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Large Deformation Applications with the Radial Natural
Neighbours Interpolators
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Abstract: The Natural Neighbour Radial Point Interpolation Method (NNRPIM)
is extended to the large deformation analysis of non-linear elastic structures. The
nodal connectivity in the NNRPIM is enforced using the Natural Neighbour con-
cept. After the Voronoï diagram construction of the unstructured nodal mesh, which
discretize the problem domain, small cells are created, the “influence-cells”. These
cells are in fact influence-domains entirely nodal dependent. The Delaunay trian-
gles are used to create a node-depending background mesh used in the numerical
integration of the NNRPIM interpolation functions. The NNRPIM interpolation
functions, used in the Galerkin weak form, are constructed with the Radial Point
Interpolators. In the construction of the NNRPIM interpolation functions no poly-
nomial base is required, which is an innovation and the used Radial Basis Function
(RBF) is the Multiquadric RBF. The NNRPIM interpolation functions posses the
delta Kronecker property, which simplify the imposition of the natural and essen-
tial boundary conditions. Once the scope of this work is to extend and validate
the NNRPIM in the large-deformation analysis, the used non-linear solution algo-
rithm is the Orthogonal Actualized Ramm’s method, which permits the analysis of
structures that in some point evidence instability phenomenons such as the “snap-
through” and the “snap-back”. Several non-linear benchmark examples are studied
to demonstrate the effectiveness of the method. The numerical results indicated
that NNRPIM handles large material distortion effectively and provides an accu-
rate solution under large deformation.
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1 Introduction

Meshless methods [Belytschko T., Krongauz Y. et al., (1996); Gu Y.T., (2005)]
were created and developed in order to answer to some drawbacks and limitations
found in the Finite Element Method (FEM). Since the field functions are approxi-
mated within a flexible influence domain rather an element, in the meshless meth-
ods the nodes can be randomly distributed. In opposition to the no-overlap rule
between elements in the FEM, in meshless methods the influence domains may
and must overlap each other.

Meshless methods can be classified in two categories, a first category that pursue
the weak form solution and another that seek the strong form solution. In the first
category the meshless methods can be once more divided, the ones that use approx-
imation functions [Monaghan J.J., (1977); Lancaster P. and Salkauskas K., (1981);
Nayroles B., Touzot G. et al., (1992); Belytschko T., Lu Y.Y. et al., (1994); Lu Y.,
Belytschko T. et al., (1994); Liu W.K., Jun S. et al., (1995); Atluri S.N. and Zhu
T., (1998); Atluri S.N. and Shen S., (2002); Sladek V., Sladek J. et al., (2003);
Vavourakis V., Sellountos E.J. et al., (2006)] and others that use interpolation func-
tions. Meshless methods based in approximation functions have been successfully
applied in computational mechanics [Long S. and Atluri S.N, (2002); Qian L.F.,
Batra R.C. et al., (2003); Sori J., Q. Li Q. et al., (2004); Han Z.D., Rajendran A.M.
et al., (2005); Wen P.H. and Hon Y.C., (2007); Juan Z., Shuyao L. et al., (2008);
Mohammadi M.H., (2008)], and even its difficulty on imposing the essential and
natural boundary conditions has been overcome with the use of efficient numerical
methods. This original difficulty is due to the lack of the delta Kronecker property,
ϕi(x j) 6= δi j, which is an immediate consequence of using approximation functions
instead of interpolation functions.

At the time, to address the above problem, several meshless methods, using in-
terpolation functions, were developed. Such as the Point Interpolation Method
(PIM) [Liu G.R. and Gu Y.T., (2001)], the Point Assembly Method [Liu G.R.,
(2002b)], Radial Point Interpolation Method (RPIM) [Wang J.G. and Liu G.R.,
(2002b)], the Meshless Local Natural Neighbour Interpolation Method (MLNNIM)
[Liu Y.H., Chen S.S. et al., (2008)], the Generalized Interpolation Material Point
Method (GIMPM) [Bardenhagen S.G. and Kober E.M., (2004); Ma J., Lu H. et al.,
(2006)] and the Natural Neighbour Finite Elements Methods (NNFEM) [Traver-
soni L., (1994); Sukumar N., Moran B. et al., (2001); Atluri S.N., Han Z.D. et al.,
(2004)] or Natural Element Method (NEM) [Braun J. and Sambridge M., (1995);
Sukumar N., Moran B. et al., (1998); Cueto E., Doblaré M. et al., (2000); Cueto E.,
Sukumar N. et al., (2003)].

Recently an improved meshless method was developed, the Natural Neighbour Ra-



Large Deformation Applications 3

dial Point Interpolation Method (NNRPIM) [Dinis L., Jorge R.N. et al., (2007a);
Dinis L., Jorge R.N. et al., (2007b); Dinis L., Jorge R.N. et al., (2008)]. The NNR-
PIM uses mathematic concepts, such as Voronoï Diagrams [Voronoï G.M., (1908)]
and the Delaunay tessellation [Delaunay B., (1934)], to construct the influence-
cells, the basic structure of the nodal connectivity in the NNRPIM, and the back-
ground integration mesh, totally dependent on the nodal mesh. Unlike the FEM,
where geometrical restrictions on elements are imposed for the convergence of the
method, in the NNRPIM there are no such restrictions, which permits a random
node distribution for the discretized problem. The NNRPIM interpolation func-
tions, used in the Galerkin weak form, are constructed with the Radial Point Inter-
polators (RPI). The NNRPIM interpolation functions possess the delta Kronecker
property and its construction is simple and its derivatives are easily obtained. The
radial basis function (RBF) used in the RPI is the multiquadric RBF. The RBF was
firstly used for data surface fitting, and later, with the work developed by Kansa
[Kansa E.J., (1990); Devi K.N. and Pepper D.W., (2004); Leevan Ling, (2005)]
the RBF was used for solving partial differential equations. However the NNR-
PIM uses, unlike Kansa’s algorithm, the concept of “influence domain” instead of
“global domain”, generating sparse and banded stiffness matrices, more convenient
to complex geometry problems.

This paper is organized as follows: In section 2 the NNRPIM is presented, the
creation of the influence-cells, the used integration scheme and the construction
of the interpolation functions are summarized. In section 3 the large deformation
formulation adapted to the NNRPIM is presented. In section 4 the NNRPIM is
implemented, several well-known benchmark examples are solved. This paper ends
with the conclusions and remarks in section 5.

2 Radial Natural Neighbour Interpolators

The NNRPIM uses the Voronoï diagrams and the Delaunay triangulation, which are
useful mathematical tools, in the determination of the natural neighbours [Sibson
R., (1980)] for each node belonging to the global nodal set N = {n1,n2, . . . ,nN} ∈
IR3. This theory is applicable to a IN dimensional space. The Voronoï diagram of
N is the partition of the domain defined by N in sub-regions VI , closed and convex.
Each sub-region VI is associated with the node I, nI , in a way that any point in the
interior of the VI is closer to nI than any other node nJ , where nJ ∈N(J 6= I), figure
1(a). The sub-regions VK are defined as “Voronoï cells” which form the Voronoï
diagram, k = 1, . . . ,N.
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2.1 Nodal Connectivity

The nodal connectivity is imposed by the overlap of the influence-cells [Dinis L.,
Jorge R.N. et al., (2007a)], similar to the influence domain concept, which are
obtained from the Voronoï cells. The cell formed by n nodes that contributes to the
interpolation of the interest point xI is called “influence-cell”. Two distinct types
of influence-cells are presented in figure 1(b).

(a) (b) 

 

Figure 1: (a) 3D Voronoï cell. (b) Influence cells representation.

First degree influence-cell: A point of interest, xI searches for its neighbour nodes
following the Natural Neighbour Voronoï construction. Thus the first degree influence-
cell is composed by these first natural neighbours.

Second degree influence-cell: A point of interest, xI searches for its neighbour
nodes, in the same manner as in the first degree influence-cell. Then, based on a
previous construction of the Voronoï diagram for the node mesh, the natural neigh-
bours of the first natural neighbours of xI are added to the influence-cell.

2.2 Numerical Integration

In an initial phase, after the domain discretization in a regular or an irregular nodal
mesh, the Voronoï cells of each node are constructed. These cells can be considered
as a background mesh for integration purpose, being determined the influence-cell
for each one of these integration points. Using the Voronoï tessellation and the
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Delaunay triangulation small areas or volumes, respectively for the 2-Dimensional
case and for the 3-Dimensional case, are established, figure 2(a). These areas or
volumes, 2(b), can be isoparameterized and the Gauss-Legendre quadrature scheme
applied, 2(c). In this work the Gauss-Legendre quadrature scheme was used: 1x1
for 2-Dimensional cases; 1x1x1 for 3-Dimensional cases. These two integrations
schemes are sufficient for the used NNRPIM formulation [ Dinis L., Jorge R.N. et
al., (2007a)].

2.3 Radial Point Interpolators

It was found in previous works on the NNRPIM [ Dinis L., Jorge R.N. et al.,
(2007a); Dinis L., Jorge R.N. et al., (2007b); Dinis L., Jorge R.N. et al., (2008)] that
the polynomial basis of the classic Radial Point Interpolators (RPIs) is unnecessary
if the shape parameters of the radial basis function (RBF) are chosen carefully.
Thus, consider a function u(x) defined in the domain Ω, which is discretized by a
set of N nodes. In the NNRPIM the function u(x) passes through all nodes using
a radial basis function. It is assumed that only the nodes within the influence-cell
of the point of interest xI have effect on u(xI). The value of function u(xI) at the
point of interest xI is obtained by,

u(xI) =
n

∑
i=1

Ri (xI) ai (xI) = R(xI)a(xI) (1)

where Ri (xI) is the RBF, n is the number of nodes inside the influence-cell of xI .
The coefficients ai (xI) are non constant coefficients of Ri (xI).

(a) (b) (c) (d) 

 

Figure 2: (a) Voronoï cell and respective tetrahedrons. (b) Initial tetrahedron. (c)
Initial tetrahedron isoparameterization and determination of the quadrature integra-
tion points. (d) Quadrature integration points in Cartesians coordinates.

In the RBF the variable is the distance rIi between the relevant node xI and the
neighbour node xi, rIi =

√
(xI− xi)2 +(yI− yi)2 +(zI− zi)2. Several known RBFs
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are well studied and developed in [Wang J.G. and Liu G.R., (2002b)] The present
work uses the Multiquadric (MQ) function proposed initially by Hardy [Hardy
R.L., (1990)].

R(rIi) =
(
r2

Ii + c2)p
(2)

where c and p are two shape parameters. The optimized values of c and p can be
found in [Dinis L., Jorge R.N. et al., (2007a); Dinis L., Jorge R.N. et al., (2007b)].
Equation (1) can be written in the matricial form,

us = RG a (3)

And solved by substitution on equation (1),

u(xI) = R(xI) R−1
G us = ϕ (xI)us (4)

where ϕ (xI) is the interpolation function defined as,

ϕ (xI) = R(xI) R−1
G =

(
ϕ1 (xI) ϕ2 (xI) . . . ϕn (xI)

)
(5)

The partial derivative of ϕ (xI) is easily obtained [Dinis L., Jorge R.N. et al.,
(2007a)]. Early works on the RPIM [Wang J.G. and Liu G.R., (2002b); Wang J.G.
and Liu G.R., (2002a)] sustain that these interpolation functions possess the delta
Kronecker property and also that the partition of unity is satisfied. An inconvenient
property of the RPIMs interpolation functions is the lack of compatibility. This
property is achieved in the RPIMs using the conforming RPIM [Liu G.R., Gu Y.T.
et al., (2004)]. However this same study concluded that the RPIM is much more
simple and efficient than the conforming RPIM. The lack of consistency in the
RPIMs interpolation functions, constructed without a polynomial basis, is the rea-
son why this formulation cannot pass the standard path test, although it is proved
that it can approach polynomials in the desired accuracy and the convergence is
guaranteed when the nodes are refined [ Liu G.R., (2002a)].

3 Large Deformation Formulation

3.1 Non-linear solid mechanics

In a large deformation analysis a body can experience a large rotation and/or a
large strain. The defined stress terms together with the obtained strain terms make
it possible to express the virtual work as an integral over the known body volume,
expressing in this manner the change in the body configuration. Both strain tensor
and stress tensor are referred to the same deformed state. The Cauchy stress tensor,
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defined as ΛΛΛ, is a symmetric tensor and it represents the stresses of the current
configuration, for the three-dimensional case it can be defined as,

ΛΛΛ =

σxx τzx τyz

τzx σyy τxy

τyz τxy σzz

 (6)

In this work it is used the Voigt notation, since the development of fourth order ten-
sors is less practical. In Voigt notation the second order term tensors are expressed
in column vectors, so the stress tensor ΛΛΛ is reduced to the stress vector σσσ ,

σσσ =
{

σxx σyy σzz τxy τyz τzx
}T

(7)

And the strain tensor E to the strain vector εεε ,

εεε =
{

εxx εyy εzz εxy εyz εzx
}T

(8)

The strain tensor E is defined by,

E =
1
2

(C− I) (9)

being I the identity matrix and C the right Cauchy-Green deformation tensor,

C = FT F (10)

where F is the deformation gradient which can be written as,

F =
∂x
∂X

(11)

being the body initial material position represented as X = {X Y Z} and the body
current material position represented as x = {x y z}.
The following relation between the stress rate and the strain rate is assumed,

dσσσ = c dεεε (12)

The material matrix is defined by c and if material non-linear relations exists be-
tween σσσ and εεε , then c = ceP. For the three-dimensional elasticity case,

c = µ1



1 ν ν 0 0 0
ν 1 ν 0 0 0
ν ν 1 0 0 0
0 0 0 µ2 0 0
0 0 0 0 µ2 0
0 0 0 0 0 µ2

 (13)
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being µ1 = E/(1−ν2) and µ2 = (1−ν)/2, where E is the Young Modulus and ν

is Poisson ratio. The NNRPIM formulation is established in terms of a weak form
of the differential equation under consideration. In the solid mechanics context this
implies the use of the virtual work equation,

ψ =
∫

Ω

σσσ dεεε dΩ−
∫

Ω

b ·du dΩ−
∫

Γ

t ·du dΓ = 0 (14)

where b is the body force and t is the surface force, respectively acting on the solid
volume Ω and surface Γ, both in the current configuration. The virtual displacement
is defined by du and dεεε is defined by,

dεεε = B̄du (15)

where u = {u v w} displacement and B̄ is the deformation matrix. Thus the virtual
work, expressed in equation (14), using equation (15) can be presented as,

ψ =
∫

Ω

B̄T
σσσ dΩ− f = 0 (16)

being f the applied total force vector. The strain vector can be divided in two parts,
the linear part and the non-linear part,

εεε = εεε0 +εεεNL (17)

which can also be presented as,

εεε = Lθθθ︸︷︷︸
εεε0

+ 1
2 Aθθθ︸︷︷︸

εNL

=
(
L+ 1

2 A
)

θθθ (18)

The matrix L is defined as,

L =


e1 0

[3×1]
0

[3×1]
e2 0

[3×1]
e3

0
[3×1]

e2 0
[3×1]

e1 e3 0
[3×1]

0
[3×1]

0
[3×1]

e3 0
[3×1]

e2 e1


T

(19)

Being ei the coordinate i director column vector,

I =
[
e1 e2 e3

]
(20)

The column vector θθθ is defined by,

θθθ = Gu (21)
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Being G the geometric matrix defined by,

GT =


∂ϕ

∂x 0 0 ∂ϕ

∂y 0 0 ∂ϕ

∂ z 0 0

0 ∂ϕ

∂x 0 0 ∂ϕ

∂y 0 0 ∂ϕ

∂ z 0

0 0 ∂ϕ

∂x 0 0 ∂ϕ

∂y 0 0 ∂ϕ

∂ z

 (22)

which produces the following column vector θθθ ,

θθθ =
[
θθθ T

x θθθ T
y θθθ T

z

]T
being θθθ

=
ξ

[
∂u
∂ξ

∂v
∂ξ

∂w
∂ξ

]T
(23)

The current configuration displacement is considered in matrix A, the equation (18)
actualized component,

A =


θθθ x 0

[3×1]
0

[3×1]
θθθ y 0

[3×1]
θθθ z

0
[3×1]

θθθ y 0
[3×1]

θθθ x θθθ z 0
[3×1]

0
[3×1]

0
[3×1]

θθθ z 0
[3×1]

θθθ y θθθ x


T

(24)

The deformation matrix B̄, dependent of u, ca be defined as,

B̄ = B0 +BNL(u) (25)

since it varies with the deformation of the solid. The linear part of the deformation
matrix is represented by B0 and the non-linear contribution by BNL. For the three-
dimensional case,

BT
0 =


∂ϕ

∂x 0 0 ∂ϕ

∂y 0 ∂ϕ

∂ z

0 ∂ϕ

∂y 0 ∂ϕ

∂x
∂ϕ

∂ z 0

0 0 ∂ϕ

∂ z 0 ∂ϕ

∂y
∂ϕ

∂x

 (26)

and

BNL = AG (27)

The non linear deformation is actualized though matrix A, which contains the cur-
rent configuration displacements.

The tangential stiffness matrix KT can be determined considering the variation of
the virtual work equation, equation (16), in order to the generalized displacements
du,

dψ = d

[∫
Ω

B̄T
σσσ dΩ− f

]
(28)
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Considering conservative the external load, ∂ f/∂u = 0,

dψ =
∫

Ω

dB̄T
σσσ dΩ+

∫
Ω

B̄T dσσσ dΩ = KT du (29)

Using equation (12) and equation (15) the following relation is obtained,

dσσσ = cB̄du (30)

In the deformation matrix B̄ only the non-linear part dBNL is dependent of u, equa-
tion (25), thus dB̄ = dBNL and therefore,

dψ =
∫

Ω

dBT
NLσσσ dΩ+

∫
Ω

B̄T cB̄dΩ (31)

where the stiffness matrix can be presented as,

KT = Kσ +K0 +KNL (32)

Being,

Kσ =
∫

Ω

dBT
NL σσσ dΩ (33)

K0 =
∫

Ω

BT
0 cB0 dΩ (34)

KNL =
∫

Ω

(
BT

0 cBNL +BT
NL cBNL +BT

NL cB0
)

dΩ (35)

The initial stress matrix or geometric matrix Kσ is defined as,

Kσ du =
∫

Ω

GT dAT
σσσ dΩ (36)

The variation of matrix A in order to u can be defined as,

dAT =


dθθθ x 0

[3×1]
0

[3×1]
dθθθ y 0

[3×1]
dθθθ z

0
[3×1]

dθθθ y 0
[3×1]

dθθθ x dθθθ z 0
[3×1]

0
[3×1]

0
[3×1]

dθθθ z 0
[3×1]

dθθθ y dθθθ x

 (37)

As so, the term dATσσσ can be represented as,

dAT
σσσ =


σxx I

[3×3]
τzx I

[3×3]
τyz I

[3×3]

τzx I
[3×3]

σyy I
[3×3]

τxy I
[3×3]

τyz I
[3×3]

τxy I
[3×3]

σzz I
[3×3]

dθθθ = Mdθθθ = MGdu (38)
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and therefore equation (33) can be presented as,

Kσ =
∫

Ω

GT MGdΩ (39)

The initial stress matrix Kσ takes into consideration the actualized stress field.

3.2 Non-linear solution algorithms

The solution is achieved via an iterative process. In this work the iteration method
used is the actualized normal plan method, considering in each new load increment
the previous increment tangent stiffness matrix. Such method, which is a variant
of the arc-length method, permits the solution of problems where there are the pos-
sibility of occurring structural instability, as the “snap-through” and “snap-back”
phenomenon. These instability phenomenona cannot be predicted with standard
nonlinear Newton-Raphson solution methods. For such nonlinear solution meth-
ods, if a control displacement analysis was used the “snap-thought” phenomenon
would be solved, however the “snap-back” phenomenon would still occur.

In this work it is used the Orthogonal Actualized Ramm’s method [ Crisfield M.A.,
(1991)], figure 3. In this method the iterative process is forced to follow an orthog-
onal plane to vector nti. For the simplicity sake the scheme of an unidimensional
system solution is presented in figure 3, reducing the orthogonal plane to a bidimen-
sional vector nni, where nni>nti. For a given load increment n the secant vector nti

is obtained from,

nti =
(n

∆ui, n
∆λ

if
)T

(40)

The orthogonal plane in each iteration, represented by vector nni, is defined by,

nti =
(

n
∆ui+1− n

∆ui︸ ︷︷ ︸ ndui, ndλ
if
)T

(41)

Since t and n are orthogonal, nti · nni = 0, using equations (40) and (41) the value
dλ i of can be obtained,[n

∆ui]T ndui +
(n

∆λ
i · ndλ

i) fT f = 0 (42)

resulting after development in,

ndλ
i =

[
n∆ui

]T ndu
i

[n∆ui]T ndui +(n∆λ i) fT f
(43)
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Figure 3: Orthogonal actualized Ramm’s method for an unidimensional system.

In this version of the orthogonal actualized Ramm’s method the tangential stiff-
ness matrix used is determined in the first iteration of each load increment, as the
Newton-Raphson method variant - Initial Increment Stiffness Method (K1) [Owen
D. and Hinton E., (1980); Dinis L., Jorge R.N. et al., (2008)]. Being so, ndui

I is
constant along all the iterative process,

ndui
I =n

∆u1 =
[nK0]−1 n

∆λ
if (44)

The vector nd̄ui can be obtained with,

nd̄ui =
[nK0]−1 n

ψ
i (45)
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And the displacement vector in the current iteration is defined as,

ndui =
[nK0]−1 n (n

∆λ
if−ψ

i) (46)

The displacement vector is accumulated in each iteration,

n
∆ui+1 = n

∆ui + ndui (47)

The actualized incremental parameter is obtained with,

n
∆λ

i+1 = n
∆λ

i− ndλ
i (48)

The generic arc-length algorithm can be summarized as in Box.1.

4 Examples

In this section several examples are presented in order to prove the high accuracy
and the good behaviour of the NNRPIM. Firstly the application of the orthogo-
nal actualized Ramm’s method to the NNRPIM is validated by comparison with
the Newton-Raphson non-linear solution method. Then the efficiency of the arch
method applied to the NNRPIM is tested with a problem that shows structural in-
stability. Afterwards the solutions obtained with NNRPIM for large deformation
benchmark examples are presented. The NNRPIM solution is compared with ana-
lytical solution and FEM solutions, whenever available.

4.1 Clamped Thick Arch

In this example a thick arch is studied, clamped in both ends and subjected to a
concentrated load in the mid span, as figure 4 shows.

The material properties of the arch are E = 4.8MPa and several values for Poisson
ratios are considered, ν = {0.00 0.10 0.20 0.30 0.40 0.49}, these values are used
along the analysis. Using the symmetry of the solid only half of the problem is
studied. The problem is analysed using two distinct approaches, a 2D approach
and a 3D approach. The nodal meshes used in the analysis are presented in figure
5. The NNRPIM solution is compared with the analytical solution presented in
[Schreyer H.L. and Masur E.F., (1966)].

In order to study the influence of the nodal mesh discretization in the accuracy of
the solution, it was considered the three regular meshes presented in figure 5(a),
5(b) and 5(c). The load applied versus the displacement along z direction in the
mid-span of the arch is presented in figure 6. The non-linear solution method used
to solve the large deformation problem is the initial stiffness Newton-Raphson
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Box 1: Generic arc-length algorithm.
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Figure 4: Geometrical model of proposed thick arch.

(a) 

(b) 

(c) 

(d) 
(f) 

(e) 

 

Figure 5: Meshes used in the analysis. (a) 2D regular 73 nodal mesh. (b) 2D regular
255 nodal mesh. (c) 2D regular 909 nodal mesh. (d) 2D irregular 303 nodal mesh.
(e) 3D regular 510 nodal mesh. (f) 3D irregular 606 nodal mesh.

method. As figure 6 indicates the solution converges. It also shows that there
is a good concordance between the analytical solution and the 2D solution ob-
tained with the NNRPIM. The numerical implementation of the non-linear solution
method (KT1) was successfully applied to the NNRPIM [Dinis L., Jorge R.N. et al.,
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Figure 6: Evolution of the displacement on the mid span of the arch for distinct
meshes.
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Figure 7: Evolution of the displacement on the mid span of the arch when two
distinct non-linear solution methods are used.
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Figure 8: Evolution of the displacement on the mid span of the arch for several
values of the Poisson ratio.
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Figure 9: Evolution of the displacement on the mid span of the arch obtained with
a 3D formulation and with irregular meshes.
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(2008)], thus it is important to validate the orthogonal actualized Ramm’s method,
or arch-method, comparing the results obtained with the KT1 with the results ob-
tained with the arch-method (ArcM). In figure 7 both non-linear solution methods
are compared. As it is visible on figure 7, both non-linear solution methods produce
coincident results, as it should be. As so, from this example forward, in this work
all the next examples are solved using the orthogonal actualized Ramm’s method.

The same problem is now considered but the Poisson ratio is varied between 0 and
0.49. The mesh used in the analysis is the 255 nodes regular mesh. The load applied
versus the displacement along z direction in the mid-span of the arch is presented
in figure 8. It is visible that the Poisson ratio does not significantly influence the
obtained solution.

The NNRPIM 3D formulation is now applied to solve the problem. The 3D regular
and irregular meshes presented respectively in figure 5(e) and 5(f) are used in the
analysis. A 2D irregular mesh of 303 nodes, figure 5(d), is also used in the analysis.
The results are compared with the 2D solution (909 nodes regular mesh) and the
analytical solution. The results are presented in figure 9 and it is visible the good
concordance between the 3D solution and the analytical solution, regardless if it is
a 3D regular mesh or a 3D irregular mesh.

As figure 9 shows the irregularity of the mesh does not disturb the method perfor-
mance or accuracy.

4.2 Simply Supported Shallow Arch

A clamped shallow arch which has the snap-through buckling behaviour was ana-
lyzed. The arch is loaded by a point load at the top centre and it is simply supported
in both ends in the centre of the section. The geometry and dimensions are shown
in Figure 10. The material properties of the arch are E = 700MPa and ν = 0.0.
Using the symmetry of the solid only half of the problem is studied. The results
are compared with a FEM solution for a 1D analysis using the Timoshenko beam
element solution [Gomes C.R., (1982)].

The problem is solved considering the 2D and the 3D approach. The regular and
irregular meshes, 2D and 3D, used in the analysis are shown in figure 11.

The vertical displacement on the mid span of the arch in relation to the applied
load is present in figure 12. It is visible in figure 12 that the orthogonal actualized
Ramm’s method algorithm predicts well the snap-through buckling phenomenon.
The NNRPIM 2D and 3D solutions are all very close to each other, regardless if
the used mesh is regular or irregular. The NNRPIM solution is not very close with
the FEM solution, probably because the FEM solution is regarding a 1D approach
and the NNRPIM solution are for 2D and 3D analyses.
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Figure 10: Geometrical model of the proposed shallow arch.

 

Figure 11: Meshes used in the analysis.

4.3 4.3 Pure Bending of a Cantilever Beam

Described in [Love A.E.H., (1996)] and solved numerically in several papers [Betsch
P., Menzel A. et al., (1998); Areias. P.M.A., César de Sá J. M. A. et al., (2003)],
this classical geometrically non-linear solid mechanics problem consists of an elas-
tic beam subjected to a bending moment at the tip end and clamped at the other end,
figure 13. The intensity of the applied moment is gradually increased until a per-
fect cylinder configuration is reached. The dimensions used are length L = 10.0m,
width B = 1.0m and thickness H = 0.1m. The Young modulus and the Poisson ratio
considered are E = 12MPa and ν = 0.0. This problem was solved considering two
distinct approaches, a 2D and a 3D approach. The 2D analysis use a regular mesh
of 3×101 nodes and the 3D analysis consider a regular mesh of 126 nodes, as it is
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Figure 12: Displacement on the mid span of the arch.

shown in figure 13.

 

Figure 13: Geometrical model of the roll-beam proposed and Mesh used in the 3D
analysis.

The numerical results obtained with the NNRPIM are presented in figure 14. De-
formed meshes are presented for increasing tip moments and it is visible that the
final deformed mesh is representing a nearly perfected circular ring, both for the
2D and the 3D analysis.



Large Deformation Applications 21

(a) (b) 

 

Figure 14: Deformed meshes for increasing tip moments for the 2D analysis (a)
and the 3D analysis (b).

4.4 Cantilever Beam

Consider now an elastic cantilever beam with the same length L = 10.0m but with a
cross section 1.0×1.0m2, the material properties are E = 10MPa and ν = 0.3. The
load f is applied uniformly distributed at x = L and the beam is clamped at x = 0, as
figure 15 indicates. In this example two meshes for the 2D analysis and other two
meshes for the 3D analysis are considered, the meshes and the number of nodes of
each one are presented in figure 15.

Considering a large deformation analysis the load is applied gradually. The results
obtained with the NNPRIM, for the 2D and the 3D analysis, are compared with a
theoretical solution which relies on inextensional elastica [Frisch-Fay R., (1962)].
The point A, 5, displacement in the z direction of is presented in figure 16 for the
several meshes considered. As it is visible on figure 16 when the mesh is refined
the solution approaches the theoretical solution, for the NNRPIM-2D analysis and
the NNRPIM-3D analysis. Both 2D solution and 3D solution are very near the
theoretical solution. In figure 17 are presented the 2D and the 3D deformation of
the cantilever beam for several increasing load levels.

As it is visible on figure 17 the displacement is smooth and there is no distortion
on the mesh for largest deformations.

4.5 Square Plate Simply supported

In this example is considered a square plate subjected to a uniformly distributed
load, as figure 18 indicates, where L = D = 10.0m and H = 0.5m. The plate is
simply supported in all edges for z = 0. Using the natural symmetry of the solid
only a quarter of the plate is analysed. The considered material properties are, E =
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Figure 15: Geometrical model of the cantilever beam proposed and meshes consid-
ered in the analysis.

1000kPa and ν = 0.316. The bending of the plate is analysed using the NNRPIM
3D formulation and the results are compared with the analytical solution presented
in [Chia C.Y., (1980)]. The quarter of the plate is discretized in two distinct meshes,
figure 18, a regular mesh with 363 nodes and in an irregular mesh with 474 nodes
are used in the 3D NNRPIM formulation, considering large deformations analysis.

In figure 19 it is presented the deformation of the plate for distinct load levels and
it is perceptible the good behaviour of the NNRPIM for high levels of the applied
load.

In figure 20 it is represented the displacement along the z direction on the centre of
the plate for increasing load levels. The NNRPIM results are close to the analytical
solution, regardless if a regular or an irregular mesh is used in the analysis.
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Figure 16: Evolution of the displacement on point A with the load level for distinct
meshes, for the 2D and the 3D analysis.

(a) (b) 

 

Figure 17: Deformation of the cantilever beam for several increasing load levels
for the 2D analysis (a) and 3D analysis (b).

4.6 Clamped Square Plate

In this example a square plate clamped in all edges is analysed. The material and
geometrical properties, along with the load condition, are the same of the pervious
example. Also the two distinct meshes presented in figure 18(b) and 18(c) are used,
the 363 node regular mesh and the 474 node irregular mesh. The results obtained
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(a) (b) (c) 

Figure 18: (a) Geometrical model of the plate and applied load. (b) Regular mesh
with 363 nodes and (c) Irregular mesh with 474 nodes.

 

Figure 19: Deformation of the simply supported square plate for several increasing
load levels.
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Figure 20: Evolution of the central displacement of the plate with the load level,
for the 3D analysis.
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applying the NNRPIM 3D formulation and using large deformation analysis are
compared with the analytical solution presented in [Chia C.Y., (1980)]. One again
the good behaviour of the NNRPIM is shown in figure 21. The 3D displacement
field obtained in the analysis, for distinct load levels, is always smooth and accurate.

 

Figure 21: Deformation of the clamped square plate for several increasing load
levels.
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Figure 22: Central displacement of the plate in relation to the applied load for the
3D analysis.

The displacement along the z direction on the centre of the plate for increasing load
levels is presented in figure 22. It is perceptible that the NNRPIM solution is almost
coincident with the analytical solution.
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4.7 Curved Cantilever Beam

The following example shows the applicability of the NNRPIM for thin 3-D-beams.
The large displacement response of a three-dimensional curvilinear cantilever beam
subject to a concentrated end load is calculated [Bathe K.J. and Bolourchi S.,
(1979)]. Due to the geometry and the applied load the curved cantilever beam
undertakes both bending and twisting deformations. The beam lies in the XY plate
and its cross-sectional area is 0.01× 0.01m2. The cantilever beam has a radius of
R = 1.0m and a angle on the XY plane of 45◦, as figure 23 indicates. The con-

 

Figure 23: (a) Geometrical model of the curved cantilever beam and applied load.

centrated load is applied at one end of the beam and the opposite end is kept fixed.
The analysis is carried using a Young’s modulus of E = 10MPa and a Poisson ratio
of ν = 0.0. Several three-dimensional meshes are used in the analysis, as figure 24
shows. The NNRPIM results are compared with an optimized FEM solution [Bathe
K.J. and Bolourchi S., (1979)].

The NNRPIM results for the end tip of the curve beam, regarding the three variables
of the displacement, are presented in figures 25, 26 and 27. The applied load is
normalized with the expression Pnorm = P×R2/(E × I) being I the inertia of the
beam cross section. As it is visible, there is a path of convergence for the NNRPIM.
With the refinement of the mesh the NNRPIM solution approaches the reference
FEM solution. Using mesh 5, the most refine mesh, the results approach more the
FEM solution.

In figure 28 it is presented the deformation of the curved beam for distinct load
levels and it is perceptible the good behaviour of the NNRPIM for high levels of
the applied load.
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Figure 24: Meshes used in the analysis.
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Figure 25: Evolution of the displacement along x direction on the end tip of the
curved cantilever beam with the load level, for distinct meshes.

5 Conclusions

In this work the Natural Neighbour Radial Point Interpolation Method (NNRPIM)
was extended to the large deformation analysis of non-linear elastic structures. The
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Figure 26: Evolution of the displacement along y direction on the end tip of the
curved cantilever beam with the load level, for distinct meshes.
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Figure 27: Evolution of the displacement along z direction on the end tip of the
curved cantilever beam with the load level, for distinct meshes.
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Figure 28: Deformation of the curved beam for several increasing load levels.

Orthogonal Actualized Ramm’s method was used for the solution of the nonlinear
system of equations. From the experience acquired along the development of this
work along with the results obtained with the presented benchmark examples, it
can be concluded,

1. The NNRPIM is a stable and accurate interpolator meshless method. The
produced displacement field and stress field is smooth, accurate and very
close with the compared solutions.

2. The interpolation functions of the NNRPIM, which are very simple to con-
struct, permit an easy imposition of the boundary conditions, reducing the
computational time when compared with the approximation methods.

3. The non-linear solution algorithm, Orthogonal Actualized Ramm’s method,
was successfully implemented.

4. The mesh irregularity does not significantly affect the final results and the
convex boundaries of the problem, due to the NNRPIM node connectivity
scheme, does not represent a setback, as in other meshless methods that use
the influence domain concept.

The NNRPIM proved to be an alternative method in the large deformation analysis
of non-linear elastic structures.
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