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Matching Contours in Images through the use of
Curvature, Distance to Centroid and Global Optimization

with Order-Preserving Constraint
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Abstract: This paper presents a new methodology to establish the best global
match of objects’ contours in images. The first step is the extraction of the sets
of ordered points that define the objects’ contours. Then, by using the curvature
value and its distance to the corresponded centroid for each point, an affinity ma-
trix is built. This matrix contains information of the cost for all possible matches
between the two sets of ordered points. Then, to determine the desired one-to-one
global matching, an assignment algorithm based on dynamic programming is used.
This algorithm establishes the global matching of the minimum global cost that
preserves the circular order of the contours’ points. Additionally, a methodology
to estimate the similarity transformation that best aligns the matched contours is
also presented. This methodology uses the matching information which was previ-
ously obtained, in addition to a statistical process to estimate the parameters of the
similarity transformation in question. In order to validate the proposed matching
methodology, its results are compared to those obtained by the geometric modeling
approach proposed by Shapiro and Brady who are well known in this domain.

Keywords: Image analysis, alignment, registration, geometric modeling, dynamic
programming.

1 Introduction

As far as Computational Vision is concerned, one of the main and more complex
problems encountered is the alignment and recognition of objects represented in
images. These tasks are very important in several applications of Computational
Vision as is the motion analysis of objects along image sequences, the quality in-
spection of objects from images, the objects’ recognition from images, the evo-
lution analysis of patients’ diseases from medical images, etc. The complexity
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involved is essentially due to the different projections that objects can assume in
images; for instance, due to the existence of varied cameras viewpoints, or even as
a result of deformations that the objects may undergo.

To measure the similarity between two objects represented in images, or between
two configurations of an object, it is possible to resort to techniques based on the
signals used to represent those objects. In these techniques, images are regarded as
being 2D signals that characterize the gray level (or color) of the images’ pixels.
Examples of such techniques are those based on Fourier or wavelet transforms. For
instance, in [Daugman (2003)] a method based on Gabor wavelets is used to iden-
tify persons through the recognition of their iris, and in [Orchard (2007)] medical
images from multimodal sources are aligned using an exhaustive search procedure
based on the Fourier transform.

Another class of techniques used to measure the similarity between two objects in
images is based on the analysis of their shapes. To apply these techniques, one
must begin by extracting features from the objects’ shapes, such as a group of
points, segments, boundaries, surfaces or skeletons. In Computational Vision, this
task is usually known as object segmentation.

There are several techniques to obtain the segmentation of objects represented
in images; for example, those based on: image gradient, [Canny (1986)], de-
formable models, [Kass, Witkin and Terzopoulos (1988), Cootes and Taylor (1992),
Xu and Prince (1998), Tavares, Carvalho, Oliveira, Vasconcelos, Gonçalves and
Pinho (2007), Vasconcelos and Tavares (2008)]; level set methods, [Wang and
Wang (2006), Wang, Lim, Khoo and Wang (2007a), Wang, Lim, Khoo and Wang
(2007b)]; as well as physical modeling, [Gonçalves, Tavares and Jorge (2008)]. For
a review on object segmentation see, for example, [Zhang (2001), Zhang and Lu
(2004), Gonzalez and Wood (2008), Ma, Tavares, Jorge and Mascarenhas (2009)].

Frequently, following the segmentation of the objects from the input images, the
matching between the extracted objects’ features are then accomplished. Then,
some techniques use the matching found in order to determine the objects’ similar-
ity by attributing a cost to each correspondence found. However, other techniques
begin by trying to align the objects, based on the above mentioned matching process
and, subsequently proceed to determine their similarity by comparing the aligned
objects. Usually, this image alignment is referred to as image registration.

The problem in determining the matching between objects’ feature points, has re-
sulted in the appearance of several approaches that try to achieve the best possi-
ble global matching. To achieve this goal, one can use, for example: spatial in-
formation of the intensity gradient, [Lucas and Kanade (1981)]; modal matching,
[Scot and Longuet-Higgins (1991), Shapiro and Brady (1992), Sclaroff and Pent-
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land (1995), Tavares (2000), Carcassoni and Hancock (2003), Bastos and Tavares
(2006)]; shape context, [Belongie, Malik and Puzicha (2002)]; shape signature,
[Otterloo (1991), Cohen and Guibas (1997): Oliveira and Tavares (2007), Gonzalez
and Wood (2008), Oliveira (2008)]; or probabilistic criteria, [Moisan and Bérenger
(2004), Keren (2009)].

When the similarity of the objects’ feature points is quantified in the form of a cost
matrix, the matching problem can be considered as being an optimization prob-
lem, and assignment algorithms are thus used. Examples of optimal approaches for
this purpose are: linear programming, [Bastos and Tavares (2006)]; graph search,
[Roy and Cox (1998)]; bipartite graph matching, [Fielding and Kam (2000)]; con-
cave optimization, [Maciel and Costeira (2003)] and dynamic programming, [Scott
and Nowak (2006), Oliveira and Tavares (2008)]. Non-optimal approaches include
greedy algorithms, [Wu and Leou (1995)] and simulated annealing, [Starink and
Backer (1995)].

This paper begins by referring to previous work which has been developed in or-
der to determine the best global matching between objects’ feature points. Then, a
novel methodology is proposed to build a robust affinity matrix by using the cur-
vature value and its distance to the correspond centroid from each point that is to
be matched. Following this, comparative results between the proposed methodol-
ogy and the geometrical approach suggested by Shapiro and Brady, [Shapiro and
Brady (1992)], are presented. Our preference in relation to the methodology used
by Shapiro and Brady as a reference approach is mainly due to the following facts:
it is widely known in the image analysis domain, it presents a reasonable compu-
tational cost and it usually produces good matching results. Next, a methodology
is presented to estimate the similarity transformation that best aligns objects which
have been previously matched. In order to achieve this, this methodology defines
the contours in the complex plane and then, by using the matching information and
statistical processing, it estimates the similarity transformation parameters. Finally,
in the final section, some results and conclusions are presented.

2 Previous work

This work appears as a sequence to the projects described in [Tavares (2000),
Tavares, Barbosa and Padilha (2000)] which considered matching methodologies
for characteristic points in images based on physical modeling or geometric model-
ing complemented with modal matching, [Shapiro and Brady (1992), Sclaroff and
Pentland (1995)]. Briefly, the methodologies were used to determine the match-
ing between objects’ characteristic points, through the construction of an affinity
or cost matrix. Next, the cost matrix obtained was used in the process of obtaining
the desired correspondences by using a pure local searching approach: one point is
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just matched with its best candidate if in the case of this second point the first one
is also the best matching candidate.

In [Bastos and Tavares (2006)], the work previously described in [Tavares (2000),
Tavares, Barbosa and Padilha (2000)] was improved by taking into consideration
optimizations methods in the establishment of the desired matching. Thus, the
matching was formulated as a classic assignment problem and solved by consider-
ing three traditional algorithms, [Dell’ Amico and Tooth (2000)]: the usual Hun-
garian method; the Simplex method for Flow Problems, [Löbel (2000)], and the
LAPm, [Volgenant (1996)]. The results obtained were considerably better than
those obtained using the original local approach; however, crossed correspondences
still appeared very frequently, [Bastos and Tavares (2006)].

In [Oliveira and Tavares (2008)] an assignment algorithm with order restriction
based on dynamic programming was applied to the previously built affinity matri-
ces by using the geometrical modeling suggested by Shapiro and Brady, [Shapiro
and Brady (1992)]. This new optimization algorithm successfully solves the crossed
matches problem and considerably improves the execution time of the complete
matching process. However, the execution time is still high for some possible ap-
plications; essentially due to the fact that the methodology used by Shapiro and
Brady needs to solve an eigenvalue/eigenvector problem from two modeling ma-
trices that can assume large dimensions (n×n and m×m, with n and m being the
numbers of the objects’ points to be matched). Additionally, the above mentioned
methodology is very sensible to the objects’ shapes and also to some of the consid-
ered parameters, such as the eigenvectors’ signals and the number of eigenvectors
to be used in the construction of the cost matrix.

Thus, the principal goal of this work was to develop a faster, more efficient and
robust methodology to obtain a novel affinity matrix that, when complemented to
an optimization algorithm which preserves the circular order of the objects’ contour
points, allows for the establishment of the best global matching between objects’
contour points without having crossed correspondences.

3 Matching methodology

Transformations of similarity, that is, geometric transformations involving transla-
tions, rotations and scaling, can originate changes in an object’s position, dimension
and orientation, whilst always maintaining its shape. Moreover, if the shapes in-
volved are polygons, then the known property: two polygons are similar (have the
same shape) if the corresponding angles have the same amplitude and the lengths of
the corresponding sides are directly proportional, can be used to decide if they are
similar and also to establish their matching. The adopted matching methodology
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considers this property to build a cost matrix that quantifies the similarity between
the contour points of two objects. One should notice that if a discrete contour is
closed, then it can be considered as being a polygon.

3.1 Cost matrix construction

Let contour 1 and contour 2 represent two contours to be matched, defined by a
sequence of n and m ordered points, respectively. For each contour, a sequence
of the angles’ amplitude associated to its points can be established. Thus, point
Pi of contour 1 corresponds the angle’s amplitude αi and point P′j of contour 2
corresponds the angles’ amplitude θ j.

Now, consider a contour and three of its consecutive points Pi−k, Pi and Pi+k, where
k is an integer positive number. Here, it is defined as the curvature angle associated
with point Pi the angle whose vertex is Pi, one side contains point Pi−k and the other
side contains point Pi+k. Three points define two angles, the first whose amplitude
is lower or equal to 180o and another whose amplitude is greater or equal to 180o.
To build the sequences of angles, the angle’ amplitude defined in counter clockwise
direction and from the line segment [PiPi−k] to the line segment [PiPi+k] is taken into
consideration.

To improve the results, the value of parameter k could be adjusted, depending on
the point sets of the contours. For instance, if the contours are defined by few
points, then small values of k (near 1) provide better results. On the other hand, if
the contours are defined by a larger number of points, then the value of k should
be increased. The experimental results which will be presented were obtained by
considering k = 10, due to the fact that this value revealed to be adequate in our
preliminaries experiments. Additionally, one verified that values lower than 10 and
not significantly higher than this value do not originate considerable differences in
the matches found.

Therefore, an angular cost matrix, A, can be defined in such a way that each element
ai j represents the difference between the angles’ amplitude αi of contour 1 and the
angles’ amplitude θ j of contour 2:

ai j =
∣∣αi−θ j

∣∣ .
Matrix A, when used as cost matrix together with an optimization algorithm that
preserves the contours’ point order in the matching, can originate suitable matches
if the two contours are defined by few points and the numbers of points that define
them are approximately equal. However, in other cases, the matching results can
be unstable, [Oliveira (2008)]. Thus, along with the curvature information, it is
necessary to consider more relevant information about the objects to be matched in
order to suppress the instability verified.
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As has been previously referred, if two objects are similar, then the lengths of
homologous elements are directly proportional. Thus, if the scaling effect is sup-
pressed, the distance between two elements in an object is equal to the distance of
the homologous elements in the other associated object. Here, this property is used
to define a new cost matrix, D, based on the distance of the contours objects’ points
to the correspondent centroid.

Let’s take the following two contours, contour 1 defined by n points and con-
tour 2 defined by m points into consideration. For contour 1, let X̄d1 represent
the weighted average of the distances of its points to its centroid with coordinates
(xc,yc), as defined in [Oliveira (2008)]. Now, consider the sequence of distances to
the centroid of the contour 1’s points: d11, d12 ,d13, ..., d1n, where for each point
Pi with coordinates (xi,yi):

d1i =
√

(xi− xc)
2 +(yi− yc)

2
/

X̄d1.

Based on the same principle, the sequence of distances to the centroid of contour 2
can be established: d21, d22 ,d23, ..., d2m.

Next, a new matrix D can be defined by calculating the differences between the
previously defined two sequences. Therefore, each element di j of matrix D is:

di j =
∣∣d1i−d2 j

∣∣ .
Finally, by adding the information of angular costs, represented in matrix A and the
information of the distance to the centroid represented in matrix D, the final cost
matrix C can be defined:

C = w×D+(w−1)× X̄−1×A,

where w ∈ [0, 1] represents the weight attributed to the distance to the centroid and
X̄ is the average of the curvature angles of the contour defined by fewer points.
Seeing that all elements of matrix D vary around 1 (one) whereas the elements
of matrix A do not, matrix A is multiplied by the factor X̄−1. Consequently, the
elements of matrix

(
X̄−1×A

)
also vary around 1 (one) and, in this way, the effect

of the parameter w is more stable.

In summary, the distance to the centroid information included in matrix C gives
stability to the global matching and the curvature information improves the local
matches, [Oliveira (2008)]. Moreover, each element ci j of matrix C represents the
match cost between point i of contour 1 and point j of contour 2. Furthermore, the
bigger its value is, the smaller is the affinity between the respective points.
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After having done several preliminary experiments which consider contours of dif-
ferent dimensions and shapes, the following can be concluded: (a) When the con-
tours are defined by a reduced number of points and the difference between the
number of points that defines them is insignificant, the low value of parameter w,
which reflects a reduced influence of the distance to centroid information and a
high influence of the curvature information, provides better results. (b) When the
contours are defined by a large number of points or there is a considerable differ-
ence between the numbers of points that define them, a value of parameter w near
1 (one), which represents the high influence of the distance to centroid information
and the low influence of curvature information, provides better results.

The results presented in this paper were obtained by using w = 0.8; because of the
fact that, in the experiments done, this value was proven to be a good compromise
between the effect of the curvature information and the distance to centroid infor-
mation. However, in a number of other particular applications, different values of
w combined with various values of k, could originate better results.

The computational complexity of all the processes involved in the building of the
cost matrix C is O(r×n×m), where r is a constant value. For the sake of sim-
plicity, one can only consider O(n×m). In all the references to computational
complexity throughout this paper this simplification has been applied.

3.2 Optimal global matching

To determine the global matching based on the previously defined cost matrix, a
cost optimization algorithm has been used. Due to the fact that the order of the con-
tours’ points must be preserved, in order to avoid crossed matches, an optimization
algorithm that respects this restriction should be employed. Let us consider a cost
matrix C, of dimension n×m, representing the matching cost of the n points of con-
tour 1 with the m points of contour 2. The matching problem could be formulated
as:

- Decision variables:
X = [xi j] , where:

xi j =

{
1, if point i(contour 1) matches point j (contour 2)
0, otherwise

;

- Objective function:

min f =
n

∑
i=1

m

∑
j=1

xi jci j;



98 Copyright © 2009 Tech Science Press CMES, vol.43, no.1, pp.91-110, 2009

- Constrains:

m
∑
j=1

xi j = 1, i = 1,2, ...,n;

n
∑

i=1
xi j ≤ 1, j = 1,2, ...,m;

The matching must preserve the circular order.

In order to solve this problem, we have chosen the algorithm based on dynamic
programming proposed in [Oliveira and Tavares (2008)], because it satisfies all the
above mentioned conditions in addition to the fact that it is very fast. In summary,
the algorithm selected determines the global matching of type one-to-one that min-
imizes the sum of all individual matches. If a contour is defined by n points and
the other by m points, with n ≤ m, only n matches are established, thus excluding
the (m−n) points of the contour defined by a greater number of points from the
matching. Its computational complexity is O(n×m× (m−n+1)), [Oliveira and
Tavares (2008)].

4 Similarity transformation estimation

The process of image alignment, usually referred to as image registration, is funda-
mental in many applications such as in medical imaging and image recognition.

A commonly used methodology to align two objects in images consists of applying
a series of transformations to one of the original images in order to increase the
similarity between them. Whenever it is impossible to further enhance the simi-
larity found between the images, or in the case of the convergence criteria being
satisfied, the objects are considered to be aligned.

Frequently, the alignment problem is associated with the matching problem. Thus,
in order to align the objects the matching between their homologous elements must
first be established. Then, based on the matches found, the parameters of an align-
ment function can be estimated. The methodology which has been proposed is of
this class: it only considers similarity transformations, which are solely based on
rotations, scaling and translations.

4.1 Local rotation, scaling and translation

Let [AB] and [A′B′] represent two straight line segments in the plane. When aiming
to determine the similarity transformation T that aligns these two segments, the
following condition must be verified:

T ([AB]) =
[
A′B′

]
.
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Without loss of generality, we can assume that T (A) = A′ and T (B) = B′.

A point on a plane can be represented in a unique way by a complex number. Thus,
considering the segments defined in the complex plane C, the similarity transfor-
mation T can be defined as a function that applies a scaling and a rotation around
the origin point, O = 0+0i, followed by a translation. Thus, mathematically, T can
be defined as:

T : C→ C
z 7→ z′ = wz+u

,

where w and u are complex numbers. In this way, through the definition of T , two
independent simultaneous equations can be defined:{

T (A) = A′

T (B) = B′
⇔

{
wA+u = A′

wB+u = B′
.

By solving these simultaneous equations in order to find u and w, the parameters of
function T can be determined. The absolute value of w represents the scaling and
its argument represents the rotation angle amplitude. Re(u) and Im(u) represent
the translation in the x-axis and y-axis directions, respectively.

4.2 Global rotation, scaling and translation

Supposing that a global matching of type one-to-one had already been established,
and it was defined by a function g like the following one (given by column):

g =
(

P1 P2 ... Pn

P′1 P′2 ... P′n

)
,

where the first row represents the points of contour 1, the second row represents
the corresponding points of contour 2 and n is the number of singular matches
established; that is, the number of the points of the contour which has been defined
by fewer points.

If a contour is defined by n points, then it is possible to define, at the upmost,(
n2−n

)
/2 distinct line segments connecting its points. Thus, for each segment

defined by two points of contour 1, the transformation of similarity T that trans-
forms it into the corresponding segment of contour 2 is determined, and, at the
upmost,

(
n2−n

)
/2 distinct values for local scaling, rotation angle and translation

vector can be obtained.

In this paper, in order to estimate the global parameters of the similarity transfor-
mation involved between two previously matched contours, a statistical processing
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of the local parameters determined has been made. First, the outsider values are ex-
cluded; then, the averages values of the rotation angles, scales and translations are
calculated by using the remaining values. We consider that a value xi is an outsider,
if
∣∣X− xi

∣∣> σ , where X is the average of all values and σ is the standard deviation.

The option for average solutions was a consequence of its simplicity and also be-
cause good results in the preliminaries experiments that were done were always
achieved. However, other statistical approaches could be considered, possibly orig-
inating different results. Notice that the elimination of the outsiders is important,
because the average is a statistic parameter that is very sensitive to extreme values.
Moreover, the contour pairs which have been used have a significant non-similarity
component between them; thus one may expect some local transformations values
to be very different to the global transformation parameters.

The computational complexity of the methodology developed to estimate the simi-
larity transformation between two previously matched contours is equal to O

(
n2
)
,

being n the number of points matched.

5 Results and conclusions

So as to validate the proposed matching algorithm, based on CDCI (curvature and
distance to centroid information), its results were compared with those obtained
by using the geometrical modeling and modal matching proposed by Shapiro and
Brady, [Shapiro and Brady (1992)]. As has been previously referred, the reference
methodology that was chosen was mainly due to the fact that it is widely known
in the image analysis domain, it is not very demanding in computational terms, in
particular in terms of execution speed, and the fact that it usually produces good
matching results. Before presenting the results obtained, we provide a brief sum-
mary of Shapiro and Brady’s methodology in the next subsection.

5.1 Shapiro and Brady’s methodology

Briefly, the first step is to build two squared proximity matrices, H1 and H2, also
called shape matrices, one for each contour which is to be matched, defined by the
n and m points, respectively. To build the matrix H1 of contour 1, the Gaussian-
weighted distances between all of its points should be calculated. Thus, each ele-
ment hi j of H1 is given by:

hi j = e−r2
i j/2σ2

1 ,

where r2
i j =

∥∥xi− x j
∥∥2

, xi and x j are points of contour 1 and σ1 is a parameter that
depends on the contour 1 shape and controls the interaction between its points. In
an analogous way, the matrix H2 is built for contour 2.
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To determine the best value of σi (i = 1, 2), several preliminary experiments were
carried out. Usually, the value σi = di/

√
2, where di is the average distance between

all points of the contour i, was the one which originated the best matching results.
Thus, the results presented by this paper were obtained by using this value.

The two proximity matrices, H1 and H2, are real, squared and symmetric. Thus,
all eigenvalues are real and all eigenvectors, commonly called modes, are orthogo-
nal. To make their singular value decomposition (SVD), an algorithm presented in
[Press, Teukolsky, Vetterling and Flannery (2002)] based on the Jacobi Transfor-
mations of a Symmetric Matrix was used.

The Jacobi method is absolutely foolproof for all real symmetric matrices, but for
large matrices it is slower than the QR method, for instance, [Press, Teukolsky,
Vetterling and Flannery (2002)]. However, the Jacobi algorithm is much simpler
than the more efficient methods.

The number of operations involved in the implemented Jacobi routine varies from
18n3 to 30n3, [Press, Teukolsky, Vetterling and Flannery (2002)]. In a simplified
manner, to make the SVD of the two matrices H1 and H2, the total complexity of
the algorithm is O

(
n3 +m3

)
.

The sign of each eigenvector is not unique, since that by switching its signal the
orthogonallity of the basis is not violated. However, it is vital that both sets of
eigenvectors have consistent directions, since they are used to build the affinity
matrix Z. Thus, a signal correction algorithm is needed.

In order to choose the signal of each eigenvectors, the approach presented in [Shapiro
(1991)] was implemented. Briefly, it can be described as follows: Let V1 and V2 rep-
resent the sets of unitary length eigenvectors of matrices H1 and H2, respectively,
considering that the eigenvectors are ordered according to the descendent order of
the correspondent eigenvalues. Next, V1 is considered to be the reference basis and
the axes in V2 are oriented one at a time, by choosing the direction (that is, the vec-
tor’s signal) for each one that maximizes the alignment of the two vectors’ features
set. Details of this approach can be seen in [Shapiro (1991)].

Finally, the affinity matrix Z is built by measuring the squared Euclidean distance
between the features’ vectors. In the implementation carried out by this study, only
25% of the eigenvectors were used, because this value was proved to be efficient in
many cases, [Tavares (2000)]. Considering k to be the number of eigenvectors used,
v1,p (i) the i-element of p-vector from the ordered set V1 and v2,q ( j) the j-element
of q-vector from the ordered set V2, each zi j of matrix Z is given by:

zi j =
k

∑
r=1

(v1,r (i)− v2,r ( j))2.
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The values of each zi j vary between 0 (zero) and 4 (four). A perfect match is
indicated by the value 0 (zero), while a value of 4 (four) indicates an inappropriate
match. The computational complexity involved in the building of the matrix Z is
O(n×m× k).
As has been previously referred, to obtain the global matching that minimizes the
sum of all matches, considering Z as the cost matrix, the algorithm based on dy-
namic programming proposed in [Oliveira and Tavares (2008)] was used.

5.2 Experimental results

The main goal of this work was the evaluation of the quality of the matches found
based on CDCI by comparing the results obtained with those resulting from the
use of the cost matrix established by geometric modeling as proposed by Shapiro
and Brady. To make the comparison between the two matching methodologies
possible, the same algorithms for both methodologies were used, except for those
used to build the cost matrices. The algorithms were implemented in C++ language,
using Microsoft Visual Studio 6. All the experiments were carried out in a PC with
an AMD Turion64 microprocessor at 2.0GHz, with 1.0GB of RAM and running
Microsoft Windows XP.

In the following experiments which will be presented, the contours used were ex-
tracted from the images available in the database “silhouette database(1032 shapes)”,
organized by the Laboratory for Engineering Man/Machine System (LEMS). Two
image classes were considered: class “hammer”, with a total of 32 images, and
class “tool”, with a total of 41 images.

For the images used, the contours extraction was easy and no special segmentation
technique was used. The flowed segmentation approach can be divided in three
steps: first, the images were binarized; then, the objects’ inner points were elimi-
nated; and finally, the contours’ points were ordered through the use of a contour
tracking algorithm.

Shapiro and Brady’s methodology is based on the singular value decomposition of
the proximity matrices of the two contours to be matched. Thus, for large proximity
matrices, this methodology requires a high computational effort, even if a faster
algorithm is used to solve the associated eigenvalues/eigenvector problem. Thus,
in the comparisons that have been carried out, only contours defined by less than
200 points were used.

In Table 1, some examples of the matches found by using the cost matrix based
on CDCI as well as by using the cost matrix based on the Shapiro and Brady’s
methodology can be observed. In the same table, the numbers of points that de-
fine each contour and the total of computational time required (that is, to extract
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the contours, build the cost matrix, establish the matches, determine the similarity
transformation and align the contours) are also presented. The examples shown
were chosen to permit the simple visualization of the original contours and the
matches established. In addition, and bearing the same goal in mind, only pairs of
contours where the rotation angle involved was reduced are shown. Furthermore,
in each case presented, only 25% of the matches found are represented.

Table 1: Examples of matches obtained and the associated computation times re-
quired by the proposed methodology (CDCI) and Shapiro and Brady’s methodol-
ogy (in which just 25% of the matches found are represented by green lines).

Methodology used 
Objects and nº of contours points CDCI Shapiro and Brady’s 

 
"hammer01" 
141 points 

 
"hammer02" 
139 points 

 
Time: 0.016 s 

 
Time: 2.813 s 

 
"hammer25" 
193 points 

 
"hammer26" 
126 points 

 
Time: 0.047 s 

 
Time: 4.766 s 

 
"tool27" 

105 points 

 
"tool23" 

189 points 
 

Time: 0.062 s 
 

Time: 5.094 s 

 
"tool09" 

200 points 

 
"tool03" 

185 points 
 

Time: 0.047 s 
 

Time: 7.844 s 
 

In Table 2, some examples of contours alignment, obtained by the proposed align-
ment methodology, are illustrated. In these cases, the matches were previously
obtained by resorting to CDCI.

The matching results and respective alignments are presented in Table 3 for the two
matching methodologies under comparison. The classification of the quality of the
matches and alignments found was made through visual observation.

In Table 4, a comparison of the total computational time needed by both method-
ologies is made. The results presented were obtained by taking more than 150
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Table 2: Examples of alignments obtained using the proposed algorithm to estimate
the similarity transformation involved between two matched contours (the matches
were found by using CDCI).

Original images Contours in their 
original positions Aligned contours 

 
"hammer03" 

 
"hammer30" 

 

 
"hammer13" 

 
"hammer28" 

 
"hammer21" 

 
"hammer35" 

 

 
"hammer27" 

 
"hammer38" 

 

 
"tool12" 

 
"tool05"  

 

 
"tool16" 

 
"tool19" 
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Table 3: Summary of the matches and alignments obtained by using the method-
ology based on CDCI and Shapiro and Brady’s methodology, when considering
contours defined by 100 to 200 points.

Methodology based on CDCI

Image classes
Matching Similarity transformation

Good Satisfactory Bad Good Satisfactory Bad
“hammer” 100% 0% 0% 100% 0% 0%

“tool” 100% 0% 0% 100% 0% 0%
Shapiro and Brady’s methodology

“hammer” 51% 24% 25% 58% 17% 25%
“tool” 54% 31% 15% 59% 26% 15%

experimental cases for each methodology into consideration.

Finally, to show how instable the Shapiro and Brady’s methodology can be, Table 5
presents four experiments made with two different values of σi, and one can clearly
see how a reduce change on this parameter can affect the results obtained.

Table 4: Total computation times required by each of the two methodologies com-
pared when considering contours defined by 100 to 200 points.

Images classes
Total time [s]

Methodology based on CDCI Shapiro & Brady’s methodology
Min Average Max Min Average Max

“hammer” < 0.01 0.03 0.08 1.11 2.46 10.10
“tool” 0.01 0.04 0.08 1.13 4.86 8.63

5.3 Results discussion

In all the experimental tests which considered the contours of classes “hammer”
and “tool”, the methodology based on CDCI always presented good matches, and
consequently, good estimations for the similarity transformation in question. How-
ever, when Shapiro and Brady’s methodology was used, only 51% and 54% of good
matches were obtained for the classes “hammer” and “tool”, respectively.

In some experiments, the matching obtained as a result of Shapiro and Brady’s
methodology were of bad quality or did not make any sense (for example, the
matching between the contours “hammer08” & “hammer39” represented in Table
5). This happened in 25% and 15% of the matches for the classes “hammer” and
“tool”, respectively.
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Table 5: Matching of the contours “hammer08” & “hammer39” on the left and
“hammer01” & “hammer04” on the right, using Shapiro and Brady’s methodology
with the indicated values for the parameter σi.

 
2ii d=σ  

 
2ii d=σ  

 
22ii d=σ  

 
22ii d=σ  

 

Shapiro and Brady’s methodology was very unstable in several experiments that
were carried out. In fact, in some cases where bad matches were established, good
matches could have been obtained if the methodology parameters had been ad-
justed for these particular cases. However, as a consequence of this, some previous
well established matches would have been worse if these new parameters had been
adopted instead. For instance, as Table 5 illustrates, by considering σi = di/2

√
2,

the matching between the contours “hammer08” & “hammer39” improved, but the
matching between the contours “hammer01” & “hammer04” became worse.

Obviously, the similarity transformation parameters depend on their previous match-
ing. When the matching was good, the estimated values for the similarity transfor-
mation were also good. When the matching was of satisfactory quality, the esti-
mated values for the similarity transformation were good in a considerable quantity
of the cases analyzed, and satisfactory in the others. When the matching was bad,
the alignments were also usually bad. These final last observations confirm that the
statistical processing done on the parameters seems to be appropriate.

In addition, some experiments were carried out by using contours defined by fewer
points, but, in general, the quality of the matches obtained by both methodologies
under comparison was like the one previously described.

In relation to to the execution times, the methodology based on CDCI required less
execution time as was to be expected.
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6 Final conclusions and future work perspectives

An important fact that should be emphasized is that the methodology based on
CDCI was proven to be robust for the classes of objects used. In fact, the results
were always good, independently of the contours’ shapes and the numbers of points
which define them. In addition, this methodology was proven to be more adequate
to match contours defined by ordered points than the methodology used by Shapiro
and Brady.

The methodology presented to estimate the similarity transformation produced good
results as well, mainly when used in combination with the matching methodology
based on CDCI.

As a future work perspective, one possibility could be the matching of all contours
presented in images. That is, each image can have more than one contour and
the goal would be the establishment of the best matching of each contour of one
image with the corresponding contour of the other image. In order to achieve this,
a similarity measure would be needed to decide which pairs of contours should be
matched.

Another possibility could be the development of a new methodology to match ob-
jects defined by sets of points without the order requirement, which would permit
the consideration of the objects’ inner points. Several methodologies of this kind
already exist, but in general they are quite sensitive to the objects’ shapes, to the
image acquisition systems or even to the geometric transformation involved.

The usage of the methodologies proposed in this paper to match and align organs
presented in medical images is another task which should be addressed in the near
future.
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