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Abstract: This paper has two purposes. The first is to prove existence and
uniqueness theorems for the solution of an inverse problem for the general linear
kinetic equation with a scattering term. The second one is to develop a numerical
approximation method for the solution of this inverse problem for two dimensional
case using finite difference method.
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1 Introduction

Solvability of an inverse problem for the general kinetic equation with a scatter-
ing term is considered and an efficient approximation method is proposed to solve
this problem. To demonstrate the feasibility of the given method, some numeri-
cal experiments are performed in the last section of the paper. The proofs of the
solvability theorems pave a way for the development of a numerical method for the
solution of the inverse problem. This is a new approach since nobody has solved
such inverse problems for kinetic equations (KE) numerically in the past.

KE are widely used for qualitative and quantitative description of physical, chemi-
cal, biological, and other kinds of processes on a microscopic scale. They are often
referred to as master equations since they play an important role in the theory of
substance motion under the action of forces, in particular, irreversible processes.

We consider the linear kinetic equation

Lu≡ {u,H}+ I1 (u) = λ (x) , (1)

{u,H}=
n

∑
i=1

(
∂H
∂vi

∂u
∂xi
− ∂H

∂xi

∂u
∂vi

)
, I1 (u) =

∫
G

K
(
x,v,v′

)
u
(
x,v′
)

dv′
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in the domain Ω = {(x,v) : x ∈ D⊂ Rn, v ∈ G⊂ Rn, n≥ 1}, where the boundaries
∂D, ∂G∈C3, ∂Ω = Γ1∪Γ2, Γ1 = ∂D×G, Γ2 = D×∂G and Γ1, Γ2 are the closures
of Γ1, Γ2, respectively. H (x,v) is the Hamiltonian, K (x,v,v′) is a given function
called scattering kernel and λ (x) is a source function.

Eq. 1 is extensively used in plasma physics and astrophysics [Alexeev (1982); Li-
boff (1979)]. In applications, u represents the number (or the mass) of particles in
the unit volume element of the phase space in the neighbourhood of the point (x,v),
and ∇xH is the force acting on a particle.

Problem 1. Determine the functions u(x,v) and λ (x) that satisfy Eq. 1, assuming
that the Hamiltonian H (x,v)∈C2

(
Ω
)
, K (x,v,v′)∈C1

(
Ω
)

are given and the trace
of the solution of Eq. 1 on the boundary ∂Ω is known: u|

∂Ω
= u0.

Inverse problems for KE and integral geometry problems are closely interrelated. In
other words, many problems of integral geometry can be reduced to the correspond-
ing inverse problems for KE, and vice versa [Amirov (2001)]. Problem 1 is also
related to a problem of integral geometry when K = 0 [Amirov (2001)]. Investiga-
tion of the uniqueness of solution of the problem of integral geometry by reducing
it to an equivalent inverse problem for KE was first carried out in [Lavrent’ev and
Anikonov (1967)]. In many cases, in uniqueness theorems for inverse problems
for various KE, unknown coefficients (or right hand side of the equation) depend
only on space variable x [Anikonov, Kovtanyuk, and Prokhorov (2002); Anikonov
and Amirov (1983); Lavrent’ev, Romanov, and Shishatskii (1980)]. Some other
interesting results in this field can be found in [Amirov (2001); Anikonov (2001);
Klibanov and Yamamoto (2007); Natterer (1986)]. However, the issue of existence
of the solution of inverse problems for KE is basically unsolvable, as it is the case
of all inverse (ill posed) problems. The main difficulty in studying the solvability
of Problem 1, as in many classical cases of inverse problems, lies in their overde-
terminacy. Therefore, the initial data for these problems can not be arbitrary; they
should satisfy some "solvability conditions" which are difficult to establish [Amirov
(2001)]. It should be noted that the set of functions u0 for which Problem 1 is solv-
able is not everywhere dense in any of the spaces L2(∂Ω), Cm(∂Ω) and Hm(∂Ω).
The standard spaces Cm (Ω) , L2 (Ω) and Hk (Ω) are described in detail, for exam-
ple, in [Lions and Magenes (1972); Mikhailov (1978)].

As a rule, the data in problems of integral geometry and related inverse prob-
lems for KE are of quasianalytic character, i.e., their values specified in a domain
of Lebesgue measure as small as desired determine their values in an essentially
larger domain [Lavrent’ev, Romanov, and Shishatskii (1980); Courant and Hilbert
(1962)]. In particular, this implies that it is not possible to avoid overdeterminacy
of the problem by specifying the data on a part of the boundary rather than on the
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whole boundary. Even if it were possible to find the solvability conditions for the
mentioned overdetermined problems, it seems that these conditions would not al-
ways be satisfactory for the practical point of view. The reason is that the real data
in practice usually have some errors and thus fall out of the data class for which the
existence of a solution is established.

It is worth to remember here that, in the theory of inverse problems, usually "overde-
terminacy" means that the number of free variables in the data exceeds the num-
ber of free variables in the unknown coefficient or right hand side of the equation
(λ (x)), and this is not the case for n = 1 here, whereas for dimension n≥ 2 Problem
1 (or the related IGP) is overdetermined in the last sense. But here, the underly-
ing operator of the related IGP is compact and its inverse operator is unbounded.
Therefore, it is impossible to prove general existence results. This is the true reason
why for existence of solution to Problem 1 need such special conditions on the data
u0, so we use the term "overdeterminacy" in this sense here.

In [Amirov (2001)], a genereal scheme is presented for proving the solvability of
these problems: using some extension of the class of unknown functions λ , overde-
termined problem is replaced by a determined one. This is achieved by assuming
the unknown function λ depends not only upon the space variables x (as in the case
of the classical IGP), but also upon the direction v in a specific way, i.e., we con-
sider λ (x,v). It should be noted that λ (x,v) cannot be arbitrarily dependent upon
v, because in the opposite case the problem would be underdetermined and the
nonuniqueness examples of a solution can be easily constructed. Herein the spe-
cial dependence of λ (x,v) upon the direction means that λ (x,v) satisfies a certain

differential equation,
(

L̂λ = 0
)

with the following properties:

i) Problem 1 with the function λ (x,v) becomes a determined one,

ii) The sufficiently smooth functions λ depending only on x satisfy this equation.

Suppose that, we have found a differential equation for λ (x,v) satisfying the prop-
erties (i)-(ii), and that, a priori we know a function ue

0 to be the exact data of Prob-
lem 1 related to a function λ depending only on x. Then, utilizing ue

0, we can
construct a solution λ̃ to Problem 1. By uniqueness of a solution, λ̃ coincides with
λ (x). If we know the approximate data ua

0 with
∥∥ue

0−ua
0

∥∥
H3(∂Ω) ≤ ε , we can con-

struct an approximate solution λ
a(x,ϕ) such that ‖λ −λ

a‖L2(Ω) ≤Cε . Recall that,
if λ depends only on x and ua

0 does not satisfy the "solvability conditions", the so-
lution λ

a depending only x does not exist. Here the data are specified on ∂Ω and
C > 0 is not dependent on ue

0 and ua
0. In other words, we construct a regularising

procedure for Problem 1. In general, the equation L̂λ = 0 with the properties (i)-(ii)
for the same problem is not uniquely determined.

Consequently, for Problem 1 an equation ( L̂λ = 0) possessing properties (i)-(ii)
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and some spaces (depends essentially on the problem) in which the problem is
uniquely solvable are constructed. The proposed method for proving the solvability
of inverse problems for KE and Problem 1 leads to a Dirichlet problem for the
third order equation of the form Au ≡ L̂Lu = F , where L̂ and L are second and
first order differential expressions, respectively, defined in the domain Ω. Here the
equation Au = F is satisfied in the sense of generalized functions and solution
of the Dirichlet problem for this equation is sought in the appropriate classes of
generalized functions.

This new method of investigating the solvability of overdetermined inverse prob-
lems was firstly proposed by Amirov (1986) for transport equation. Some recent re-
sults on numerical methods for the inverse problems that occur in several branches
of engineering and sciences are presented in [Ling and Atluri (2006), Liu (2006),
Huang and Shih (2007), Wu, Al-Khoury, Kasbergen, Liu, and Scarpas (2007); Ling
and Takeuchi (2008); Marin, Power, Bowtell, Sanchez, Becker, Glover and Jones
(2008); Beilina and Klibanov (2008)].

2 Solvability of the Problem

Let us introduce some definitions and notations, which will be used throughout this
paper. Let C̃3

0 =
{

ϕ : ϕ ∈C3 (Ω) , ϕ = 0 on ∂Ω
}

and select a set {w1,w2, ...} ⊂
C̃3

0 (Ω), which is a complete and orthonormal set in L2 (Ω). We may assume here
that the linear span of this set is everywhere dense in H0

1,2 (Ω), where H0
1,2 (Ω) is the

set of all real-valued functions u(x,v) ∈ L2 (Ω) that have generalized derivatives
uxi , uvi , uxiv j , uviv j (i, j = 1,2, ...,n), which belong to L2 (Ω) and whose trace on
∂Ω is zero. Indeed, the space H0

1,2 (Ω) being separable, there exists a countable set

{ϕ i}
∞

i=1 ⊂ C̃3
0 (Ω) which is everywhere dense in this space. If necessary, this set up

can be extended to a set which is everywhere dense in L2 (Ω). Orthonormalizing the
latter in L2 (Ω), we obtain {wi}∞

i=1. We denote the orthogonal projector of L2 (Ω)
onto Mn by Pn, where Mn is the linear span of {w1,w2, ...,wn}. The set of all
functions u with the following two properties is denoted by Γ(A):
i) For any u∈L2 (Ω) there exists a function F ∈L2 (Ω) such that for all ϕ ∈C∞

0 (Ω),

〈u,A∗ϕ〉 = 〈F ,ϕ〉 and Au = F , where Au = L̂Lu, L̂ =
n

∑
i=1

∂ 2

∂xi∂vi
and A∗ is the

operator which is conjugate to A in the sense of Lagrange. Here 〈., .〉 is the scalar
product in L2 (Ω) and C∞

0 (Ω) is the set of all functions defined in Ω which have
continuous partial derivatives of order up to all k < ∞, whose supports are compact
subsets of Ω.

ii) There exists a sequence {uk} ⊂ C̃3
0 such that uk → u in L2 (Ω) and 〈Auk,uk〉 →

〈Au,u〉 as k→ ∞.
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Since the unknown function λ depends only on x, Problem 1 is overdetermined and
this problem is replaced by the following determined one:

Problem 2. Find a pair of functions (u,λ ) defined in Ω that satisfies the following
relations

Lu = λ (x,v), (2)

u|∂Ω = u0, (3)

L̂λ = 0, (4)

provided that the Hamiltonian H (x,v) ∈C2
(
Ω
)
, K (x,v,v′) ∈C1

(
Ω
)

are given.

Here Eq. 4 is satisfied in generalized functions sense, i.e.,
〈

λ , L̂∗η
〉

= 0 for any

η ∈C∞
0 (Ω).

Theorem 1. Suppose that H ∈C2
(
Ω
)

and the inequalities:

n

∑
i, j=1

∂ 2H
∂vi∂v j

ξ
i
ξ

j ≥ α1 |ξ |2 ,
n

∑
i, j=1

∂ 2H
∂xi∂x j

ξ
i
ξ

j ≤ 0,

(
α1−

1
2

(1+L0)
)

> 0, (5)

hold for all ξ ∈Rn, (x,v) ∈Ω. In (5), α1 is a positive number, L0 = K0 (mesG)2C0

where mesG is Lebesgue measure of G, K0 = max
(x,v)∈Ω

{
K2

v j

}
and C0 is a constant

occurred by virtue of Steklov inequality. Then Problem 2 has at most one solution
(u,λ ) such that u ∈ Γ(A) and λ ∈ L2 (Ω).

Proof. The proof of Theorem 1 is similar to Theorem 2.2.1 in [Amirov (2001)].
But, due to the scattered term, this proof requires non-trivial modifications. Let
(u,λ ) be a solution to Problem 2 such that u = 0 on ∂Ω and u ∈ Γ(A) . Eq. 2 and
condition (4) imply Au = 0. Since u ∈ Γ(A), there exists a sequence {uk} ⊂ C̃3

0
such that uk→ u in L2 (Ω) and 〈Auk,uk〉 → 0 as k→ ∞. Observing that uk = 0 on
∂Ω, we have

−〈Auk,uk〉=
n

∑
i=1

〈
∂

∂vi
(Luk) ,ukxi

〉
. (6)
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For lu≡ {u,H},

n

∑
j=1

∂uk

∂x j

∂

∂v j
(luk)

=
1
2

n

∑
i, j=1

(
∂ 2H

∂vi∂v j

∂uk

∂xi

∂uk

∂x j
− ∂ 2H

∂xi∂x j

∂uk

∂vi

∂uk

∂v j

)
+

1
2

n

∑
i, j=1

∂

∂v j

[
∂uk

∂x j

(
∂uk

∂xi

∂H
∂vi
− ∂uk

∂vi

∂H
∂xi

)]
+

1
2

n

∑
i, j=1

∂

∂xi

(
∂H
∂vi

∂uk

∂x j

∂uk

∂v j

)
−1

2

n

∑
i, j=1

∂

∂x j

[
∂uk

∂v j

(
∂uk

∂xi

∂H
∂vi
− ∂uk

∂vi

∂H
∂xi

)]
− 1

2

n

∑
i, j=1

∂

∂vi

(
∂H
∂xi

∂uk

∂x j

∂uk

∂v j

)
.(7)

If the geometry of the domain Ω and the condition uk = 0 on ∂Ω are taken into
account, then from (6) and (7) we obtain

−〈Auk,uk〉= J (uk)+
n

∑
j=1

〈
∂

∂v j
(I1uk) ,ukx j

〉
, (8)

where

J (uk)≡
1
2

n

∑
i, j=1

∫
Ω

(
∂ 2H

∂vi∂v j

∂uk

∂xi

∂uk

∂x j
− ∂ 2H

∂xi∂x j

∂uk

∂vi

∂uk

∂v j

)
dΩ. (9)

We now estimate the second term on the right hand side of (8). Using the Cauchy-
Schwarz inequality and the condition uk|∂Ω

= 0, we have

n

∑
j=1

〈
∂

∂v j
(I1uk) ,ukx j

〉
≤ 1

2

n

∑
j=1

∫
Ω

u2
kx j

dΩ+
n

∑
j=1

K0

2
(mesG)2C0

∫
Ω

u2
kx j

dΩ, (10)

where K0, L0, C0 and mesG are given in the statement of the theorem. Thus from
(5), (8) and (10), we obtain the following inequality

J (uk)+
n

∑
j=1

〈
∂

∂v j
(I1uk) ,ukx j

〉
≥ α1

n

∑
j=1

∫
Ω

u2
kx j

dΩ+
n

∑
j=1

〈
∂

∂v j
(I1uk) ,ukx j

〉

≥ α1

n

∑
j=1

∫
Ω

u2
kx j

dΩ− 1
2

(1+L0)
∫
Ω

u2
kx j

dΩ

=
(

α1−
1
2

(1+L0)
) n

∑
j=1

∫
Ω

u2
kx j

dΩ (11)
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and using definition of Γ(A) we have
∫
Ω

|∇xu|2 dΩ≤ 0, where ∇xu = (ux1 , ...,uxn).

Since u = 0 on ∂Ω, it follows that u = 0 in Ω. Then (2) implies λ (x,v) = 0. Hence
uniqueness of the solution is proven.

If u0 ∈ C3 (∂Ω) and ∂D ∈ C3, ∂G ∈ C3 then Problem 2 can be reduced to the
following problem [Amirov (2001)].

Problem 3. Determine the pair (u,λ ) from the equation

Lu = λ (x,v)+F (12)

provided that F ∈ H2 (Ω), H ∈ C2
(
Ω
)
, K ∈ C1

(
Ω
)

are given, the trace of the
solution u on the boundary ∂Ω is zero and λ satisfies Eq. 4.

Remark 1. The solvability of Problem 1 depends essentially on the geometry of the
domain Ω. More precisely, it is important that Ω can be represented in the form of
the direct product of two domains D and G [Amirov (2001)].

In this reduction, we simply consider a new unknown function u = u−Φ, where
Φ is a function such that Φ|

∂Ω
= u0 and Φ ∈ C3 (Ω). Since u0 ∈ C3 (∂Ω) and

∂D ∈C3, ∂G ∈C3 the existence of the function Φ follows from Theorem 2, Sec.
4.2., Chapter III in [Mikhailov (1978)]. Finally, if we again denote u by u, we can
obtain Eq. 12 and the condition u|

∂Ω
= 0, where F =−LΦ. Of course, the function

u depends on F (therefore on Φ). But because of the uniqueness of the solution to
Problem 2, a function u = u + Φ does not depend on choice of Φ (also on F) and
it depends only on u0. This is a standart situation for the Galerkin method (see e.g.
section 2.3., chapter 5, in [Mikhailov (1978)]).

Theorem 2. Assume H ∈C2
(
Ω
)

and the following inequalities hold for all (x,v)∈
Ω, ξ ∈ Rn :

n

∑
i, j=1

∂ 2H
∂vi∂v j

ξ
i
ξ

j ≥α1 |ξ |2 ,
n

∑
i, j=1

∂ 2H
∂xi∂x j

ξ
i
ξ

j ≤−α2 |ξ |2 ,

(
α1−

1
2

(1+L0)
)

> 0,

(13)

where α2 is a positive number and F ∈ H2 (Ω). Then there exists a solution (u,λ )
of Problem 3 such that u ∈ Γ(A)∩H1 (Ω), λ ∈ L2 (Ω).

Proof. Let us consider the following auxiliary problem

Au = F , (14)
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u|
∂Ω

= 0, (15)

where F = L̂F . An approximate solution to the Problem (14)-(15) is sought in the
form

uN =
N

∑
i=1

αNiwi, αN = (αN1 ,αN2 , ...,αNN ) ∈ RN , (16)

with the help of the following relations:

〈AuN−F ,wi〉= 0, i = 1,2, ...,N. (17)

Equalities (17) form a system of linear algebraic equations for the vector αN .
Let’s multiply ith equation of the homogeneous system (F = 0) by −2αNi and
sum from 1 to N with respect to i, then −2〈AuN ,uN〉 = 0 is obtained. If iden-
tity (8) is considered then the assumptions of the theorem imply ∇uN = 0, ∇uN =(

uNx1
, ...,uNxn

,uNv1
, ...,uNvn

)
and due to the conditions uN = 0 on ∂Ω and uN ∈

C̃3
0 (Ω), we have uN = 0 in Ω. Since the system {wi} is linearly independent, we

obtain αNi = 0, i = 1,2, ...,N. The homogeneous version of system (17) has only
trivial solution and thus, system (17) has a unique solution αN = (αNi), i = 1, ...,N
for any function F ∈ H2 (Ω).
Now we estimate the solution uN in terms of F . We multiply the ith equation of the
system by −2αNi and sum from 1 to N with respect to i. Since F = L̂F ,

−2〈AuN ,uN〉=−2
〈

L̂F,uN

〉
, (18)

is obtaned. Observing that uN = 0 on ∂Ω and transferring the derivatives with
respect to xi on the function uN , the right-hand side of (18) can be estimated as

−2
〈

L̂F,uN

〉
≤ β

∫
Ω

|∇vF |2 dΩ+β
−1
∫
Ω

|∇xuN |2 dΩ, (19)

where 0 < β
−1 < α3 = α1− 1

2 (1+L0) and ∇vF = (Fv1 , ...,Fvn). In the proof of
Theorem 1, we showed that −〈AuN ,uN〉 is equal to

J (uN)+
n

∑
j=1

∫
Ω

uNx j

∫
G

Kv j uNdv′dΩ. (20)

Then using (10), (13) and (18) we have

α2

∫
Ω

|∇vuN |2 dΩ+α3

∫
Ω

|∇xuN |2 dΩ≤ β

∫
Ω

|∇vF |2 dΩ+β
−1
∫
Ω

|∇xuN |2 dΩ. (21)
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Recalling that Ω is bounded and uN = 0 on ∂Ω, the last inequality implies

‖uN‖ ◦
H1(Ω)

≤C‖|OvF |‖L2(Ω) , (22)

where the constant C > 0 does not depend on N. Since
◦

H1 (Ω) is a Hilbert space,
there exists a subsequence in this set, denoted again by {uN} , converges weakly

to a certain function u ∈
◦

H1 (Ω) and ‖u‖ ◦
H1(Ω)

≤ lim
N→∞

‖uN‖ ◦
H1(Ω)

≤C‖|OvF |‖L2(Ω)

holds. Transferring the operator L̂ to wi in (17) and passing to the limit as N→ ∞

yield to

〈
Lu−F, L̂η

〉
= 0, (23)

for any η ∈
◦
H1,2 (Ω). Setting λ = Lu− F and taking into account C∞

0 (Ω) ⊂
◦
H1,2 (Ω), we see that λ satisfies the condition (4) and using (22) we obtain

‖λ‖L2(Ω) ≤C‖5vF‖L2(Ω) +‖F‖L2(Ω) . (24)

In expression (24), C stands for different constants that depend only on the given
functions and the measure of the domain. Thus we have found a solution (u,λ ) to

Problem 3, where u∈
◦

H1 (Ω) and λ ∈ L2 (Ω). Now it will be proven that u∈ Γ(A) .
Since u ∈ L2 (Ω), F ∈ H2 (Ω) and F =L̂F , from (23) it follows that F = Au ∈
L2 (Ω) in the generalized functions sense. Indeed, for any η ∈C∞

0 (Ω) we have

〈u,A∗η〉=
〈

u,
(

L̂L
)∗

η

〉
=
〈

Lu, L̂η

〉
=
〈

F, L̂η

〉
= 〈F ,η〉 . (25)

To complete the proof, it remains to show the convergence 〈AuN ,uN〉 → 〈Au,u〉 as
N → ∞. From (17), it follows that PNAuN = PNF . Since PN is an orthogo-
nal projector onto Mn, PNF strongly converges to F in L2 (Ω) as N → ∞, i.e.,
PNAuN →F = Au strongly in L2 (Ω) as N → ∞. Then, 〈PNAuN ,uN〉 → 〈Au,u〉
as N → ∞ because {uN} weakly converges to u in L2 (Ω) as N → ∞. By the defi-
nition of PN and uN (since the operator PN is self adjoint in L2 (Ω)), 〈AuN ,uN〉=
〈AuN ,PNuN〉= 〈PNAuN ,uN〉. Hence 〈AuN ,uN〉→ 〈Au,u〉 as N→∞, which com-
pletes the proof.
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3 The Finite Difference Method (FDM)

Now we concern with the construction of finite difference approximation for the
following 2-dimensional inverse problem: Find (u,λ ) from the relations

Hv (x,v)ux (x,v)−Hx (x,v)uv (x,v) = λ (x,v) , (26)

u(x,v)|
∂Ω

= u0 (x,v) , (27)

L̂λ = 0, (28)

where Ω = {(x,v)| x ∈ (a,b)⊂ R, v ∈ (c,d)⊂ R}. By applying operator L̂ to both
sides of the Eq. 26, the following auxiliary Dirichlet problem for third order partial
differential equation is obtained:

Au≡ uxvxHv−uvvxHx +uxxHvv−uvvHxx +uxvHvx−uvxHxv +uxHvvx−uvHxvx = 0,

(29)

u|
∂Ω

= u0. (30)

Using the central finite difference formulas in (29), we obtain the following system
of simultaneous algebraic nodal equations:

(−k1 + k2) ũi−1, j−1 +(2k1− k4 + k6) ũi, j−1 +(−k1− k2) ũi+1, j−1

+(−2k2 + k3− k5) ũi−1, j +(−2k3 +2k4) ũi, j +(2k2 + k3 + k5) ũi+1, j

+(k1 + k2) ũi−1, j+1 +(−2k1− k4− k6) ũi, j+1 +(k1− k2) ũi+1, j+1

= 0, i = 1, ..., I, j = 1, ...,J, (31)

where I, J are positive integers, ∆x = (b− a)/(I + 1) and ∆v = (d− c)/(J + 1)
are step sizes in the directions x, v, respectively and ũi, j is the finite difference
approximation for the solution u(xi,v j) = u(a+ i∆x,c+ j∆v),

k1 =
hi, j+1−hi, j−1

4(∆x)2 (∆v)2 , k2 =
hi+1, j−hi−1, j

4(∆x)2 (∆v)2 , (32)

k3 =
hi, j+1−2hi, j +hi, j−1

(∆x)2 (∆v)2 , k4 =
hi+1, j−2hi, j +hi−1, j

(∆x)2 (∆v)2 , (33)

k5 =
hi+1, j+1−2hi+1, j +hi+1, j−1−hi−1, j+1 +2hi−1, j−hi−1, j−1

4(∆x)2 (∆v)2 , (34)

k6 =
hi+1, j+1−2hi, j+1 +hi−1, j+1−hi+1, j−1 +2hi, j−1−hi−1, j−1

4(∆x)2 (∆v)2 . (35)
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Taking into account (30), we have the following discrete boundary conditions

ũ0, j = u(a,v j), ũI+1, j = u(b,v j), j = 0,1, ...,J +1, (36)

ũi,0 = u(xi,c), ũi,J+1 = u(vi,d), i = 0,1, ..., I +1. (37)

The approximate solution ũi, j is obtained at I× J mesh points of Ω by solving the
matrix equation

T Ũ = V, (38)

where T is a block tridiagonal matrix

T =



A(1) B(1) 0 · · · 0

C(2) A(2) B(2) . . .
...

0 C(3) . . . . . . 0
...

. . . . . . . . . B(J−1)

0 · · · 0 C(J) A(J)


IJ×IJ

(39)

and A( j), B( j), C( j) are given by

A( j) =



a(1, j)
1 a(1, j)

2 0 · · · 0

a(2, j)
3 a(2, j)

1 a(2, j)
2

. . .
...

0 a(3, j)
3

. . . . . . 0
...

. . . . . . . . . a(I−1, j)
2

0 · · · 0 a(I, j)
3 a(I, j)

1


I×I

, (40)

B( j) =



b(1, j)
1 b(1, j)

2 0 · · · 0

b(2, j)
3 b(2, j)

1 b(2, j)
2

. . .
...

0 b(3, j)
3

. . . . . . 0
...

. . . . . . . . . b(I−1, j)
2

0 · · · 0 b(I, j)
3 b(I, j)

1


I×I

, (41)

C( j) =



c(1, j)
1 c(1, j)

2 0 · · · 0

c(2, j)
3 c(2, j)

1 c(2, j)
2

. . .
...

0 c(3, j)
3

. . . . . . 0
...

. . . . . . . . . c(I−1, j)
2

0 · · · 0 c(I, j)
3 c(I, j)

1


I×I

(42)
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where a1 =−2k3 +2k4, a2 = 2k2 +k3 +k5, a3 =−2k2 +k3−k5, b1 =−2k1−k4−
k6, b2 = k1− k2, b3 = k1 + k2, c1 = 2k1− k4− k6, c2 =−k1− k2, c3 =−k1 + k2.

V is a column matrix, which consists of boundary values ũ0, j, ũI+1, j, ũi,0 and
ũi,J+1 (i = 0,1, ..., I +1, j = 0,1, ...,J +1) and Ũ is the solution vector:

Ũ = [ũ1,1, ũ2,1,, ..., ũI,1, ũ1,2, ũ2,2, ..., ũI,2, ..., ũ1,J, ũ2,J, ..., ũI,J]
T . (43)

To calculate λ numerically, the central-difference formulas are used in (26) and the
following difference equation is solved:

∆x∆v [k1ũi+1, j− k1ũi−1, j− k2ũi, j+1 + k2ũi, j−1] = λ̃ i, j, (44)

i = 1,2, ..., I, j = 1,2, ...,J, where λ̃ i, j is the approximation to the function λ (xi,v j)=
λ (a+ i∆x,c+ j∆v).

4 Numerical Experiments

The proposed method has been implemented and evaluated on several inverse prob-
lems. Two examples are presented below. The computations are performed using
MATLAB 7.0 program on a PC with Intel Core 2 T7200 2.00 GHz CPU, 1 Gb
memory, running under Windows Vista. In all of our tests, we have introduced
the multiplicative random noise in the boundary data uσ by adding relative error to
computed data ucomp using the following expression:

uσ (xi,v j) = ucomp (xi,v j)
[

1+
α (umax−umin)σ

100

]
. (45)

Here, (xi,v j) is a mesh point at the boundary ∂Ω, α is a random number in the
interval [−1;1], umax and umin are maximal and minimal values of the computed
data ucomp, respectively, and σ is the noise level in percents.

Example 1. Let’s consider the problem of finding (u,λ ) in Ω = (−1,1)× (1,2)

from Eq. 26 provided that H (x,v) =
1
2

v2, and the boundary conditions

u(−1,v) =
1
2v

(2− v)2 , u(1,v) =
1
2v

(2− v)2 , (46)

u(x,1) =
1
2

x2, u(x,2) =
1
4

(
x2−1

)
, (47)

are given. The exact solution of the problem is u(x,v) =
1
2v

(
x2 +(2− v)2−1

)
,

λ (x,v) = x. In Fig. 1, exact solution and the finite difference solution of the inverse
problem are given for I = J = 39.
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Figure 1: (a) Computed u, (b) Exact u, (c) Computed λ , (d) Exact λ .

The obtained numerical results for u(x,v) on some points of the domain Ω for the
different values of I and J are shown in Tab. 1. In the calculation of u(x,v), the
maximum error for I = J = 7 is 0.00373585544664928330 and for I = 7,J = 511
is 0.00000095343455730479.

Table 1: The exact and approximate values of u(x,v).

(x,v) Exact u(x,v) FDM I = J = 7 FDM I = 7,J = 511
(-0.75,1.25) 0.0500000000000 0.0497136848553 0.0499999267765
(-0.75,1.75) -0.1071428571428 -0.1072913375994 -0.1071428947755

(0,1.25) -0.1750000000000 -0.1756544346163 -0.1750001673678
(0,1.50) -0.2500000000000 -0.2506076181369 -0.2500001545289
(0,1.75) -0.2678571428571 -0.2681965267579 -0.2678572288746

(0.75,1.25) 0.0500000000000 0.0497136848553 0.0499999267765
(0.75,1.75) -0.1071428571428 -0.1072913375994 -0.1071428947755

Fig. 2 displays the one dimensional cross sections (v = 1.5) of computed approxi-
mate solutions with different noise levels superimposed with the exact solution of
the inverse problem.

The obtained numerical results for λ (x,v) on some points of the domain Ω for the
different values of I and J are shown in Tab. 2.
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Figure 2: Exact solution and FDM solutions with different noise levels σ = 5%,
σ = 10%, σ = 15% (a) for u (b) for λ .

Table 2: The exact and approximate values of λ (x,v).

(x,v) Exact λ (x,v) FDM I = J = 7 FDM I = 7,J = 511
(-0.75,1.25) -0.75 -0.751227064905570 -0.750000313814679
(-0.75,1.75) -0.75 -0.750890882739660 -0.750000225796031

(0,1.25) 0.00 0.0000000000000002 0.000000000000002
(0,1.50) 0.00 0.0000000000000001 0.000000000000003
(0,1.75) 0.00 0.0000000000000000 0.000000000000002

(0.75,1.25) 0.75 0.7512270649055701 0.750000313814677
(0.75,1.75) 0.75 0.7508908827396604 0.750000225796031

In the following example, we consider the case when λ depends on both variables
x and v.

Example 2. : Determine a pair of functions (u,λ ) defined in Ω = (−1,1)× (2,3)
that satisfies Eq. 26 and the conditions

u(−1,v) = v+
1
v

lnv, u(1,v) = v+
1
v

lnv, (48)

u(x,2) = 2x2 +
1
2

ln2, u(x,3) = 3x2 +
1
3

ln3, (49)

and H (x,v) = −x− lnv are given. The exact solution of the problem is u(x,v) =
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x2v+
1
v

lnv, λ (x,v) =−2x+ x2− 1
v2 lnv+ 1

v2 .

In Fig. 3, FDM solution and exact solution of the inverse problem are shown for
I = J = 63.
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Figure 3: (a) Computed u, (b) Exact u, (c) Computed λ , (d) Exact λ .

On Fig. 4 below, a comparison between exact solution and the approximate solution
of the inverse problem for different noise levels is presented by one dimensional
cross sections (v = 2.5).

Consequently, numerical experiments have demonstrated the effectiveness of the
proposed method in providing highly accurate numerical solutions even subjecting
to large noise of the given boundary data.
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Figure 4: Exact solution and FDM solutions with different noise levels σ = 5%,
σ = 10%, σ = 15% (a) for u (b) for λ .
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