ− τ0)Tk (τ0)+V2 (τ− τ0)
dTk (τ0)

dτ
+
∫

τ

τ0

V2 (τ−χ)Fk (χ)dχ, (43)

dTk (τ)
dτ

=
dV1 (τ− τ0)

dτ
Tk (τ0)+

dV2 (τ− τ0)
dτ

dTk (τ0)
dτ

+
∫

τ

τ0

dV2 (τ−χ)
dτ

Fk (χ)dχ.

Conclusively, substituting the solutions {Tk (τ) , w̄k (ξ ) ,g(ξ )} back into Eqs. (34)
and (9) sequentially, the exact general solution w(ξ sτ) is obtained.
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4 Numerical results and discussion

At first, the orthogonal condition (33) is numerically verified here. Consider the
dimensionless tip mass constant M= 0.2. The mode shapes are shown in Figure
2. The dimensionless natural frequencies and the parameter εi j are calculated and
listed below:

[ωi]1×6 =
[
2.6127 18.208 53.559 108.193 182.431 273.336

]
, (44)

[εi j]6×6 =

0.04128 0 0 0 0 0
0 0.0007895 0 0 0 0
0 0 0.0000893 0 0 0
0 0 0 0.0000217 0 0
0 0 0 0 0.0000076 0
0 0 0 0 0 0.0000033

 ,

which satisfies the orthogonality condition (33).

Secondly, the influences of the acceleration time T in that the root of beam is moved
to a specified position, the tip mass M, the damping constant c and the way of
acceleration on the vibration of a moving beam are investigated here. Assume
the initial displacement and velocity to be zero, w0 (ξ ) = ẇ0 (ξ )= 0. The beam is
moved from the origin to some specified position in the acceleration of unit function
which is expressed as

d2s
dτ2 (τ) =


0, τ < 0

a, 0 < τ < T/2

−a, T/2 < τ < T

0, τ > T

(45)

where a is the acceleration. The effect of the control electrostatic force is neglected
in Figures 3-7.

Figure 3a shows the influence of the acceleration time T on the vibration of beam.
In general, the tip of beam will overshoot when the root of beam moves to the
specific position, s = 0.8 and is fixed. Further, the amplitude of vibration decays
due to the effect of structure damping. Moreover, it is obvious that the shorter the
acceleration time T is, the larger the tip overshooting. Meanwhile, Figure 3b shows
that the first mode dominates the vibration response.

Figure 4 shows the influence of the damping coefficient c on the vibration of
beam. The decaying of vibration after the acceleration time T depends greatly
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Figure 3: (a) Influence of the time of the acceleration of unit function T on the
vibration of a moving beam. (b) Effects of each mode on the vibration of a moving
beam with the acceleration of unit function.
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Figure 4: Influence of the damping co-
efficient c on the vibration of a moving
beam with the acceleration of unit func-
tion.

0 2 4 6 8 10

0

0.4

0.8

1.2

: M=0.01
: M=0.05
: M=0.10

c = 1,  T = 1.5

τ

s(
τ)

-w
(1

,τ
)

 

Figure 5: Influence of the tip mass M on
the vibration of a moving beam with the
acceleration of unit function.

on the damping coefficient. However, increasing the damping coefficient decreases
slightly the tip overshooting. It reveals that the influence of the damping coefficient
c on the accuracy of dynamic positioning is small.

Figure 5 shows the influence of the tip mass M on the vibration of beam. It is
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Figure 6: Two kinds of accelerations on
the vibration of a moving beam.
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Figure 7: Influence of the time of the
acceleration of sinusoidal function T on
the vibration of a moving beam.

found that increasing the tip mass greatly increases the overshooting of the tip. It
reveals that the influence of the tip mass M on the accuracy of dynamic positioning
is significant.

It is concluded from Figures 3-5 that the acceleration of unit function results in a
large overshooting. In other words, this acceleration causes a large error of dynamic
positioning. Based on this fact, a sinusoidal acceleration is considered and listed as
follows:

d2s
dτ2 (τ) =


0, τ < 0

β sin(2πτ/T ) , 0 < τ < T

0, τ > T

(46)

Figure 6 shows the effects of different accelerations on the vibration of a moving
beam. Obviously, the overshooting in the sinusoidal acceleration is much smaller
than that in the unit-function acceleration. Obviously, the sinusoidal acceleration is
more suitable for the dynamic positioning.

Further, Figure 7 shows the influence of the sinusoidal acceleration time T on the
vibration of beam. If the acceleration time T = 1, the overshooting is significant.
In other words, although the sinusoidal acceleration is effective for suppressing
vibration, the overshooting will occurs due to too short acceleration time. For over-
coming this fault an active control for suppressing vibration is studied next.

Thirdly, the influence of active control law on the vibration is investigated here.
In closed-loop control for suppressing vibration, the control electrostatic force is
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designed by the uniform control law and expressed as ‘Fe = QEe’ where the con-
centrate electric charge Q is constant and the electric intensity is

Ee (τ) =−sign(w(1,τ0))E0, τ0 < τ < τ0 +∆τ, (47)

in which the E0 is constant and the direction of the electric field is adjusted against
the direction of beam displacement. ∆τ is the sampling time of the piezoelectric
sensor measuring the tip displacement. Therefore, the dimensionless electric force
can be expressed as

fe (τ) =−kesign(w(1,τ0)) , τ0 < τ < τ0 +∆τ. (48)

Because the dimensionless electric force fedepends on the displacement w(1,τ0),
the system is nonlinear. In general, it is hard to solve Eq. (35). However, when
τ0 < τ < τ0 +∆τ , fe is constant. Eq. (35) can be solved step by step as follows:

Substituting Eq. (48) into Eq. (35), one obtains

d2Tk (τ)
dτ2 + c

dTk (τ)
dτ

+ω
2
k Tk (τ) = Fk (τ)

= Fele +Fc cos(2πτ/T )+Fs sin(2πτ/T ) , τ0 < τ < τ0 +∆τ (49)

where

Fele (τ) =
−kesign(w(1,τ0))

εkk

∫ 1

0
w̄k (ξ )(−10+10ξ )dξ ,

Fc =
2πMcβ

T εkk

∫ 1

0
w̄k (ξ )g(ξ )dξ (50)

Fs =
β

εkk

∫ 1

0
w̄k (ξ )

[
[(−10+10ξ )M−1]−Mg(ξ )

(
2π

T

)2
]

dξ +
βM
εkk

w̄k (1) .

Further, substituting Eq. (50) into Eq. (43), the solutions Tk (τ) and dTk (τ)/dτ ,
τ0 < τ < τ0 +∆τ , are obtained. Substituting these solutions back into Eqs. (34) and
(9), the next initial conditions {w(1,τ0 +∆τ) ,∂w(1,τ0 +∆τ)/∂τ} are derived. In
the similar way, the overall solution of this system is obtained.

Figure 8 shows that the overshooting is greatly decreased by using this control law,
especially for the case with the gain factor ke = 0.3. However, there exists small
oscillation. The first reason is that when the beam is restoring, there is a constant
force applied to push the beam back in spite of small or large displacement. The
second reason is that the sampling time is too large. The second will be discussed
in Figure 10.
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Figure 8: Influence of the uniform elec-
tric control law on the vibration sup-
pression of a moving beam.
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Figure 9: Influence of the proportional
electric control law on the vibration
suppression of a moving beam.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

: Δτ = 0.01
: Δτ = 0.0025
c = 1,  kp= 15
M = 0.1, T = 0.8

τ

s(
τ)

-w
(1

,τ
)

 

Figure 10: Influence of the sampling time ∆τ on the vibration suppression of a
moving beam with the proportional electric control law.

For overcoming the first default of the uniform control law, the proportional control
law [Lin et al., 2007] is designed

fe (τ) =−kpw(1,τ0) , τ0 < τ < τ0 +∆τ. (51)

Figure 9 illustrates the influence of the gain factor kp on the vibration. It is found
that the larger the gain factor kp is, the more effective the suppressing vibration. It is
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also observed from Figures 8 and 9 that at the same sampling time ∆τ the oscillation
in the proportional control law after the acceleration time is much smaller than that
in the uniform control law. Moreover, the influence of the sampling time ∆τgn
the accuracy of dynamic positioning is investigated in Figure 10. It is observed
that the larger the sampling time ∆τ is, the larger the oscillation. In other words,
decreasing the sampling time ∆τ will greatly decreases the oscillation and increases
the accuracy of dynamic positioning.

5 Conclusion

In this study, the mathematical model of a moving beam is established. The exact
solution for this system is derived. This methodology can be applied to other mov-
ing problems, for example, moving frame and robotic arm. The active control of
electric field for suppressing vibration of the moving beam is verified to be very
effective. Beside, the effects of several important parameters on the vibration of a
moving beam are concluded as follows:

1. The moving way of the sinusoidal acceleration induces much smaller vibra-
tion and overshooting than that of the unit-function acceleration.

2. The first mode dominates the vibration response of a moving beam.

3. Increasing the tip mass greatly increases the tip overshooting and the vibra-
tion.

4. Decreasing the acceleration time to a specified position greatly increases the
tip overshooting.

5. Although the vibration decays greatly due to a large damping coefficient af-
ter the acceleration time, the influence of the damping coefficient on the tip
overshooting is slight.

6. The proportional control law for suppressing vibration is better than the con-
stant control law.

7. Decreasing the sampling time ∆τ will greatly increases the accuracy of dy-
namic positioning.

Acknowledgement: The support of the National Science Council of Taiwan, R.
O. C., is gratefully acknowledged (Grant number: Nsc96-2212-E168-003).



88 Copyright © 2009 Tech Science Press CMES, vol.43, no.1, pp.73-90, 2009

References

Berry, J. G.; Nagdhi, P. M. (1956): On the vibration of elastic bodies having time-
dependent elastic boundary conditions. Quarterly of Applied Mathemetics, vol. 14,
no. 1, pp. 43-50.

Fryba, L. (1996): Dynamics of Railway Bridges. Prague: Thomas Telford Services
Ltd.

Gu, U.C.; Cheng, C.C. (2004): Vibration analysis of a high-speed spindle under
the action of a moving mass. Journal of Sound and Vibration, vol. 278, pp. 1131–
1146

Herrmann, G. (1955): Forced motions of Timoshenko beams. ASME Journal of
Applied Mechanics, vol. 22, no.1, pp. 53-56.

Kailath, T. (1980): Linear system. Prentice-Hall, Inc.

Lee, U.; Jang, I. (2007): On the boundary conditions for axially moving beams.
Journal of Sound and Vibration, vol. 306, pp. 675–690.

Lee, S.Y.; Lin, S.M. (1996): Dynamic analysis of non-uniform beam with time
dependent elastic boundary conditions. ASME Journal of Applied Mechanics, vol.
63, no.2, pp. 474-478.

Lee, S.Y.; Lin, S.M. (1998): Nonuniform Timoshenko beams with time dependent
elastic boundary conditions. Journal of Sound and Vibration, vol. 217, no. 2, pp.
223-238.

Lee, S.Y.; Lin, S.M.; Lee, C.S.; Lu, S.Y.; Liu, Y.T. (2008): Exact large deflec-
tion of beams with nonlinear boundary condition. CMES: Computer Modeling in
Engineering & Sciences, vol. 30, no. 1, pp. 27-36.

Lin, S.M. (1998): Pretwisted nonuniform beams with time dependent elastic bound-
ary conditions. AIAA Journal, vol.36, no.8, pp.1516-1523.

Lin, S. M. (2008): PD control of a rotating smart beam with an elastic root. Journal
of Sound and Vibration, Vol. 312, pp. 109–124.

Lin, S.M.; Lee, S.Y. (2002): The Forced Vibration and Boundary Control of
Pretwisted Timoshenko Beams with General Time Dependent Boundary Condi-
tions. Journal of Sound and Vibration, vol. 254, no.27, pp. 69-90.

Lin, S.M.; Lee, S.Y.; Lin, Y.S. (2008): Modeling and Bending Vibration of the
Blade of a Horizontal-Axis Wind Power Turbine. CMES: Computer Modeling in
Engineering & Sciences, vol.23, no.2, pp.175-186.

Lin, S. M.; Mao, I.C.; Lin, J.H. (2007): Vibration of a rotating smart beam. AIAA
Journal, Vol. 45, No. 2, pp.382-389.

Mindlin, R.D.; Goodman, L.E. (1950): Beam vibrations with time-dependent



Vibration suppression of a moving beam 89

boundary conditions. ASME Journal of Applied Mechanics, vol. 17, no. 4, pp.
377-380.

Nikkhoo, A.; Rofooei, F.R.; Shadnam, M.R. (2007): Dynamic behavior and
modal control of beams under moving mass. Journal of Sound and Vibration, vol.
306, pp. 712–724

Nothmann, G. A. (1948): Vibration of a cantilever beam with prescribed end mo-
tion. ASME Journal of Applied Mechanics, vol.15, no.2, pp. 327-334.

Vadiraja, D. N.; Sahasrabudhe, A.D. (2008): Vibration and Control of Rotating
Tapered Thin-Walled Composite Beam Using Macro Fiber Composite Actuator.
CMES: Computer Modeling in Engineering & Sciences, vol.27, no.1, pp.49-62.

Appendix

Prove the relation between the transfer function and the fundamental functions.

eA(t−t0) =
[
V1 (t− t0) V2 (t− t0)
V̇1 (t− t0) V̇2 (t− t0)

]
(A1)

Proof:
Consider a second-order ordinary differential equation

d2T
dt2 +a

dT
dt

+bT = 0, (A2)

where a and b are constants. Letting y1 = T and y2 = dy1/dt, Eq. (A2) can be
expressed as

dY
dt

= AY, (A3)

where

Y =
[

y1

y2

]
, A =

[
0 1
−b −a

]
.

If V1 and V2 are the fundamental solutions of Eq. (A2) and satisfy the following
normalized condition[
V1 (0) V2 (0)
V̇1 (0) V̇2 (0)

]
=
[

1 0
0 1

]
, (A4)

these solutions must satisfy Eq. (A3) and two relations can be expressed as

dY1

dt
= AY1

dY2

dt
= AY2, (A5)
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where

Y1 =
[

V1
dV1
dt

]
, Y2 =

[
V2
dV2
dt

]
.

It is well known that the solution of Eq. (A3) is

Y (t) = eA(t−t0)Y (t0) . (A6)

Therefore,[
V1 (t)
V̇1 (t)

]
= eA(t−t0)

[
V1 (t0)
V̇1 (t0)

] [
V2 (t)
V̇2 (t)

]
= eA(t−t0)

[
V2 (t0)
V̇2 (t0)

]
(A7)

These relations can be combined into one as follows:[
V1 (t) V2 (t)
V̇1 (t) V̇2 (t)

]
= eA(t−t0)

[
V1 (t0) V2 (t0)
V̇1 (t0) V̇2 (t0)

]
, (A8)

or

eA(t−t0) =
[
V1 (t) V2 (t)
V̇1 (t) V̇2 (t)

][
V1 (t0) V2 (t0)
V̇1 (t0) V̇2 (t0)

]−1

. (A9)

Because these two fundamental solutions satisfy the following normalized condi-
tion (A4), one can derive the following relations via Eq. (A8)

eAt =
[
V1 (t) V2 (t)
V̇1 (t) V̇2 (t)

]
eAt0 =

[
V1 (t0) V2 (t0)
V̇1 (t0) V̇2 (t0)

]
. (A10)

Substituting Eq. (A10) back into Eq. (A8), the relation (A1) is obtained.


