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Abstract: Since the works of Newton and Lagrange, interpolation had been a
mature technique in the numerical mathematics. Among the many interpolation
methods, global or piecewise, the polynomial interpolation p(x) = a0 +a1x+ . . .+
anxn expanded by the monomials is the simplest one, which is easy to handle math-
ematically. For higher accuracy, one always attempts to use a higher-order polyno-
mial as an interpolant. But, Runge gave a counterexample, demonstrating that the
polynomial interpolation problem may be ill-posed. Very high-order polynomial
interpolation is very hard to realize by numerical computations. In this paper we
propose a new polynomial interpolation by p(x) = ā0 + ā1x/R0 + . . . + ānxn/Rn

0,
where R0 is a characteristic length used as a parameter, and chosen by the user. The
resulting linear equations system to solve the coefficients āα is well-conditioned, if
a suitable R0 is chosen. We define a non-dimensional parameter, R∗0 = R0/(b−a)
[where a and b are the end-points of the interval for x]. The range of values for
R∗0 for numerical stability is identified, and one can overcome the difficulty due to
Runge, as well as increase the accuracy and stability in the numerical interpolation
by very-high-order polynomials, for these values of R∗0. Numerical results which
validate the current theory are presented for (i) the first and higher-order derivatives
of noisy numerical data [such as determining da/dN in fatigue mechanics], (ii) the
solution of the Abel integral equation under noisy data, and (iii) the numerical de-
termination of an inverse Laplace transform under noisy data. These results confirm
the validity of the present approach for very high-order polynomial interpolation.
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1 Introduction

Interpolation is the process of using known data at discrete locations, to estimate
data everywhere in the domain. Various interpolation techniques are often used
in the engineering sciences. One of the simplest methods, linear interpolation,
requires the knowledge of data at two discrete locations and the constant rate of
change of the data between these two locations. With this information, one may
interpolate values anywhere between those two locations. More sophisticated in-
terpolations are discussed in many textbooks and papers.

Computer modeling in engineering and the sciences has spurred an enormous inter-
est in the methods of interpolating data, or of approximating continuous functions
by functions which depend only on a finite number of parameters. Apart from
its applications, approximation theory is a lively branch of mathematical analy-
sis. Although the Weierstrass theorem guarantees that a continuous function de-
fined over a finite interval can be approximated uniformly, within any preassigned
error, by polynomials, in practical computations there appeared a counterexam-
ple due to Runge. On the other hand, finding an nth-order polynomial function
p(x) = a0 + a1x + . . .+ anxn to best match a continuous function f (x) in the inter-
val of x ∈ [0,1], for large values of n, say n ≥ 10, leads to a highly ill-conditioned
system of linear equations to determine the coefficients aα , where the system matrix
is a Hilbert matrix. This makes the interpolation by very high-order polynomials
not easy for numerical implementation. In this paper we propose a new technique
of interpolation by very high-order polynomials, which can overcome the above-
mentioned ill-conditioned behavior.

There are a lot of applications in numerical mathematics, which use approximations
by very high-order polynomials. In this paper we will apply the new interpolation
method to solve the problem of numerical differentiation of noisy data, and the
problem of an inverse Laplace transform. In many applications one is required
to calculate the derivative of a function which is measured experimentally, i.e., to
differentiate noisy data. The problem of numerical differentiation of noisy data is
ill-posed: small changes of the data may result in large changes of the derivative
[Ramm and Smirnova (2001); Ahn et al. (2006)]. In this paper, we present an
example from fatigue mechanics, namely, that of determining (da/dN) [a is the
crack-length, and N is the number of fatigue cycles], as a function of a.

A possible use of the presently proposed method of approximation, using very high-
order polynomials, is to solve the following Abel integral equation under noise:

∫ s

0

φ(t)
(s− t)η

dt = h(s), s > 0, η ∈ (0,1). (1)



A Highly Accurate Technique for Interpolations 255

It is known that Eq. (1) has the exact solution given by

φ(s) =
sin(ηπ)

π

d
ds

∫ s

0

h(t)
(s− t)1−η

dt. (2)

Nevertheless, the exact solution fails in a practical application, when the input func-
tion h(t) is given with a random error, because the differential operator involved in
Eq. (2) is ill-posed and unbounded.

There were many approaches for determining the numerical solution of the Abel
integral equation [Gorenflo and Vessella (1991)]. Fettis (1964) has proposed a nu-
merical solution of the Abel equation by using the Gauss-Jacobi quadrature rule.
Kosarev (1973) proposed a numerical solution of the Abel equation by using the
orthogonal polynomials expansion. Piessens and Verbaeten (1973) and Piessens
(2000) developed an approximate solution of the Abel equation by means of the
Chebyshev polynomials of the first kind. When the input data are with noisy er-
ror, Hao (1985,1986) used the Tikhonov regularization technique, and Murio et al.
(1992) suggested a stable numerical solution. Furthermore, Garza et al. (2001)
and Hall et al. (2003) used the wavelet method, and Huang et al. (2008) used the
Taylor expansion method to derive the inversion of noisy Abel equation. Recently,
Liu and Atluri (2009) have developed a novel technique of a fictitious time inte-
gration method to resolve the problem of numerical differentiation of noisy data
and applied it to the inversion of the above Abel integral equation under noise. The
results in Liu and Atluri (2009) were very good. In this paper we show that the
presently proposed method of very-high-order polynomial interpolation leads to a
better way to solve the ill-posed problem of numerical differentiation of noisy data,
than that presented in Liu and Atluri (2009), even when higher-order derivatives of
noisy data are required.

2 A novel technique for improving the conditioning of the coefficient-matrix,
for interpolation by very high-order polynomials

Polynomial interpolation is the interpolation of a given data at a number of discrete
spatial locations, by a polynomial. In other words, given some data points, such as
obtained by the sampling of a measurement, the aim is to find a polynomial which
goes exactly through these points.

Given a set of n + 1 spatial locations xi (i = 0, . . . ,n) where the respective data
yi (i = 0, . . . ,n) are given [where no two xi are the same], one is looking for a
polynomial p(x) of order at most n with the following property:

p(xi) = yi, i = 0,1, . . . ,n, (3)
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where xi ∈ [a,b], and [a,b] is a spatial interval of our problem domain.

Here, we are interested in cases where n is very large, say n≥ 10. The unisolvence
theorem states that such a polynomial p(x) exists and is unique. This can be proved
by using the Vandermonde matrix. Suppose that the interpolation polynomial is in
the form of

p(x) = a0 +a1x+ . . .+anxn =
n

∑
α=0

aαxα , (4)

where xα constitute a monomial basis. The statement that p(x) interpolates the data
points means that Eq. (3) must hold.

If we substitute Eq. (4) into Eq. (3), we obtain a system of linear equations to
determine the coefficients aα . The system in a matrix-vector form reads as

1 x0 x2
0 . . . xn−1

0 xn
0

1 x1 x2
1 . . . xn−1

1 xn
1

...
...

... . . .
...

...
1 xn−1 x2

n−1 . . . xn−1
n−1 xn

n−1
1 xn x2

n . . . xn−1
n xn

n




a0

a1
...

an−1

an

=


y0

y1
...

yn−1

yn

 . (5)

We have to solve the above system for aα in order to construct the interpolant p(x).
The matrix on the left is commonly referred to as a Vandermonde matrix denoted
by V. Its determinant is nonzero; which proves the unisolvence theorem: there
exists a unique interpolating polynomial.

In a practical application of Eq. (5) in the engineering problems, the data y =
[y0,y1, . . . ,yn] are rarely given exactly; instead, noises in yi are unavoidable, due
to measurement and modeling errors. Therefore, we may encounter the problem
that the numerical solution of Eq. (5) may deviate from the exact one to a great
extent, when V is severely ill-conditioned and y is perturbed by noise. Indeed,
the condition number of the Vandermonde matrix may be very large [Gautschi
(1975)], causing large errors when computing the coefficients aα , if the system
of equations is solved using a numerical method. Several authors have therefore
proposed algorithms which exploit the structure of the Vandermonde matrix to
compute numerically stable solutions, instead of using the Gaussian elimination
[Higham (1987,1988); Björck and Pereyra (1970); Calvetti and Reichel (1993)].
These methods rely on constructing first a Newton interpolation of the polynomial
and then converting it to the monomial form above.

Our strategy to solve this ill-conditioned problem of polynomial interpolation, for
very high-order interpolation, say n≥ 10, is to consider a set of re-defined undeter-
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mined coefficients:

āα = Rα
0 aα , (6)

where R0 is a characteristic length of the problem domain with [a,b] ⊂ [−R0,R0].
Such that, from Eq. (4), we have a new polynomial interpolant:

p(x) =
n

∑
α=0

āα

(
x

R0

)α

. (7)

If we substitute Eq. (7) into Eq. (3), we obtain a system of linear equations, to
determine the coefficients āα :

1 x0
R0

(
x0
R0

)2
. . .

(
x0
R0

)n−1 (
x0
R0

)n

1 x1
R0

(
x1
R0

)2
. . .

(
x1
R0

)n−1 (
x1
R0

)n

...
...

... . . .
...

...

1 xn−1
R0

(
xn−1
R0

)2
. . .

(
xn−1
R0

)n−1 (
xn−1
R0

)n

1 xn
R0

(
xn
R0

)2
. . .

(
xn
R0

)n−1 (
xn
R0

)n




ā0

ā1
...

ān−1

ān

=


y0

y1
...

yn−1

yn

 . (8)

In order to overcome the difficulties which appear in the conventional collocation
Trefftz method to solve the Laplace equation, Liu (2007a,2007b,2007c,2008) has
proposed a modified Trefftz method, and refined this method by taking the char-
acteristic length into the T-complete functions, such that the condition number of
the resulting linear equations system can be greatly reduced. The same idea is em-
ployed here to overcome the ill-conditioning of the original Vandermonde matrix
by including a characteristic length R0 into the coefficient-matrix.

3 Comparing the condition numbers of the coefficient-matrices

Here we compare the condition numbers of the system matrices in Eqs. (5) and (8)
for different n and R0. The condition number of a system matrix A is defined as:

Cond(A) = ‖A‖‖A−1‖. (9)

The norm used for A is the Frobenius norm defined by ‖A‖ :=
√

∑
n
i, j=1 A2

i j, where

Ai j is the i j-th component of A. The Frobenius norm of a matrix is a direct exten-
sion of the Euclidean norm for a vector.
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We define a dimensionless measure of R0 by

R∗0 :=
R0

b−a
. (10)

For the general interpolated interval [a,b], three ranges of R∗0 need to be identified.
If b > a≥ 0 (non-negative interval) or a < b≤ 0 (non-positive interval), we require
R∗0≥ 1 for a numerically stable solution of Eq. (8). The other cases are when ab < 0.
If b = η |a|, where η ≥ 1, then we need

R∗0 =
R0

b−a
≥ b

b−a
=

−ηa
−(1+η)a

=
η

1+η
. (11)

Similarly, if −a = ηb, where η ≥ 1, then we need

R∗0 =
R0

b−a
≥ −a

b−a
=

ηb
(1+η)b

=
η

1+η
. (12)

Thus, for the symmetric interval, i.e., b = −a, we need R∗0 ≥ 0.5. Because of
the fact that η/(1 + η) < 1, if we take R∗0 ≥ 1, the above all requirements are
satisfied automatically. However, for the accuracy of interpolation, and also taking
the numerical stability into account, it is better to choose a suitable R∗0 in a range
not violating the above inequality for each type interval. The quantity η/(1+η) is
denoted by Rc := η/(1 + η). There are two limiting cases: Rc = 1 when η → ∞,
and Rc = 0.5 when η = 1. Therefore, we conclude that when R∗0≥Rc, the numerical
interpolation is stable for very-high-order polynomials.

We give an example to test the condition number of Eq. (8). The interval of
[a,b] = [0,4] is fixed and is non-negative, and we divide it into n+1 discrete spatial
locations xi = i∆x = i(b−a)/n. Taking the polynomial-order n = 50 and n = 100,
respectively, we apply the congugate gradient method (CGM) to find the inverse
matrix with a convergence criterion of 10−8. The condition numbers are calcu-
lated by Eq. (9), and their variations with respect to R∗0 = R0/(b− a) are plotted
in Fig. 1, with the solid line for n = 50 and the dashed line for n = 100. It can be
seen that when R∗0 is smaller than 0.75 the condition numbers increase very fast for
both the case of n = 50 and n = 100, respectively, to a value larger than 1028 when
R∗0 = 0.25 for the case of n = 50. More seriously, the condition numbers blow up
when R∗0 < 0.6 for the case of n = 100. Conversely, when R∗0 ≥ 1 (which is located
in the stable region for a non-negative interval) the condition numbers of both cases
tend to stable values which are smaller than 109.

In Fig. 2 we plot the condition number with respect to the order n of the polynomial,
in the range of 10 ≤ n ≤ 40, for R∗0 = 0.25 and R∗0 = 2.5. It can be seen that for
R∗0 = 0.25 the condition number of the Vandermonde matrix increases exponentially
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Figure 1: Plotting the condition numbers of the coefficient-matrices, with respect to 
R0*, in the cases when n=50 and n=100. 
 
 
 
 
 
 
 
 
 

Figure 1: Plotting the condition numbers of the coefficient-matrices, with respect
to R∗0, in the cases when n = 50 and n = 100.

with respect to n [Gautschi and Inglese (1988); Skrzipek (2004)], and with a huge
value up to 1038 when n = 35. Conversely, when R∗0 = 2.5, the condition number
can be controlled almost to within an order of 109.

In order to further demonstrate the ill-conditioned behavior of polynomial inter-
polation, we consider a high-order interpolation in the intervals [0,1] and [−1,1],
respectively. In Table 1 we list some condition numbers of the above mentioned
Vandermonde matrices [Gohberg and Olshevsky (1997)]. It can be seen that the
condition numbers grow fast when n increases. For the purpose of comparison we
also calculate the condition numbers of the new matrix A with R∗0 = 1.5. The result
is plotted in Fig. 2 by a dashed-dotted blue line, of which the condition numbers are
greatly reduced to the order of 109. Table 1 shows that the ill-conditioned behavior
for a very high-order polynomial interpolation in the interval [0,1] may happen.
The introduction of the scaling factor of R∗0 into the polynomial interpolation can
reduce its ill-conditioned behavior.
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Figure 2: Plotting the condition number of the coefficient-matrix, with respect to the 
number of monomials for R0* =0.25, R0*=1.5 and R0*=2.5. 
 
 
 
 
 

Figure 2: Plotting the condition number of the coefficient-matrix with respect to
the number of monomials, for R∗0 = 0.25, R∗0 = 1.5 and R∗0 = 2.5.

Table 1: The condition numbers of the coefficient-matrix, with equidistant nodes
in (0,1) and (−1,1)

n Cond(V) Equidistant in (0,1)
5 2×103

10 6×107

20 4×1016

30 4×1018

40 8×1018

50 6×1018

Equidistant in (−1,1)
5 2×101

10 5×103

20 3×108

30 2×1013

40 1×1018

50 7×1018
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4 Applications

4.1 The Runge phenomenon

Runge’s phenomenon illustrates that significant errors can occur when constructing
a polynomial interpolant of higher order [Quarteroni et al. (2000)]. An example
function to be interpolated is

f (x) =
1

1+ x2 , x ∈ [−5,5]. (13)

We apply the new interpolation technique to solve this problem by taking R∗0 = 1
[for the symmetric interval Rc = 0.5]. In Fig. 3(a) we compare the exact func-
tion with the interpolated polynomial, and even when n is large, up to 100, no
oscillation is observed in the interpolant. In Fig. 3(b) we show the coefficients
āα , α = 1, . . . ,100, and in Fig. 3(c) the coefficients aα , α = 1, . . . ,100. Thus, it is
seen that the usual Runge’s phenomenon can be overcome by the present interpo-
lation technique.

For comparison purpose we also plot the numerical result in Fig. 3(a), by the
dashed-dotted line, for the case when R∗0 = 0.1 and n = 10. It is obvious that
when R∗0 = 0.1 (i.e., R0 = 1), the Runge phenomenon occurs. Runge’s phenomenon
shows that for the original interpolation technique with high values of n, the inter-
polation polynomial may oscillate wildly between the data points. This problem is
commonly resolved by the use of spline interpolation. However, in such a case, the
interpolant is not a globally defined polynomial, but an assemblage of a chain of
several local polynomials of a lower order.

In order to appreciate the accuracy of the present method, we compare our numeri-
cal results under R∗0 = 0.8 and R∗0 = 1, with the numerical results obtained from the
tenth-degree Lagrange interpolation, L10(x), as well as the third-degree spline in-
terpolation, S(x), in Table 2 for some spatial location points. It can be seen that the
accuracy of the present method is better than that of the spline interpolation, and is
much better than that of the Lagrange interpolation. Overall, by using R∗0 = 0.8 the
accuracy of the present method for the Runge example is in the order of 10−3. The
numerical results by using R∗0 = 0.8 are slightly better than that by using R∗0 = 1.

In Fig. 4 we compare the numerical errors for R∗0 = 0.8,1,1.2 and 2 with a fixed
n = 100. All the erros are smaller than 0.05. The errors increase when R∗0 increases.
But there is a lower bound of R∗0, and the value of R∗0 smaller than 0.5 may induce
numerical instability when n increases to a large value.

The ill-posedness of the interpolation problem is not fully due to the size of inter-
polated range. In order to demonstrate this phenomenon, we consider a normalized
interval of the above Runge problem by interpolating the following function in the
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Figure 3: (a) Comparing the numerical and exact solutions of a numerical example 

due to Runge, and plotting the coefficients of (b) aα and (c) aα . 
 
 
 
 

Figure 3: (a) Comparing the numerical and exact solutions of a numerical example
due to Runge, and plotting the coefficients of (b) āα and (c) aα .

interval of [−1,1]:

f (x) =
1

1+25x2 , x ∈ [−1,1], (14)

where the number 25 appears due to a rescaling of the intervals from [−5,5] to
[−1,1].
As shown in Table 1, the condition number of the corresponding Vandermonde
matrix under an assumption of equidistantly interpolated locations in [−1,1] also
increases rapidly with n. We apply the new interpolation technique to solve this
problem by fixing R∗0 = 0.5,0.55,0.6,0.75. In Fig. 5 we compare the exact func-
tion with the interpolated polynomials, by using R∗0 = 0.55,0.6,0.75, and even n is
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Table 2: Comparing numerical results by different methods for the Runge example

x 1
1+x2 present (R∗0 = 0.8) present (R∗0 = 1) S(x) L10(x)

0.3 0.91743 0.91750 0.91726 0.92754 0.94090
0.8 0.60796 0.61270 0.61660 0.62420 0.64316
1.3 0.37175 0.36700 0.36284 0.36133 0.31650
1.8 0.23585 0.24111 0.24229 0.23154 0.18878
2.3 0.15898 0.15434 0.15683 0.16115 0.24145
2.8 0.11312 0.11666 0.11182 0.11366 0.19837
3.3 0.08410 0.08121 0.08709 0.08426 -0.10832
3.8 0.06477 0.06828 0.06173 0.06556 -0.20130
4.3 0.05131 0.04630 0.05176 0.04842 0.88808
4.8 0.04160 0.03769 0.04652 0.03758 1.80438
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Figure 4: Comparing the numerical errors by using different R0* for the Runge 
example. 
 
 
 
 
 
 
 

Figure 4: Comparing the numerical errors by using different R∗0 for the Runge
example.

large up to 100, no oscillation is observed in the interpolants. However, the results
using R∗0 = 0.55 and 0.6 have a little discrepancy at the two ends of the interval. For
the case R∗0 = 0.5 as shown in Fig. 5 by the dashed line the resulting interpolant, as
before, is oscillatory at two ends of the interval, and a large discrepancy from the
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exact solution results. Thus, we can conclude that even for the interpolation prob-
lem in a normalized range [−1,1], the choice of a suitable R∗0 in the interpolant can
avoid an incorrect interpolated result, and increase the accuracy by using higher-
order polynomials.

 
 
 

-1.0 -0.5 0.0 0.5 1.0

x

-4.0

-3.0

-2.0

-1.0

0.0

1.0

f
Exact

Numerical with R0=0.5

Numerical with R0=0.55

Numerical with R0=0.6

Numerical with R0=0.75

 
Figure 5: Comparing the numerical solutions under different R0* with the exact 
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Figure 5: Comparing the numerical solutions under different R∗0 with the exact
solution for the Runge problem in a normalized range.

For the above two cases the intervals are symmetric, and thus we only require that
R∗0 ≥ 0.5 for a stable numerical solution. In order to further investigate the influ-
ence of R∗0 on the accuracy of interpolation, we display the maximum errors with
respect to δ , where R∗0 = Rc + δ in Fig. 6(a) for the function in Eq. (14), where
we fix n = 100. It can be seen that at δ = 0.2, i.e., R∗0 = 0.7, the maximum error
obtained is minimal.

4.2 The derivatives of noisy data

In many applications it is necessary to calculate the derivatives of a function mea-
sured experimentally, i.e., to differentiate noisy data. The problem of numerical
differentiation of noisy data is ill-posed: small changes of the data may result in a
large change of the derivatives.
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Figure 6: The variations of maximum errors with respect to δ and R∗0 for (a) the
f (x) in Eq. (14), and (b) the f (x) in Eq. (15).

We consider the following functions and their derivatives:

(a) f (x) = sinx, f ′(x) = cosx, f ′′(x) =−sinx, 0≤ x≤ 4π, (15)

(b) f (x) =
1

1+ x
, f ′(x) =

−1
(1+ x)2 , f ′′(x) =

2
(1+ x)3 , 0≤ x≤ 10. (16)

Under a noise of f̂i = fi + σR(i) with σ = 0.01, we apply the new interpolation
technique to find the interpolant by

f̂ (x) =
n

∑
α=0

āα

(
x

R0

)α

, (17)
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and the derivatives by

f̂ ′(x) =
n

∑
α=0

α āα

R0

(
x

R0

)α−1

, (18)

f̂ ′′(x) =
n

∑
α=0

α(α−1)āα

R2
0

(
x

R0

)α−2

. (19)
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Figure 7: Comparing the numerical and exact solutions of a numerical example of 
case a for numerical derivatives of noisy data of f(x)=sin x. [n=105, R0*=19/(4π)] 
 
 
 
 
 

Figure 7: Comparing the numerical and exact solutions of a numerical example
of case a for numerical derivatives of noisy data of f (x) = sinx. [n = 105, R∗0 =
19/(4π)]

In Fig. 7 [for the problem in Eq. (15)] and Fig. 8 [for the problem in Eq. (16)] we
compare the recovered functions of f̂ (x), f̂ ′(x) and f̂ ′′(x) with the exact ones. For
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Figure 8: Comparing the numerical and exact solutions of a numerical example of 
case b for numerical derivatives of noisy data of  f(x)=1/(1+x). [n=105, R0*=1.5] 
 
 
 
 

Figure 8: Comparing the numerical and exact solutions of a numerical example
of case b for numerical derivatives of noisy data of f (x) = 1/(1 + x). [n = 105,
R∗0 = 1.5]

case a (Fig. 7), we use n = 105 and R∗0 = 19/(4π); and for case b (Fig. 8), we use
n = 105 and R∗0 = 1.5. It can be seen that the present method is robust against the
noise, and the numerical derivatives of noisy data can be calculated very accurately,
even up to the second-order.

To test the effect of R∗0, we perform the same calculations for the above two prob-
lems, with R∗0 = 0.5; however, n is restricted to be n = 10, because when n is larger,
the numerical results are unsatisfactory due to numerical instability [for the avove
two problems defined in the non-negative intervals, we require that R∗0 ≥ 1, for



268 Copyright © 2009 Tech Science Press CMES, vol.43, no.3, pp.253-276, 2009

 
 
 
 

0 5 10 15

x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

f

-3

-2

-1

0

1

2

f ’

0 4 8 12 16

x

(a)

(b)

0 4 8 12 16

x

-15

-12

-9

-6

-3

0

3

f ’’

(c)

Exact

Numerical

 

Figure 9: Comparing the numerical and exact solutions of case a with R0*=0.5. 
 
 
 
 

Figure 9: Comparing the numerical and exact solutions of case a with R∗0 = 0.5.

numerical stability]. In Fig. 9 [for the problem in Eq. (15)] and Fig. 10 [for the
problem in Eq. (16)] we compare the recovered functions of f̂ (x), f̂ ′(x) and f̂ ′′(x)
with the exact ones. Obviously, the numerical results are not accurate.

In order to investigate the influence of R∗0 on the accuracy of interpolation in a non-
negative interval, we display the maximum errors with respect to δ and R∗0 = Rc +δ

in Fig. 6(b) for the function in Eq. (15), where we fix n = 120. It can be seen that
near to the value of δ = 0.23, i.e., R∗0 = RC + 0.23, the maximum error obtained
is minimal. High accuracy in the order of 10−4 can be gained, if one uses R∗0 = 1.23.
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Figure 10: Comparing the numerical and exact solutions of case b with R0*=0.5. 
 
 
 
 
 

Figure 10: Comparing the numerical and exact solutions of case b with R∗0 = 0.5.

4.3 Crack propagation

As an application of the present numerical differentiation of noisy data, we consider
the problem of crack propagation in order to estimate the crack propagation rate
da/dN, where a is the measured crack-length and N is the number of load cycles
[Broek (1982); Sih (1991)]. Theoretically, the crack propagation rate da/dN versus
a has a power law relation: da/dN = caβ . We suppose that the measured data of a
are scattered along an unknown curve as shown in Fig. 11(a) with

âi = a(Ni)+σR(i), (20)
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Figure 11: Comparison of the numerical and exact solutions for obtaining da/dN 
versus a from the measured noisy data for crack-length a versus the number of cycles, 
N. 
 
 
 

Figure 11: Comparison of the numerical and exact solutions for obtaining da/dN
versus a from the measured noisy data for crack-length a versus the number of
cycles, N.

where, for definiteness, and for the purpose of comparison, we take a(N)= 0.02N1.2

and σ = 1. Usually, it is very difficult to estimate the rate da/dN versus a by us-
ing the scattered noisy data. However, we apply the new interpolation technique to
solve this problem by using n = 100 and R∗0 = 1.5. We can calculate da/dN versus
a at the measured points, and the results are plotted in Fig. 11(b) by the dashed line.
It can be seen that the estimated rate is very close to the exact one of da/dN = caβ ,
where β = 1/6 and c = 0.024/0.02β .
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4.4 Abel integral equation

Next, we consider the Abel integral equation (1), for the following case: η = 1/3,
φ(s) = 10s/9, h(s) = s5/3, 0 < s≤ 1. Let

f (si) =
∫ si

0

ĥ(t)
(si− t)1−η

dt (21)

be the discretized data of f (s), and ĥ(ti) = h(ti) + σR(i) be the discretized data
of ĥ(t); such that, through some calculations, we have f (si) = 5πs2

i /[9sin(ηπ)]+
sη

i σR(i)/η .

The numerical solution of the Abel equation is obtained by

φ(si) =
sin(ηπ)

π
f ′(si), (22)

where we apply the new interpolation method to calculate f ′(si). We use n = 25
and R∗0 = 1.5 in this calculation, and the convergence criterion used in the CGM
is 10−5. Even under a large noise with σ = 0.01, the numerical result as shown in
Fig. 12 by the dashed line is very close to the exact solution. For the purpose of
comparisons we also used R∗0 = 0.5 and R∗0 = 2.5 in the calculations. The accuracy
obtained by using R∗0 = 2.5 is the same as that using R∗0 = 1.5. For the case with
R∗0 = 0.5 we were forced to reduce n = 25 to n = 10; otherwise, the numerical in-
stability appears. It can be seen that the error induced by R∗0 = 0.5 is much larger
than the above two numerical solutions.

4.5 Inverse Laplace transform

For a given function f (t) the Laplace transform is given by∫
∞

0
e−st f (t)dt = F(s). (23)

The problem of inverse Laplace transform is that of finding f (t) for a given function
F(s). This problem is known to be highly ill-posed.

By applying the new interpolation technique to this problem, we let

f (t) =
n

∑
j=1

c j

(
t

T0

) j−1

(24)

to be a new polynomial interpolant of f (t), where the coefficients ci are to be de-
termined from the given data of F(s), and T0 is a characteristic time length.



272 Copyright © 2009 Tech Science Press CMES, vol.43, no.3, pp.253-276, 2009

 
 
 
 
 
 
 
 

0.0 0.2 0.4 0.6 0.8 1.0

s

0.0

0.4

0.8

1.2

φ

Exact

Numerical with R0=0.5

Numerical with R0=1.5

Numerical with R0=2.5

 
 
Figure 12: Comparing the numerical and exact solutions of an Abel integral equation 
under nois for different R0*. 
 
 
 
 
 
 
 
 

Figure 12: Comparing the numerical and exact solutions of an Abel integral equa-
tion under noise for different R∗0.

Applying the Laplace transform to the above equation and using∫
∞

0
e−stt j−1dt =

( j−1)!
s j ,

we can derive from Eq. (24) that:

c1 +
n

∑
j=2

( j−1)!c j

(T0s) j−1 = sF(s). (25)

For the given data of F(s), when we take si ∈ [a,b], i = 1, . . . ,n to be the sampling
points, it leads to

1 1
T0s1

2
(T0s1)2 . . . (n−2)!

(T0s1)n−2
(n−1)!

(T0s1)n−1

1 1
T0s2

2
(T0s2)2 . . . (n−2)!

(T0s2)n−2
(n−1)!

(T0s2)n−1

...
...

... . . .
...

...

1 1
T0sn−1

2
(T0sn−1)2 . . . (n−2)!

(T0sn−1)n−2
(n−1)!

(T0sn−1)n−1

1 1
T0sn

2
(T0sn)2 . . . (n−2)!

(T0sn)n−2
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c1

c2
...

cn−1

cn

=


s1F(s1)
s2F(s2)

...
sn−1F(sn−1)

snF(sn)

 .
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Figure 13: Comparing the results of inverse Laplace transform without noise and with 
noise to the exact solution for different T0*. 
 
 

Figure 13: Comparing the results of inverse Laplace transform without noise and
with noise to the exact solution for different T ∗0 .

(26)

As before we can apply the CGM to solve the above equation obtaining the coeffi-
cients ci.

In the example presented here, the function recovered by the inverse Laplace trans-
fom is f (t) = (cosh t sin t +sinh t cos t)/2, and the data given are F(s) = s2/(s4 +4).
Let [a,b] = [1,10] and si = 1 + 9i/n. For the case without considering noise, we
use n = 20 and T ∗0 = T0/(b− a) = 10/9 in the calculation, and the convergence
criterion used in the CGM is 10−12. The numerical result as shown in Fig. 13 by
the dashed line is very close to the exact solution, with error in the order of 10−2.
Even under a large noise with σ = 0.001, the numerical result as shown in Fig. 13
by the dashed-dotted line is near to the exact solution, where we use n = 25 and
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T ∗0 = 10/9 in the calculation, and the convergent criterion of the CGM is 10−8.

We also considered the cases T ∗0 = 0.5, T ∗0 = 1 and T ∗0 = 1.3 in the calculations.
The accuracy obtained by using T ∗0 = 1 is slightly better than that used T ∗0 = 10/9.
It can be seen that the errors induced by T ∗0 = 0.5 and T ∗0 = 1.3 are larger than the
above two numerical solutions.

5 Conclusions

In this paper we have proposed a new polynomial interpolation technique in a one-
dimensional interval, a ≤ x ≤ b, by expanding the polynomial in terms of x/R0

rather than x. We have defined a dimensionless quantity R∗0 = R0/(b−a) to delin-
eate the range of values for R∗0, for numerical stability. Critical values Rc are given,
such that when R∗0 ≥ Rc, the numerical interpolation is stable for very-high-order
polynomials. Instead of finding the coefficients aα , we developed a novel method
to find the coefficients āα . The system of linear equations for aα is highly ill-
conditioned when R∗0 < Rc; conversely, when the characteristic length satisfies the
criterion R∗0 ≥ Rc, the condition number of coefficient-matrix is greatly reduced,
and the new system is well-conditioned. From two examples investigated in this
paper, we found that the use of the values of R∗0 = Rc + δ , where δ ∈ [0.2,0.23],
produces the best accuracy for very high-order polynomial interpolation. We ap-
plied this new interpolation technique to solve the problem of numerical differenti-
ation of noisy data [such as determining da/dN in fatigue mechanics], the problem
of the inversion of the Abel integral equation under noise, and the problem of in-
verse Laplace transform under noise. Numerical examples showed that the present
interpolation theory is robust against the noise. For the types of ill-posed problem
considered in the present paper, the present approach is simple and effective in ob-
taining a reliable numerical solution, without resorting to regularization techniques.
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