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A Simplified Analysis of the Tire-Tread Contact Problem
using Displacement Potential Based Finite-Difference
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Abstract: The paper presents a simplified analysis of stresses and deformations
at critical sections of a tire-tread. Displacement potential formulation is used in
conjunction with the finite-difference method to model the present contact prob-
lem. The solution of the problem is obtained for two limiting cases of the contact
boundary – one allows the lateral slippage and the other conforms to the no-slip
condition along the lateral direction. The influential effects of tire material and
tread aspect-ratio are discussed. The reliability and accuracy of the solution is also
discussed in light of comparison made with the usual computational approach.
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1 Introduction

Reliable and accurate analysis of stresses in tire-tread sections is an important prac-
tical issue. Based on the results of stress analysis of tire-tread sections in contact
with the road, a number of practical issues associated with the serviceability of tires
can be solved. For example, a fatigue test program can be conducted using results
from the stress analysis as input to study the law of damage growth and thereby de-
velop models for life prediction of tires. In addition, the stress analysis of tire-tread
sections is a pre-requisite to the prediction of optimum shapes of tire-treads for
avoiding the lateral slippage between the tire and roads. Therefore, since the ser-
vice life a tire primarily depends on the life of treads, a careful analysis of stresses
at the critical transition areas of tire-tread sections is of great practical importance
for their improved design and thus improved life.

The elasticity problems are usually formulated using differential equations. Even-
tually, the solutions of the differential equations are required in order to obtain the
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deformation and the state of stresses in the body. Analytical methods of solution are
found to be inadequate for analyzing the practical problems of elasticity because
of the complexity associated with the boundary conditions, materials and geome-
try. As a result, the numerical techniques are the most plausible approaches to deal
with such problems, which generally include finite difference method (FDM), fi-
nite element method (FEM), etc. Besides the wide applications of FDM and FEM,
recently the use of boundary element methods (BEM) is being investigated for the
solution of isotropic, anisotropic as well as functionally graded materials, some of
which are cited in the reference (see Aliabadi, 2002; Criado et al., 2007; Tan et al.,
2009). On the other hand, a considerable research in computational mechanics has
been devoted to the development of meshless methods (see Atluri and Shen, 2002).
In an attempt to deal with contact problems, a frictionless contact algorithm for
meshless methods was proposed by Vignjevic et al. (2006). One of the important
paths in the evolution of meshless methods has been the development of the gener-
alized (meshless) finite difference method (GFDM), which has also been applied to
improve the approximated solutions of partial differential equations (Benito et al.,
2008). Instead of the differential formulation, an algebraic formulation of elasto-
statics, namely the Cell method has been reported (Tonti and Zarantonello, 2009),
which avoids the discretization process of the differential equations. A stabilized
radial basis functions collocation scheme has been proposed for boundary value
problems subjected to mixed Neumann and Dirichlet boundary conditions (Libre
et al., 2008). A special set of mixed uniform boundary condition has however been
proposed for evaluating the macroscopic elasticity tensor of human trabecular bone
as well as for predicting the mechanical behavior of elastic and inelastic discontin-
uously reinforced composites (Pahr and Zysset, 2008; Pahr and Böhm, 2008).

Technical reporting on the analysis and design of rubber tires for various automo-
tive vehicles is quite extensive in the literature. A number of authors have focused
on the analysis of stresses and deformed shapes of reinforced tires by finite ele-
ment method (Tabaddor and Stafford, 1985; Huh and Kwak, 1990; Wang et al.,
1996; Rothert and Gall, 1986). Some of the papers (Wang et al., 1996; Rothert and
Gall, 1986) considered the static tire contact problem for obtaining the deforma-
tion patterns and stress-state in the tire cross-section without paying attention to the
bending effect of the reinforced cords. Taking the bending effect into consideration
and laying emphasis on it during shear deformation of elements, Huh and Kwak
(1990) developed the expressions of effective material properties of rubber com-
posites, and applied to the inflation and contact problem of reinforced tire. Wang
et al. (1996) reported an experimental stress-strain analysis by means of the Moire
method in the area of the shoulder region of a retreaded tire section. They also
presented a comparison of the experimental results with those obtained by FEM.
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The specimen for the experiment was a cross-sectional slice of a retreaded truck
tire. For the finite element comparison, a 2-D quarter tire model was created to best
simulate the experimental condition. The tire section was modeled using three and
four noded plane stress elements; rubber elements were modeled with isotropic,
linear elastic and nearly incompressible properties. They reported that although
the FEM results were in substantial agreement with the corresponding experimen-
tal results, the discrepancies were primarily because of the inability of satisfying
the actual boundary conditions of experiment in the finite-element modeling of the
problem. A number of computational algorithms have also been reported for solv-
ing contact problems involving sticking, frictional sliding, and separation between
two bodies (Bathe and Chaudhary, 1984; Campos et al., 1982; Oden et al., 1984;
Noor and Tanner, 1985; Oden and Pires, 1983). In most of these algorithms, the
classical Coulomb’s law of friction is used in the evaluation of tangential traction
from the normal traction. A number of recent researchers are also found to show
their interest in the stress analysis of multi-layered and multi-laminated system of
truck/tractor tires using non-linear finite-element analysis, some of which are cited
in the reference (see Zhang et al., 2002; Mohenimanesh et al., 2009).

In the present paper, an ideal mathematical model for the boundary-value stress
problems, namely, the displacement potential formulation (Ahmed et al., 1996;
Ahmed et al., 1998) has been used in conjunction with finite-difference method
to analyze the deformed shape as well as stresses the in tire-tread sections. This
boundary modeling approach has generated much renewed interest in the field of
numerical and analytical solutions of mixed-boundary-value problems in solid me-
chanics (Akanda et al., 2002; Ahmed et al., 2005a; Nath and Ahmed, 2009). It
is important to note that the present mathematical model permits reduction of pa-
rameters to be evaluated at each nodal point to one, whereas the standard methods
of solution need at least two unknowns to be evaluated at each nodal point for the
solution of a two-dimensional problem. As a result, the total number of equations
to be solved is much less in the present approach, which, in turn, leads to the re-
duction of computational effort as well as improves the quality of solution (Ahmed
et al., 2005a). Moreover, the use of finite-difference technique is considered to be
especially suitable for the present case, as the investigation concentrates primarily
on the prediction of stresses at the surfaces of tire-treads. In this context, it can be
mentioned that the superiority of finite-difference method of solution in predicting
the surface stresses has been verified in our earlier researches and also by the inves-
tigation of Dow et al. (1990). Recently, a new numerical method of analysis has
been proposed to determine the optimum shapes of tire treads for avoiding lateral
slippage between tires and roads (Ahmed et al., 2005b).

Considering the tire-tread problem as a mixed-boundary-value plane problem of
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linear elasticity, the numerical solutions are obtained for the deformation and stresses
at different sections of the treads, specifically at the contact surface and the inter-
secting section of tire and treads (shoulder). Solutions are obtained for the two
limiting cases of the contact surface – one allows free lateral slippage and the other
conforms to the no-slip condition of the boundary. In the first case, the contact
surface is assumed to be free from any frictional resistance from the road, which
allows free slippage of the surface on the road in the direction perpendicular to the
direction of vehicular motion (lateral direction), under the influence of a uniform
contact pressure (see Fig. 1). On the other hand, the no-slip condition of the tread
conforms to the situation where the frictional resistance from the road is sufficiently
high to prevent the lateral slippage of the contact surface. It is noted here that the
friction in the direction of vehicular motion can hardly contribute to the abrasion
loss of treads as far as the rotary motion of the tire is concerned. The lateral slip-
page on the road surface has however been identified to be one of the major reasons
for shortening the life of tires as far as abrasion loss is concerned (Ahmed et al.,
2005b). In an attempt to make the results useful for practical applications, for both
the cases of contact surface, solutions are obtained for actual truck tire rubber as
well as commercially available natural rubber. The no-slip shearing stress at the
contact boundary is also analyzed in an attempt to predict the frictional resistance
required to keep the contact boundary free from the lateral slippage on the road. Fi-
nally, the reliability and accuracy of the present displacement potential solution is
discussed in light of comparison made with that of the usual computational method.

 

Fig. 1 Direction of motion of tire with traction friction on tire treads 
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Figure 1: Direction of motion of tire with traction friction on tire treads
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2 Displacement Potential Formulation

With reference to a rectangular coordinate system, in absence of body forces, the
governing equations of equilibrium for the plane problems of isotropic, elastic bod-
ies of Hookean materials, in terms of displacement components, are as follows
(Ahmed et al., 1998; Timoshenko, 1979)
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where, µ is the Poisson’s ratio of the material. The stress components are calculated
from the following stress-displacement relations (Timoshenko, 1979):
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In the displacement potential formulation, the displacement components are ex-
pressed in terms of a potential function ψ of space variables as follows (Ahmed et
al., 2005a):
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Here, αi are material constants.

Combining the equations (1), (2), (6) and (7), we obtain the equilibrium equations
in terms of the function ψ(x, y), which are
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The constants, α’s are chosen here in such a way that Eq. (8) is automatically
satisfied under all circumstances. This will happen when coefficients of all the
derivatives present in Eq. (8) are individually zero.

Thus, for ψ to be a solution of the stress problem, it has to satisfy Eq. (9) only.
However, the values of α’s must be known in advance. It has been shown that, for
isotropic solids the values of the material constants, α’s are given by the following
expressions (Ahmed et al., 2005a):

α1 = α3 = α5 = 0
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(10)
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When the above values of α’s are substituted in Eq. (8), it is automatically satis-
fied, and thus the governing difference equation (Eq. 9) for the solution of two-
dimensional problem becomes
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The problem is thus reduced to the evaluation of a single function ψ (x,y) from the
single governing equation of equilibrium (Eq. 11), along with the specified bound-
ary conditions. Thus, the computational work in solving any problem remains the
same in the present case as it was in the case of stress function formulation (Tim-
oshenko, 1979), since both of them have to satisfy the same bi-harmonic partial
differential equation. But the ψ-formulation is free from the inability of the stress
function formulation in handling the mixed boundary conditions.
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2.1 Expressions of boundary conditions in terms of the function, ψ

Combining Eqs. (3) to (7) and (10), the expressions for the body parameters in
terms of the function ψ(x,y) can be obtained as follows (Ahmed et al., 1998):
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The boundary conditions at any point on the boundary are known in terms of normal
and tangential components of displacement and stress. The expressions for the
normal and tangential components of displacement, in terms of the function, are
(Akanda et al., 2002)
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where, l and m are the direction cosines of a point on the boundary. Similarly, the
corresponding expressions for the normal and tangential components of stress for
points on the boundary are (Akanda et al., 2002),
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As appears from the above expressions, all the boundary conditions of interest can
readily be discretized in terms of the function ψ by the method of finite-difference.
The distinguishing feature of the present formulation is that, a single function has
to be evaluated at each mesh point instead of solving for at least two variables
simultaneously as in the case of standard method of solution. Moreover, all modes
of boundary conditions can be satisfied appropriately, whether they are specified
in terms of loading or physical restraints or any combination thereof. It is noted
that the reliability as well as superiority of the ψ-formulation has been verified
repeatedly through the analytical and numerical solutions of a number of mixed-
boundary-value stress problems of solid mechanics (Ahmed et al., 1996; Ahmed et
al., 1998; Akanda et al., 2002; Ahmed et al., 2005a; Nath and Ahmed, 2009).

3 Numerical Modeling of the Problem

3.1 Method of solution

The limitation and complexity associated with the analytical method of solution ul-
timately leads to the conclusion that a numerical modeling for the present problem
is the only plausible approach. Finite-difference technique is used to discretize the
governing differential equation (11) and also the differential equations associated
with the boundary conditions (Eq. (17)-(20)). The discrete values of the displace-
ment potential function ψ(x,y), at the mesh points of the domain concerned, is
solved from the system of linear algebraic equations resulting from the discretiza-
tion of the governing equation of equilibrium and the associated boundary condi-
tions.

3.2 Discretization of the computational field

According to the usual practice, the region in which a dependent function is to be
evaluated is divided into a desirable number of mesh points and the values of the
function are sought only at these mesh points. The present program is to solve a
function within a stepped rectangular region, as shown in Fig. 2, which is divided
into meshes with lines parallel to rectangular coordinate axes. Considering the
rectangular shape of the boundary and also the nature of the differential equations
involved, a uniform rectangular mesh-network is thus used to model the present
tire-tread problem. The present domain of the tread is discretized with a minimum
of (28×18) nodal points, and the corresponding stability as well as accuracy of
the present finite-difference solution is checked by varying the mesh density. The
discritization scheme of the tread section is schematically illustrated in Figure 3.

The governing differential equation, which is used to evaluate the function ψ only
at the internal mesh points, is expressed in its corresponding difference form using
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Figure 2: Loading and geometry of a typical tire-tread section

central difference operators. When all the derivatives present in the bi-harmonic
equation (11) are replaced by their respective central difference formulae, the com-
plete finite-difference expression for the governing equation of equilibrium be-
comes

R4{ψ (i−2, j)+ψ(i+2, j)}−4R2(1+R2){ψ(i−1, j)+ψ(i+1, j)}−4(1+R2)

{ψ(i, j +1)+ψ(i, j−1)}+(6R4 +8R2 +6)ψ(i, j)+2R2{ψ(i−1, j−1)+
ψ(i−1, j +1)+ψ(i+1, j−1)+ψ(i+1, j +1)}+ψ(i, j−2)+ψ(i, j +2) = 0

(21)

where, R = k/h.

The corresponding grid structure of the difference equation (21) for any internal
mesh point (i, j) is shown in Fig. 3. The pivotal point (i, j) in the grid structure is
the point of application of the governing equation. For the case of any interior mesh
point, the finite-difference equation (21) contains the discretized variable of the
thirteen neighboring mesh points, and when the point of application (i, j) becomes
an immediate neighbor of the physical boundary, the equation will involve mesh
points both interior and exterior to the physical boundary as shown in Fig. 3. Thus,
an imaginary boundary, exterior to the physical boundary of the tread domain, as
shown in Fig. 3, is introduced so that the application of the central-difference stencil
of the governing equation, especially to the points in the immediate neighbor of the
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Figure 3: Application of the stencils of different boundary conditions and govern-
ing equation at different points of the tread section

physical boundary, causes no difficulties.

3.3 Management of boundary conditions

As the differential equations associated with the boundary conditions contain sec-
ond and third order derivatives of the function ψ , the use of central-difference ex-
pressions is not practical as, most of the time, it leads to the inclusion of points
exterior to the imaginary boundary. The derivatives of the boundary expressions
are thus replaced by their corresponding backward or forward difference formulae,
keeping the order of the local truncation error the same (O(h2)). Further, the same
forward or backward difference formula cannot be used for different segments of
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the boundary, as it includes points exterior to the imaginary boundary. In order to
meet the requirement, four different sets of finite-difference expressions for each of
the boundary conditions are used for the points at different regions on the bound-
ary. These four sets of algebraic equations are derived by adopting the i-forward
& j-forward, i-forward & j-backward, i-backward & j-forward, and i-backward &
j-backward finite-difference schemes. The choice of the appropriate set of expres-
sions for a point on the boundary is determined by its position on the boundary,
which will avoid the occurrence of additional mesh points external to the imag-
inary boundary. For example, the finite-difference expressions of the boundary
conditions for the bottom-left segment of the boundary are obtained by using the
i-forward and j-forward difference formulae for the derivatives (see Fig. 3). For
points on the bottom-left segment of the boundary, the finite-difference expressions
of the normal components of displacement and stress are expressed as

un(i, j) =Y1ψ(i, j)+Y2ψ(i−1. j)+Y3ψ(i, j−1)+Y4ψ(i, j+1)+Y5ψ(i+1, j+2)
+Y6ψ(i+1, j +1)+Y7ψ(i+1, j)+Y8ψ(i, j +2)+Y9ψ(i+2, j)

+Y10ψ(i + 2, j + 1)+Y11ψ(i + 2, j + 2) (22)

σn(i, j) = Z1ψ(i, j)+Z2ψ(i−1, j)+Z3ψ(i−1, j +1)+Z4ψ(i−1, j +2)
+Z5ψ(i, j−1)+Z6ψ(i, j +1)+Z7ψ(i, j +2)+Z8ψ(i, j +3)+Z9ψ(i+1, j−1)
+Z10ψ(i+1, j)+Z11ψ(i+1, j +1)+Z12ψ(i+1, j +2)+Z13ψ(i+2, j−1)

+Z14ψ(i+2, j)+Z15ψ(i+2, j +1)+Z16ψ(i+3, j) (23)

Similarly, the corresponding finite-difference equations for points on the top-right
segment of the boundary, obtained by using the i-backward and j-backward differ-
ence formulae for the derivatives, are as follows:

un(i, j) =Y12ψ(i, j)+Y13ψ(i+1. j)+Y14ψ(i, j+1)+Y15ψ(i, j−1)+Y16ψ(i, j−2)
+Y17ψ(i−1, j−1)+Y18ψ(i−1, j)+Y19ψ(i−1, j−2)+Y20ψ(i−2, j)

+Y21ψ(i−2, j−1)+Y22ψ(i−2, j−2) (24)

σn(i. j) = Z17ψ(i, j)+Z18ψ(i−1, j)+Z19ψ(i−1, j +1)+Z20ψ(i−1, j−1)
+Z21ψ(i−1, j−2)+Z22ψ(i−2, j)+Z23ψ(i−2, j +1)+Z24ψ(i−2, j−1)
+Z25ψ(i−3, j)+Z26ψ(i, j +1)+Z27ψ(i, j−1)+Z28ψ(i, j−2)

+Z29ψ(i, j−3)+Z30ψ(i+1, j)+Z31ψ(i+1, j−1)+Z32ψ(i+1, j−2) (25)

where, the coefficients Yi and Zi are the functions of elastic constants (E and µ),
mesh lengths (h and k), and direction cosines of the boundary point (l and m).
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The discretization scheme using the neighboring field grid points as required for
expressing the displacement and stress boundary conditions for different boundary
segments are illustrated in Fig. 3.

3.4 Placement of boundary conditions and evaluation of parameters of interest

Since there are two conditions to be satisfied at a point on the physical boundary of
the tread section, two difference equations corresponding to the respective bound-
ary conditions are applied to the same point on the boundary. Out of these two
equations, one is used to evaluate the function ψ at the physical boundary point and
the remaining one for the corresponding point on the imaginary boundary. There-
fore, the application of the governing equation as well as the necessary boundary
conditions ensures that every mesh point of the computational domain will have a
single algebraic equation for its evaluation.

Special treatments are adopted for the corner mesh points, which are generally the
points of ‘transition’ in the boundary conditions. The geometry of the present tire
tread section contains a total of eight corner points – six external and two internal
corner points (for example, referring to the Fig. 2, A, B, C, D, G, H are external,
and E, F are internal corner points). For the case of corner points, the available
boundary conditions are usually more than that available for the remaining bound-
ary points. In an attempt to deal with these singularities in a reasonable manner, a
total of three out of the four conditions have been satisfied for all the external corner
points and the remaining one is treated as redundant, which is in contrast with the
usual computational approaches. For example, in the case of usual finite-element
method of simulation, the corner points are not treated taking into account the ef-
fect of singularity, rather only two of the available four conditions are satisfied in
obtaining the solutions. The two internal corner points, on the other hand, have
basically two conditions, one of which has been used and the other is dropped for
the sake of the present finite-difference management of the boundary conditions.

The discrete values of the potential function, ψ(x,y), at every mesh point are solved
from the system of linear algebraic equations resulting from the discretization of
the governing equation and the associated boundary conditions, by using direct
method of solution. To solve the system of equations, the authors used the trian-
gular decomposition method for better reliability of solutions in a shorter period
of time. Finally, in order to evaluate the parameters of interest in the solution of
tire-tread problem, namely, the components of stress and displacement, four sets
of finite-difference expressions for each of the equations (12)–(16) are developed
in a fashion similar to that adopted in the case of boundary conditions. Since all
the components of stress and displacement are expressed in terms of derivatives of
the function ψ , the parameters of interest are readily calculated from the ψ values
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obtained at the mesh points of the domain.

4 Mechanical Properties of Tire Rubber

In the present analysis, instead of using the available material properties of natu-
ral rubber, attempt has been made to determine the necessary material properties,
namely the Poisson’s ratio and the compression modulus of actual tire rubber, in
our laboratory by simple experiments (Ahmed et al., 2005b). Specimens were
prepared from an original sample of brand new truck tire (Dunlop R.T.M. Supreme
Tire, made in India). Test specimens were prepared from the tread region of the tire.
The Poisson’s ratio was calculated from the measured values of tension modulus
and shear modulus of tire rubber. Typical dumbbell-shaped tension specimens were
used to determine the tension modulus, whereas the compression modulus was ob-
tained from the compression test of tread blocks. The shear modulus of tire rubber
was determined from the tread blocks following the standard procedure mentioned
in ASTM Standard D4014–89. All the experiments were repeated four times and
the results were averaged. In an attempt to compare the obtained properties of truck
tire rubber, the commercially available natural rubber was also investigated for the
above mentioned properties.

The Poisson’s ratio of tire rubber was obtained as 0.43, while that of natural rubber
was found to take a value very close to its standard value, that is, 0.5. It should be
mentioned here that the value of Poisson’s ratio of tire rubber as used in their anal-
ysis of Tabaddor and Stafford (1985) and Huh and Kwak (1990) was 0.45 and 0.49,
respectively. The tension and compression moduli of the rubbers were determined
from the respective stress strain curves. Since, the modulus is found to vary with the
strain level, the compression modulus was obtained only for the low strain range (0
∼ 0.25), for which the stress-strain relations were found linear. The measured rela-
tions in the above strain range were thus well approximated by the corresponding
best-fit straight lines, the slopes of which ultimately give the required moduli. The
compression modulus of tire and natural rubbers so obtained in our present study
was 7.10 MPa and 5.23 MPa, respectively. Note that the value of the modulus of
tire rubber, used in the analysis of Huh and Kwak (1990), was 5.49 MPa, which is
quite close to that obtained for our natural rubber. Therefore, the measured mate-
rial properties of tire and natural rubber have been used in the following analysis of
tire-tread contact problem.
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5 Results and Discussions

5.1 General

In this section, the solutions of the tire-tread stress problem are presented for two
limiting cases of the contact condition - one assumes free lateral slippage and the
other conforms to the no-slip condition of the surface in contact with the road. In
the case of free-slippage condition, the solution of the problem is obtained without
considering the influence of any friction on the tread surface in contact. That is, the
tread contact surface will be allowed to deform freely both in normal and lateral
directions, without experiencing any frictional resistance from the road surface.
The geometry and loading used for the solution of the tire-tread stress problem is
illustrated in Fig. 2. The relevant boundary conditions of the frictionless contact
problem, which have been satisfied by different segments of the tread section, are
listed in Table 1(a). Table 1(b) illustrates the scheme for managing the boundary
conditions at the corner points of the tread section, which are, in general, the points
of singularity. On the other hand, the no-slip condition of the contact boundary is
refereed to the case where the available frictional resistance from the road surface
is assumed to be sufficiently high, so that the lateral displacement of the bound-
ary, caused by the application of the uniform normal compression from the road
surface is restrained. For the solution of the present no-slip contact problem, the
management of the boundary conditions for different segments of the tread bound-
ary as well as for the associated corner points is illustrated in Tables 2(a) and 2(b),
respectively.

Table 1(a): Specification of the boundary conditions for the tire-tread contact prob-
lem considering free-slippage of the contact boundary

Boundary Given boundary Tagging of boundary conditions
segment* conditions Mesh point on Mesh point on

the physical boundary the imaginary boundary
AB [un, σt] σt un

BC [σn, σt] σt σn

CD [σn, σt] σn σt

DE [un, σt] un σt

EF [un , ut] ut un

FG [un, σt] un σt

GH [σn, σt] σn σt

AH [σn, σt] σt σn

* Refer to Fig. 2
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Table 1(b): Boundary condition modeling for the corner points of the tread section,
corresponding to Table 1(a)

Corner Given boundary Used Tagging of boundary conditions
point * conditions conditions Mesh point on Mesh points on

the physical boundary the imaginary boundary
A [(un, σt),(σn, σt)] [σt , un, σt] σt [un, σt]
B [(un, σt),(σn, σt)] [σt , un, σt] σt [un, σt]
D [(un, σt),(σn, σt)] [un, σt , σn] un [σt , σn]
G [(un, σt),(σn, σt)] [un, σt , σn] un [σt , σn]
E [(un, ut),(un, σt)] [ut , un, σt] ut [un, σt]
F [(un, ut),(un, σt)] [ut , un, σt] ut [un, σt]
C [(σn, σt),(σn, σt)] σn σn –
H [(σn, σt),(σn, σt)] σn σn –

* Refer to Fig. 2

Table 2(a): Specification of the boundary conditions for the tire-tread stress prob-
lem conforming to the no-slip condition of the contact boundary

Boundary Given boundary Tagging of boundary conditions
segment * conditions Mesh point on Mesh point on

the physical boundary the imaginary boundary
AB [un , ut] ut un

BC [σn, σt] σn σt

CD [σn, σt] σn σt

DE [un, σt] un σt

EF [un , ut] ut un

FG [un, σt] un σt

GH [σn, σt] σn σt

AH [σn, σt] σn σt

* Refer to Fig. 2

Instead of using the uniformly distributed pressure from the road surface, the con-
tact boundary is subjected to the equivalent uniform normal displacement, which
ensured better accuracy and stability of the finite-difference solution. The uniform
normal displacement considered in the present analysis corresponds to the internal
inflation pressure of the tire, for example, 100 psi (690 kPa). The condition of the
contact boundary experiencing frictionless slippage is modeled here by assigning
a uniform value to the normal displacement and zero value to the tangential stress
component for all the nodal points on the boundary (see Table 1). And, the contact
boundary conforming to the no-slip condition is modeled by assigning a uniform
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Table 2(b): Boundary condition modeling for the corner points of the tread section,
corresponding to Table 2(a) (Case-A)

Corner Given boundary Used Tagging of boundary conditions
point * conditions conditions Mesh point on Mesh points on

the physical boundary the imaginary boundary
A [(un, ut), (σn, σt)] [un, ut , σn] ut [un, σn]
B [(un, ut), (σn, σt)] [un, ut , σn] ut [un, σn]
D [(un, σt), (σn, σt)] [un, σt , σn] un [σn, σt]
G [(un, σt), (σn, σt)] [un, σt , σn] un [σn, σt]
E [(un, ut), (un, σt)] [ut , un, σt] ut [un, σt]
F [(un, ut), (un, σt)] [ut , un, σt] ut [un, σt]
C [(σn, σt), (σn, σt)] σn σn –
H [(σn, σt), (σn, σt)] σn σn –

* Refer to Fig. 2

value to the normal component and zero value to the tangential component of dis-
placement (see Table 2). In all cases, displacements are normalized with respect
to the contact length (a) and stresses are normalized with respect to the contact
pressure (P) applied to the contact boundary from the road surface (see Fig. 2).

5.2 Deformed Shape

The deformed shape of a tread section (a/b = 1.5) obtained for the frictionless slip-
page of the contact boundary is shown in Fig. 4(a) along with the original tread
section which is subjected to a contact pressure of 690 kPa. As appears from the
figure, the solution conforms to almost all the physical requirements of the model.
The overall accuracy of the solution is also verified to be better than that obtained
with the applied normal stress on the contact boundary. It has also been verified
that the same normal compressive stress is reproduced along the contact boundary
when the problem is solved in terms of its equivalent uniform normal displacement.
Figure 4(b) shows the original and deformed shapes of the tire-tread section con-
forming to the no-slip condition of the contact boundary, under the same contact
pressure of 690 kPa. The tread section is found to be inflated under the action of
the uniform displacement, leaving the contact boundary free from lateral displace-
ment, which is in good agreement with the physical characteristic of the model. The
lateral displacement component takes its maximum value around the mid-depth po-
sition of the skid surfaces, AE and BD. The solutions are obtained for the treads of
natural rubber and actual tire rubber, and the corresponding deformed shapes are
included in the same Figs. of 4(a) and (b). The solutions show that the deformed
state of the tire tread section differs significantly from that of the natural rubber,
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which signifies the importance of the appropriate material properties for predicting
the state of deformation in the tread section.

 

Fig. 4 Deformed shapes of the tire tread section (a/b = 1.5) under 
(a) free-slip and (b) no-slip conditions of the contact boundary  
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Figure 4: Deformed shapes of the tire tread section (a/b = 1.5) under (a) free-
slippage and (b) no-slip conditions of the contact boundary (displacements are
magnified)

When the contact surface of the tread section is subjected to uniform pressure from
the road surface, symmetric lateral displacement around the mid-point of the con-
tact boundary is happened together with the normal displacement. This lateral dis-
placement eventually causes the lateral slippage of the surface in contact with the
road. In absence of friction between the tread surface and the road, the lateral slip-
ping gets its maximum value. However, when the frictional resistance is present,
the frictional force tends to oppose the lateral displacement of the contact bound-
ary, and eventually it will prevent the displacement completely when the resistance
is sufficiently high. Figure 5 shows the distribution of lateral displacement along
the contact surface of the tread section (a/b = 1.5) for the above two limiting cases
of tire and natural rubbers; all other cases related to practical slippage will be in
between the two limiting cases.
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Fig. 5  Lateral displacement along the contact boundary of the 
tire tread section (a/b = 1.5) under no-slip and free-slip conditions  
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Figure 5: Lateral displacement along the contact boundary of the tire tread sections
(a/b = 1.5) under no-slip and free-slippage conditions

5.3 Solution of Stresses

Stresses at the contact boundary

Figure 6 presents the solutions of different components of stress along the contact
boundary of the tread section (a/b =1.5) subjected to a contact pressure of 690
kPa. As mentioned in Table 2(b), the available conditions for the two corner nodal
points of the no-slip contact boundary, AB are un, ut , σn, and σ t . First, out of
these four boundary conditions, three conditions, namely, un, ut = 0, and σn = 0
(referred to here as ‘Case–A’), are satisfied at both the corner points of the contact
boundary. As is seen from the distribution of the resulting shearing stress in Fig.
6(a), the magnitude of the stress at the two corner points of the boundary show
extremely higher value compared to those of the remaining section. In an attempt
to predict a more refined value of the corner shearing stress, the same problem
is solved by satisfying another possible set of conditions (un, ut = 0, and σ t = 0;
referred to as ‘Case–B’) at the two corner points of the boundary. In this case,
however, exactly zero shearing stresses are found to occur at the corner points,
leaving the remaining section almost identical with that of Case–A. Although the
prediction of this zero shearing stress at the corners is accurate from the view point
of numerical solution, it is realized to be inconsistent with the solution of Fig.
5, as, at the extreme two points of the contact boundary, the lateral displacement
was found to take its maximum value in absence of the shearing stresses. The
two solutions, Case–A & Case–B, as obtained for the tire tread section, a/b = 1.5,
are illustrated on the same graph of Fig. 6(a). It is clear from the figure that the
solutions differ only at the corner points, and thus the effect of singularity on the
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solution is highly localized. In order to obtain a more justified value of the shear
stress at the corner points of the contact boundary, the corner stresses are predicted
by extrapolating the distribution keeping the slope of the curve near the corners the
same. The extrapolated curves of shearing stress for the no-slip contact boundaries
of tire and natural rubber treads are also shown in Fig. 6(a); the stress level for the
case of natural rubber is found to be higher than that in the actual tire-tread.

 

Fig. 6 Stresses along the contact boundary of the tire tread section (a/b = 1.5): (a) shear 
stress under no-slip condition, (b) normal stress under no-slip and free-slip conditions  
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Fig. 7 Influence of aspect ratio (skid depth, b) on the stresses along the contact 
boundary of tire tread, under no-slip condition: (a) shear stress, (b) lateral stress 
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The distributions of lateral stress component, σ xx along the contact boundary of
the tread section are shown in Fig. 6(b). The solutions for the free-slippage (no
friction) and no-slip conditions of the contact boundary are obtained for both the
materials of tire and natural rubbers, which are shown in the same graph. As far
as the present stress component is concerned, the entire contact boundary is under
compression for the case of no-slip condition, however, the same is found under
tension when the free-slippage condition of the boundary is adopted in the solution.
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For the case of free slippage condition, the mid-region of the contact boundary
is almost free from stresses and the associated magnitude of the stress increases
gradually as we move towards the corner regions of the boundary. Moreover, the
effect of material properties is found to be insignificant for the free-slippage lateral
stress along the contact boundary, as the two distributions are found identical in
terms of both shape and magnitude (see Fig. 6(b)); however, on the other hand,
a different phenomenon is observed for the case of no-slip condition. When the
lateral displacement along the boundary is restricted (no-slip condition), the lateral
stress developed at the contact boundary is found to differ significantly from that
of the free-slippage condition. It is noted here that the lateral stress induced due to
the application of no-slip condition on the contact boundary is found to be higher
for the case of natural rubber. This may be attributed to the phenomenon that the
free-slippage lateral displacement along the contact boundary was much higher for
the tread of natural rubber compared to that of tire rubber (see Fig. 5), even though
both of them were subjected to identical contact pressure from the road surface.

The effect of tread aspect ratio on the distribution of stresses along the contact
boundary, conforming to the no-slip condition, is illustrated in Fig. 7. Figure 7(a)
illustrates the distribution of shear stress along the contact boundary of tread sec-
tions having different aspect ratios, where the skid depth is varied keeping the con-
tact length the same. At the middle portion of the contact boundary, shear stress is
found to be zero for all the tread sections. Away from the middle portion, magni-
tude of shear stress increases up to its maximum value towards the corner points of
the boundary; shearing stresses at the two corners are almost equal in magnitude
but opposite in sense. In general, the shearing stress increases with the decrease of
aspect ratio, i.e, with the increase of skid depth, and becomes almost saturated for
lower values of aspect ratio. Moreover, the nonlinearity of the distribution along
the contact boundary is found to decrease with the increase of skid depth. From
Fig. 7(b), it is observed that the magnitude of lateral stress, σxx increases with
the increase of skid depth of the tire tread up to a certain limit. Over the ranges
4 ≤ x/h ≤ 7 and 19 ≤ x/h ≤ 23, the lateral stress, σxx varies significantly and, as
a result, the highest lateral stress is developed at the corner points of the contact
boundary.

Fig. 8 describes the relationship between the maximum coefficient of friction and
aspect ratio of tire-tread sections for both the materials of tire and natural rubbers.
This relationship, in turn, provides important information regarding the amount of
friction required from the road surface to keep the tread section free from lateral
slippage. It is noted here that, this lateral slippage of the contact boundary plays
one of the major roles in shortening the life of tires as far as the abrasion loss is
concerned (Ahmed et al., 2005b). Here, according to the Coulomb’s law of fric-



A Simplified Analysis of the Tire-Tread Contact Problem 55

 

Aspect ratio (a/b)
0 1 2 3 4 5 6

C
oe

ff
ic

ie
nt

 o
f f

ric
tio

n

0.0

0.1

0.2

0.3

0.4

0.5

Tire rubber
Nat. rubber

Fig. 8 Maximum coefficient of friction as a function of tire tread
aspect ratio, under no-slip condition of the contact boundary 

Figure 8: Maximum coefficient of friction as a function of tire tread aspect ratio,
under no-slip condition of the contact boundary

tion, the coefficient of friction is obtained by dividing the no-slip shearing stress
developed on the contact surface by the associated contact pressure. The general
trend of the relation of Fig. 8 reveals that the maximum coefficient of friction in-
creases with the increase of skid depth and it becomes nearly saturated for higher
values of the depth for both the materials of tires and natural rubber. From the fig-
ure it is also observed that tire tread of natural rubber shows higher coefficient of
friction compared to the tread of tire material, which is because the lateral slippage
of the contact boundary of the tread of natural rubber under no frictional resistance
is found to be higher than that of tire rubber (see Fig. 5). In other words, the tread
sections of natural rubber would require higher frictional resistance from the road
surface to keep them free from lateral slippage. The results of the present analy-
sis thus reveal that both the geometrical parameters and material properties of tire
treads play major roles in determining their performance against abrasion due to
lateral slippage on the road surface.

Stresses at the tread shoulder

Fig. 9 presents the variation of different stress components along the shoulder re-
gion of the tire-tread section (a/b = 1.5) subjected to a contact pressure of 690
kPa. Solutions for the case of no-slip condition of the contact boundary of treads
of natural rubber and actual tire material are presented in a comparative fashion in
the same graph. It has been verified in our present study that no significant change
in the solution of stresses at the shoulder section is encountered when the contact
boundary assumes the condition of free lateral slippage without any frictional re-
sistances. Figure 9(a) illustrates the distribution of shearing stress component at
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the shoulder section of the tire treads. For both the natural rubber and tire material,
the shear stress distribution is anti-symmetric and the associated highest stresses
are developed at the two re-entrant corners of the shoulder section, H and C (see
Fig. 2). Except for the two corner points, shear stress varies almost linearly over
the shoulder section, where the solutions for the two materials are found to be very
close to each other. Figure 9(b) presents the distribution of lateral stress, σxx at
the shoulder section of the treads. The two re-entrant corners are found here to be
almost free from lateral stress; however, the maximum lateral stress at the shoulder
section is found to occur at the immediate neighbor to the corner points. Although
the entire shoulder section is under compression for both the tread materials, the
magnitude of lateral stress developed for the case of natural rubber is higher than
that in tire rubber. Figure 9(c) illustrates the distribution of the normal stress, σyy

at the shoulder section for two types of tire materials. At the shoulder section, both
the normal and lateral stresses are compressive in nature. Except for the two corner
regions, the normal stress is found to distribute almost uniformly over the section,
where the stress level for the case of natural rubber is higher than that in the tire
rubber. Among the three stress components, this normal stress component is iden-
tified to be highly sensitive to the singularity associated with two re-entrant corner
points, as the stresses at the corner points are found to assume much higher values
(more than 5 to 6 times) than the pressure acting on the contact boundary. From
the results of the present analysis, the corner regions of the shoulder section are
identified to be the most critical sections in terms of stresses within the entire tread
section; otherwise, the overall stress level at the contact boundary is found higher
than that at the shoulder section.

6 Finite Element Solution and Comparison

Finite-element solution of the present tire-tread contact problem has been obtained
for the two limiting conditions of the contact boundary. The solutions are obtained
using the standard facilities of the commercial FEM software ANSYS. The four-
noded rectangular plane elements are used to model the tire-tread sections. Like-
wise the case of our FDM solution, the element density is kept uniform all over
the domain, where all the elements are of same size. The total number of finite
elements used to construct the corresponding FEM mesh-network for the tread sec-
tion (a/b = 1.5) was 450 (25 × 18), which is somewhat similar to that used in the
FDM discretization. The convergence as well as the accuracy of the solution has
also been verified by varying the element density.

Figures 10-12 show the comparison of solutions of different stress components at
different regions of the tire-tread section under no-slip as well as free-slippage con-
ditions, obtained by the two methods, namely FDM and FEM. Figures 10(a) and
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Fig. 9 Distribution of stress components at the shoulder section of the tire tread (a/b = 1.5) 
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Figure 9: Distribution of stress components at the shoulder section of the tire tread
(a/b = 1.5) under no-slip condition: (a) shear stress, (b) lateral stress, (c) normal
stress

(b) show the comparison of the two solutions for the lateral and shear stresses at
the shoulder section of the no-slip tire-tread. For most of the points of the sec-
tion, the two solutions for the stresses obtained by the completely two different
approaches are found to be in excellent agreement with each other in terms of both
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Fig. 10 Comparison of stresses along the shoulder section of the tire tread 
section (a/b = 1.5) under no-slip condition: (a) lateral stress, (b) shear stress  
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magnitude and nature of variation; slight discrepancies are appeared mainly at the
corner points, which are basically because of the different ways of handling the
associated corner singularities. Further, from the results of Figs. 11 (a) and (b),
the two solutions for both the lateral and shear stress at the no-slip contact bound-
ary, respectively, are also found, in general, to be in good conformity with each
other. Here, the original solutions of shear stress distribution, which are free from
the application of extrapolation scheme to the corner regions, are presented in Fig.
11(b). Likewise the case of shoulder section, the discrepancies between the two
solutions are also observed mainly around the corner regions of the contact bound-
ary, however, they are found to be more pronounced than those at the shoulder
section. As appears from Fig. 11(b), the present FDM solution reproduces the zero
shearing stress at the corners exactly, which, in turn, reflects the capability of the
present computational method in reproducing the conditions at the boundary (Case-
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Figure 12: Comparison of stresses along the contact boundary of the tire-tread
section (a/b = 1.5) under free-slippage condition: (a) lateral stress, (b) shear stress

B). The FEM solution has however yielded a nonzero shearing stress at the corners,
which assumes a value around ±70 kPa. Further, a comparison of the solutions for
stresses at the contact boundary, when it is free to deform in both normal and lateral
directions under contact pressure without any frictional resistances, shows that the
distributions obtained by the two methods differ quite significantly (see Fig. 12).
Instead of assuming a smooth distribution of the lateral stress component, the FE
solution shows the section concerned is almost free from lateral stress except for the
two extreme regions (see Fig. 12(a)). This FE prediction of the lateral stress may be
doubtful as it does not conform to the associated deformation characteristics; from
both the deform shape (Fig. 4(a)) and the distribution of lateral displacement (Fig.
5) it is realized that the boundary deforms laterally from its center point to two op-
posite directions in a gradual manner, and the deformation gets its highest value at
the extreme corners. This deformation phenomenon has however been reflected ap-
propriately by the corresponding lateral stress distribution obtained by the present
FD solution. The superiority of the present FDM in reproducing the stresses along
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the bounding surfaces is also illustrated in Fig. 12(b); the figure shows the state of
shear stress along the contact boundary of the tread. The boundary is basically free
from any shearing stress and the corresponding state of stress is reproduced exactly
by the present method. However, the FEM solution is found to assume a pecu-
liar anti-symmetric distribution of the shear stress at the contact boundary, which
is highly unlikely; solutions for a total of five to six nodes from both the corner
points are suffering from severe inaccuracy. Since the modeling of the boundary
conditions for the corner points in usual FE simulation does not take into account
the effect of singularity, the predictions near the corner regions may be unreliable.
On the other hand, the transition of boundary conditions in our FD modeling is
handled in a more justified way, in which, for each of the external corner points of
the tread section, a total of three conditions out of the available four are satisfied
appropriately (see Table 1(b)). As a result, the present solutions are claimed to be
closer to the actual state of stresses and thus highly reliable.

7 Conclusions

A simplified analysis of the tire-tread contact problem has been carried out in an at-
tempt to predict deformation as well as stresses at different critical sections of tire-
tread section using the displacement potential based finite-difference technique.
The solution of the problem is obtained here for two limiting cases of the contact
boundary, from which other intermediate cases of interest can readily be interpo-
lated. Both the qualitative and quantitative results as well as the comparison with
the usual computational method firmly establish the reliability as well as superior-
ity of the present results, which are thus expected to be of great help for accurate
and economic design of tires. In the present analysis, the two re-entrant corners of
the tread shoulder section are identified to be the most critical regions in terms of
stresses; otherwise, the overall stress level at the contact boundary is higher than
that of any other sections in the tread. Further, it has been realized that both material
properties and geometrical parameters of the tread section would have significant
influence on the service life of treads, as the frictional resistance required from the
road surface to keep the contact boundary free from lateral slippage is found to
depend on them substantially.
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Criado, R.; Ortiz, J. E.; Mantič, V.; Gray, L. J.; Paris, F. (2007): Boundary
element analysis of three-dimensional exponentially graded isotropic elastic solids.
CMES: Computer Modelling in Engineering & Sciences., vol. 22, pp. 151–164.

Dow, J.; Jones, M. S.; Harwood, S. A. (1990): A new approach to boundary mod-
eling for finite difference applications in solid mechanics. International Journal
for Numerical Methods in Engineering, vol. 30, pp. 99–113.

Huh, H.; Kwak, Y. K. (1990): Finite element stress analysis of the reinforced tire
contact problem. Computers & Structures, vol. 36 (5), pp. 871–881.

Libre, N. A.; Emdadi, A.; Edward, J. K.; Rahimian, M.; Shekarchi, M. (2008):
A stabilized RBF collocation scheme for Neumann type boundary value problems.
CMES: Computer Modelling in Engineering & Sciences., vol. 24, pp. 61–80.



62 Copyright © 2009 Tech Science Press CMES, vol.44, no.1, pp.35-63, 2009

Mohenimanesh, A.; Ward, S. M.; Gilchrist, M. D. (2009): Stress analysis of a
multi-laminated tractor tyre using non-linear 3D finite element analysis. Materials
and Design, vol. 30 (4), pp. 1124–1132.

Nath, S. K. D.; Ahmed, S. R. (2009): Displacement Potential Solution of Stiffened
Composite Struts Subjected to Eccentric Loading. Journal of Applied Mathemati-
cal Modeling, vol. 33 (3), pp. 1761–1775.

Noor, K.; Tanner, J. A. (1985): Advances and trends in the development of com-
putational models for tires. Computers & Structures, vol. 20, pp. 517–533.

Oden, J. T.; Becker, E. B.; Lin, T. L.; Demkowicz, L. (1984): Formulation and
finite element analysis of a general class of rolling contact problems with finite
elastic deformation. Mathematics of Finite Elements with Applications, vol. V,
(Edited by J. R. Whiteman), Academic, London.

Oden, J. T.; Pires, E. B. (1983): Numerical analysis of certain contact problems
in elasticity with non-classical friction laws. Computers & Structures, vol. 16, pp.
481–485.

Pahr, D. H.; Böhm, H. J. (2008): Assessment of mixed uniform boundary condi-
tions for predicting the mechanical behavior of elastic and inelastic discontinuously
reinforced composites. CMES: Computer Modelling in Engineering & Sciences.,
vol. 34, pp. 117–136.

Pahr, D. H.; Zysset, P. K. (2008): Influence of boundary conditions on com-
puted apparent elastic properties of cancellous bone. Biomechanics and Modeling
in Mechanobiology, vol. 7 (6), pp. 463–476.

Rothert, H.; Gall, R. (1986): On the three-dimensional computation of steel-
belted tires. Tire Science and Technology, vol. 14, pp. 116–124.

Tabaddor, F.; Stafford, J. R. (1985): Some aspects of rubber composite finite
element analysis. Computers & Structures, vol. 21 (1/2), pp. 327–339.

Tan, C. I.; Shiah, Y. C.; Lin, C. W. (2009): Stress analysis of 3D generally
anisotropic elastic solids using the boundary element method. CMES: Computer
Modelling in Engineering & Sciences., vol. 41, pp. 195–214.

Timoshenko, S.; Goodier, J. N. (1979): Theory of Elasticity, 3rd Ed., McGraw-
Hill Book Company, New York.

Tonti, E.; Zarantonello, F. (2009): Algebraic formulation of elastostatics: the
Cell method. CMES: Computer Modelling in Engineering & Sciences., vol. 39,
pp. 201–236.

Vignjevic, R.; Vuyst, T. D.; Campbell, J. C. (2006): A frictionless contact al-
gorithm for meshless methods. CMES: Computer Modelling in Engineering &
Sciences., vol. 13, pp. 35–48.



A Simplified Analysis of the Tire-Tread Contact Problem 63

Wang, T. M.; Daniel, I. M.; Huangn, K. (1996): Stress analysis of tire sections.
Tire Science and Technology, vol. 24 (4), pp. 349–366.

Zhang, X.; Rakheja, S.; Ganesan, R. (2002): Stress analysis of the multi-layered
system of a truck-tire. Tire Science and Technology, vol. 30 (4), pp. 240–264.

List of Symbols

ψ(x,y) Displacement potential function
E Modulus of Elasticity
µ Poisson’s ratio
ux,uy Displacement components in x and y directions
σxx Lateral stress in x direction
σyy Normal stress in y direction
σxy Shear stress
un,ut Normal and tangential components of displacement
σn,σt Normal and tangential components of stress
a Tread contact length
b Skid depth
h,k Mesh lengths in x and y directions
P Contact pressure




