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Numerical Modelling of Electromagnetic Waves by
Explicit Multi-Level Time-Step FEM-BEM Coupling

Procedures

Delfim Soares Jr.1

Abstract: The numerical modelling of electromagnetic waves by finite element
– boundary element coupling procedures is discussed here, taking into account
time-domain approaches. In this study, the global model is divided into different
sub-domains and each sub-domain is analysed independently and explicitly at each
time-step of the analysis: the interaction between the different sub-domains of the
global model is accomplished by interface procedures. A multi-level time-step
algorithm is considered in order to improve the flexibility, accuracy and stability
(especially when conditionally stable time-marching procedures are employed) of
the coupled analysis. At the end of the paper, numerical examples are presented,
illustrating the potentialities and robustness of the proposed methodologies.
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1 Introduction

Along the last decades, the Finite Element Method (FEM) and the Boundary El-
ement Method (BEM) have been successfully applied to analyse a great sort of
physical problems, as for instance, the numerical simulation of complex electro-
magnetic fields. For certain categories of problems, however, neither the FEM nor
the BEM is best suited (e.g., the propagation of electromagnetic waves through infi-
nite inhomogeneous media) and it is natural to attempt to couple these two methods
in an effort to create a numerical procedure that combines all their advantages and
reduces their disadvantages. Up to now, although a considerable amount of pub-
lications is available considering FEM-BEM coupled analyses, few publications
concentrate on the topic when time-domain electromagnetic modelling is focused.
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According to Jiao et al. (2001), the first works on the theme seem to date from
the beginning of the decade. Jiao et al. (2001) presented a time-domain finite
element – boundary integral method to analyse electromagnetic scattering from
two-dimensional inhomogeneous objects. Later on, alternative approaches have
been proposed and three-dimensional analyses have been considered (Jiao et al.,
2002; McCowen et al., 2003; Qiu et al., 2007; Yılmaz et al., 2007; Soares, 2008a).
Taking into account transformed-domain analyses (especially frequency-domain
analyses), FEM-BEM coupling techniques are well established, and several works
are currently available considering electromagnetic modelling (Stupfel, 2001; Liu
and Jin, 2001, 2002; Tzoulis and Eibert, 2005; Botha and Jin, 2005; Eibert, 2007).
For other related publications, the reader is referred to Young and Ruan (2005), Ha
et al. (2006), Takei et al. (2008), Liu (2008) etc..

In all time-domain FEM-BEM coupling algorithms published so far to analyse the
propagation of electromagnetic waves, an equal-value time-step is adopted to dis-
cretize all coupled sub-domains, indifferently if they are modelled by the FEM
or by the BEM. This may lead to some numerical difficulties, once quite differ-
ent optimal temporal discretizations are usually required by these two numerical
techniques. For small time-steps, the time-domain BEM may become unstable,
whereas, for large time-steps, excessive numerical damping may occur. The FEM,
on the other hand, usually requires small time-steps to preserve accuracy and/or to
ensure stability.

In the present work, two-dimensional models are focused and a multi-level time-
step algorithm is presented in order to analyse sub-domains spatially discretized
by the FEM, and temporally discretized by the Central Difference Method or by
the Green-Newmark Method, coupled with sub-domains spatially and temporally
discretized by the time-domain BEM. The Green-Newmark Method is a time-
marching technique, developed by the author (Soares and Mansur, 2005a; Soares,
2007), which can be very effective when dealing with coupled models, as it has
been previously illustrated considering some computational mechanic applications
(Soares and Mansur, 2005b; Soares et al., 2007; Soares, 2008b). As is well known,
the Central Difference Method is a conditionally stable technique (i.e., a critical
time-step must be respected in order to ensure the stability of the method); thus,
a multi-level time-step approach is of great importance regarding FEM-BEM cou-
pling procedures based on this time-marching technique.

Taking into account the above-described FEM time-marching procedures, FEM
sub-domains can be analysed independently at each time step, considering only
BEM previous time-steps results. This allows the time-domain FEM-BEM cou-
pled system of equations to be properly uncoupled at the current time-step of the
analysis and, as a consequence, the presently proposed technique becomes very
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attractive: FEM and BEM sub-domains (optimally spatially and temporally dis-
cretized) can be analysed separately, leading to smaller and better-conditioned sys-
tems of equations, which can be independently solved by most suitable numerical
procedures.

The present work is organized as follows: first, the governing equations are pre-
sented and their discretization by finite and boundary element techniques is briefly
described; next, the proposed FEM-BEM coupling algorithms are discussed, tak-
ing into account the multi-level time-step methodology. At the end of the paper,
numerical applications are considered, illustrating the accuracy and robustness of
the proposed formulations.

2 Governing equations

Maxwell’s equations in differential form can be written as:

ei jkEk, j =−Ḃi (1a)

ei jkHk, j = Ḋi + Ji (1b)

Di,i = ρ (1c)

Bi,i = 0 (1d)

where indicial notation for Cartesian axes is considered and ei jk stands for the per-
mutation symbol (also known as alternator tensor). Inferior commas and overdots
indicate partial space and time derivatives, respectively (i.e., Vi, j = ∂Vi/∂x j and
V̇i = ∂Vi/∂ t, where Vi(X , t) stands for a generic vector field representation and X
and t denote its spatial and temporal arguments, respectively).

In equations (1), Ei and Hi are the electric and magnetic field intensity compo-
nents, respectively; Di and Bi represent the electric and magnetic flux density, re-
spectively; and Ji and ρ stand for the electric current and electric charge density,
respectively. The constitutive relations between the field quantities are specified as:

Di = ε Ei (2a)

Bi = µ Hi (2b)

Ji = σ Ei (2c)

where the parameters ε , µ and σ denote, respectively, the permittivity, permeability
and conductivity of the medium.

Combining equations (1) and (2), vectorial wave equations describing the electric
and the magnetic field can be obtained, as is indicated below:

emni(µ
−1ei jkEk, j),n + ε Ëm =−J̇m (3a)
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emni(ε−1ei jkHk, j),n + µ Ḧm = emni(ε−1Ji),n (3b)

where the wave propagation velocity of the medium is specified as c = (εµ )−1/2.

Taking into account two-dimensional applications, equations (3) can be simplified
and written in a unique general form:

(κ−1
φ,i),i−ν φ̈ = γ (4)

where φ is a generic representation for an electric (Ek) or magnetic (Hk) field in-
tensity component (e.g., i = 1, 2 and k = 3) and γ stands for a generic source term.
κ and ν represent µ or ε , according to the case of analysis.

Once the governing differential equation is established, temporal and spatial bound-
ary conditions must be defined. The spatial boundary conditions for the model in
focus are:

φ = φ̄ (5a)

θ = φ,ini = θ̄ (5b)

where equation (5a) stands for essential (or Dirichlet) boundary conditions and
equation (5b) stands for natural (or Neumann) boundary conditions (ni represents
an outward unit vector normal to the boundary). In equations (5), overbars indicate
prescribed values.

At the interface between two media, field continuity conditions are defined as:

(φ)+ = (φ)− (6a)

(κ−1
θ)+ =−(κ−1

θ)− (6b)

which are of great importance in a FEM-BEM coupling context.

In the sections that follow, the numerical discretization of the above-presented gov-
erning equations is briefly discussed, taking into account finite element and bound-
ary element techniques. In the sequence, the FEM-BEM coupling algorithms are
presented.

3 Finite element modelling

In a finite element approach, the incognita field is spatially interpolated within the
element, as indicated below:

φ(X , t) = Nα(X)φα(t) (7)

where N represents element spatial interpolation functions and greek subscripts
stand for an element internal numeration (element nodes or edges).
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Taking into account electromagnetic wave propagation phenomena, the time-domain
system of equations that arises, once finite element spatial discretization is consid-
ered (equation (7)), is given by:

MΦ̈ΦΦn +KΦΦΦn = Fn (8)

where ΦΦΦ is a generic vector describing electric or magnetic field components and F
is a vector of generalized applied sources. The superscript n stands for the current
time of analysis. The matrix and vector entries involved in equation (8) are defined,
at element level, as:

Mαβ =
∫
Ωe

ν NαNβ dΩ (9a)

Kαβ =
∫
Ωe

κ
−1 (N,i)α(N,i)β dΩ (9b)

Fα =
∫
Γe

Nα κ
−1

θ̄ dΓ−
∫
Ωe

Nα γ dΩ (9c)

where Γe and Ωe stand for the boundary and the domain of the element, respec-
tively.

In order to discretize equation (8) in the time domain, two methodologies are con-
sidered here, namely: the Central Difference Method (which is a commonly used
time-marching technique) and the Green-Newmark Method (Soares and Mansur,
2005a; Soares, 2007). These methodologies are briefly discussed in the sub-sections
that follow.

3.1 Central Difference Method

In the Central Difference Method, the following finite difference relation is consid-
ered:

Φ̈ΦΦn = (1/∆t2)(ΦΦΦn+1−2ΦΦΦn +ΦΦΦn−1) (10)

where ∆t is the selected time-step. After introducing relation (10) into the sys-
tem of equations (8), the following system of equations arises, which enables the
computation of the transient FEM response at time tn:

AΦΦΦn = Bn−1 (11)

In equation (11), A and B are the FEM effective matrix and vector, respectively,
given by:

A = (1/∆t2)M (12a)

Bn−1 = Fn−1− (K− (2/∆t2)M)ΦΦΦn−1− (1/∆t2)MΦΦΦn−2 (12b)
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3.2 Green-Newmark Method

The analytical expressions for ΦΦΦn and Φ̇ΦΦn
, which obey equation (8), are given by:

ΦΦΦn = ĠnMΦΦΦ0 +GnMΦ̇ΦΦ0 +Gn ·Fn (13a)

Φ̇ΦΦn = G̈nMΦΦΦ0 + ĠnMΦ̇ΦΦ0 + Ġn ·Fn (13b)

where Gn represents the Green’s function matrix of the model, ΦΦΦ0 and Φ̇ΦΦ0
stand for

initial conditions and the symbol · represents time convolution.

Assuming that a given time-step ∆t is small enough, approximation (14) can re-
place the convolution integrals indicated in equation (13) ( f1 and f2 are generic
functions). It is important to notice that the approximations indicated in equa-
tion (14) are analogous to those employed in frequency domain analyses, where
standard DFT/FFT algorithms are employed (Soares and Mansur, 2003), and they
give the same results for most engineering problems as a two-point Newton-Cotes
quadrature rule (Soares and Mansur, 2005a).

∆t∫
0

f1(∆t− τ) f2 (τ) dτ = f1 (0) f2 (∆t) ∆t (14)

Taking into account the approximations indicated by equation (14), recursive ex-
pressions can be obtained by considering equation (13) at time tn and by supposing
that the analysis begins at time tn−1. The recurrence relations that arise are given
by:

ΦΦΦn = ˙̄GMΦΦΦn−1 + ḠMΦ̇ΦΦn−1 +G0Fn∆t (15a)

Φ̇ΦΦn = ¨̄GMΦΦΦn−1 + ˙̄GMΦ̇ΦΦn−1 + Ġ0Fn∆t (15b)

where Ḡ is the Green’s function matrix of the model at time-step ∆t. Ḡ, as well as
its time derivatives, can be evaluated properly by solving the system of equations
(8) at time t = ∆t, considering an excitation free model submitted to the follow-
ing initial conditions: G0 = 0 and Ġ0 = M−1. In the present work, the Newmark
method is applied to solve this initial condition problem. Initially, the Newmark
method is employed to establish the expressions to compute Ḡ and its time deriva-
tives; subsequently, these expressions are introduced into the recurrence relations
(15). The final recurrence relations that arise are then given by:

ΦΦΦn = On +(1−η2/η1)ΦΦΦn−1 (16a)

Φ̇ΦΦn = (η2/(η1∆t))On− (1/(η1∆t))ΦΦΦn−1 +(1−η2/η1)Φ̇ΦΦ
n−1 +M−1Fn∆t (16b)
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In equations (16), η1 and η2 stand for the newmark parameters (the relation η2
2 = η1

is considered in order to achieve the final suitable expression (16b)) and On is
computed by the solution of the following system of equations:

AOn = Bn−1 (17)

where

A = K+(1/(η1∆t2))M (18a)

Bn−1 = M((η2/(η1∆t)2)ΦΦΦn−1 +(1/(η1∆t))Φ̇ΦΦn−1) (18b)

Equations (16) enable the computation of the FEM responses at time tn (lumped
matrices can be considered when evaluating the last term in equation (16b), in
order to avoid solving an extra system of equations). As it has been demonstrated
(Soares and Mansur, 2005a), considering the trapezoidal rule (i.e., η1 = 0.25 and
η2 = 0.50), the amplification matrix related to the solution algorithm (16) is second
order accurate and unconditionally stable.

4 Boundary element modelling

In a boundary element approach, the incognita fields (mixed formulation) are tem-
porally and spatially interpolated within the element, as indicated below:

φ(X , t) = Nα(X)Mm(t)φ
m
α (19a)

θ(X , t) = Nα(X)Mm(t)θ
m
α (19b)

where, once again, N represents element spatial interpolation functions and greek
subscripts stand for an element internal numeration. M represents temporal interpo-
lation functions (in the present work, linear and piecewise constant time interpola-
tion functions are considered regarding the φ and θ incognita fields, respectively).

Taking into account electromagnetic wave propagation phenomena, the system of
equations that arises, once time-domain boundary element spatial and temporal
discretization is considered (equation (19)), is given by:

CΦΦΦn = GnmΘΘΘm−HnmΦΦΦm +Sn (20)

where m = 1, . . . , n; C is a geometric matrix and G and H are influence matrices.
Once again, equation (20) stands for a general expression: ΦΦΦ is a generic vector
describing electric or magnetic field components and ΘΘΘ is related to the spatial
derivatives of these components. S is a vector accounting for generalized source
terms.
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The entries of the influence matrices involved in equation (20), as well as of the
source vector, are given by:

Gnm
αβ

=
∫
Γ

Nβ

tn∫
0

Φn
α Mm dτ dΓ (21a)

Hnm
αβ

=
∫
Γ

Nβ

tn∫
0

Θn
α Mm dτ dΓ (21b)

Sn
α =

∫
Ω

tn∫
0

Φn
α γ dτ dΩ (21c)

where Φ and Θ are the fundamental solutions of the time-domain two-dimensional
model. Φ is defined as follows (Θ = Φ,ini):

Φn
α = Φ(X , tn;Xα ,τ) = (c/2π)(c2(tn− τ)2− r2)−1/2H [c(tn− τ)− r] (22)

where r = |X − Xα | is the distance between the observation and the collocation
point and H stands for the heaviside function.

After considering the boundary conditions of the problem, the following system
of equations arises from expression (20), which enables the computation of the
transient BEM response at time tn:

AXn = Bn (23)

In equation (23), A and B are the BEM effective matrix and vector, respectively,
and the entries of X are the unknown variables (one should observe that vector
B accounts for the current time-step boundary prescribed conditions, domain dis-
cretized terms and time convolution contributions).

5 FEM-BEM coupling

In this work, the global model is divided into different sub-domains and each sub-
domain is analysed independently (as an uncoupled model), taking into account the
numerical discretization techniques discussed in sections 3 and 4. The interactions
between the different sub-domains of the global model are considered taking into
account the field values at the common interfaces and the continuity equations (6).
Two FEM-BEM coupling algorithms are discussed here, both considering explicit
coupling techniques: in the first algorithm (algorithm 1), the Central Difference
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Method and lumped matrices M are employed in the sub-domains discretized by
the FEM. In the second algorithm (algorithm 2), the Green-Newmark Method is
considered within the FEM sub-domains.

For both coupling algorithms, it is appropriate to consider different temporal dis-
cretizations within each sub-domain. This is the case since optimal FEM and BEM
time-steps are usually quite different when homogeneous interfaces are analysed,
especially taking into account the Central Difference Method, which is a condi-
tionally stable time-marching methodology. As has been extensively reported in
the literature, for small time-steps, the time-domain BEM may become unstable,
whereas, for large time-steps, excessive numerical damping may occur. Thus, in
order to ensure stability and/or accuracy, usually a much smaller FEM time-step
is required when coupled FEM-BEM analysis of homogeneous interfaces is con-
sidered. In the next sub-section the adoption of different temporal discretizations
within each FEM/BEM sub-domain is discussed. In the sequence, the coupling
algorithms are described.

5.1 Multi-level time-step discretization

In order to consider different time-steps in each sub-domain, interpolation/extrapo-
lation procedures along time are performed. In this work, the temporal interpolation/extra-
polation procedures are based on the BEM time interpolation functions M (see
equations (19)). Here, linear and piecewise constant time interpolation functions
are considered regarding the φ and θ incognita fields, respectively, as depicted in
Fig.1. Fig.1 describes the calculus of some time-interpolated/extrapolated variables
that are important in the context of the FEM-BEM coupling algorithms presented
in the next sub-section. In Fig.1(a), the extrapolation of the φ field at the current
FEM time-instant tF in order to compute its value at the current BEM time-instant
tB is illustrated (see equation (24a)). In Fig.1(b), the interpolation of the θ value at
time tB in order to compute its value at time tF is depicted (see equation (24b)).

φ
tB = φ

tF (∆tB/∆tFB)+φ
tB−∆tB(1−∆tB/∆tFB) (24a)

θ
tF = θ

tB (24b)

Using time interpolation/extrapolation procedures, optimal FEM and BEM mod-
elling in each sub-domain may be achieved, which is very important regarding
flexibility, efficiency, accuracy and stability.

5.2 Coupling algorithms

In the coupling algorithms considered here, natural boundary conditions are pre-
scribed at the FEM common interfaces and essential boundary conditions are pre-
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Figure 1: Time interpolation/extrapolation procedures: (a) extrapolation of φ tF in
order to compute φ tB ; (b) interpolation of θ tB in order to compute θ tF .

scribed at the BEM common interfaces. The φ fields related to the sub-domains
modelled by the FEM are computed directly, since their evaluations only take into
account BEM results corresponding to previous time-steps (see equation (11) or
equation (16a)). Once the FEM φ fields are computed, they are employed as pre-
scribed interface boundary conditions (essential boundary condition) for the sub-
domains modelled by the BEM, and the BEM θ fields are computed. The BEM θ

values are then employed to evaluate the FEM nodal forces (natural boundary con-
dition) – as well as some other FEM variables, if necessary – and the next time-step
computations are initiated, repeating the above-described procedures. The detailed
coupling algorithms are presented below, taking into account different temporal
discretizations within each BEM/FEM sub-domain.

Algorithm 1:

(1) FEM sub-domains analyses: evaluation of φ
tF
F (equation (11));

(2) Interfaces compatibility: φ̄
tF
B = φ

tF
F (equation (6a));

(3) Time extrapolations: φ̄
tB
B = φ̄

tF
B (∆tB/∆tFB) + φ̄

tB−∆tB
B (1− ∆tB/∆tFB)(equation

(24a));

(4) BEM sub-domains analyses: evaluation of θ
tB
B (equation (23));

(5) Time interpolations: θ
tF
B = θ

tB
B (equation (24b));

(6) Interfaces compatibility: θ̄
tF
F =− θ

tF
B (κ−1

B /κ
−1
F ) (equation (6b)).

Algorithm 2:

(1) FEM sub-domains analyses: evaluation of φ
tF
F (equation (16a));

(2-6) Same as in Algorithm 1;

(7) FEM sub-domains analyses: evaluation of φ̇
tF
F (equation (16b)).
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As can be observed, by adopting lumped matrices M (see equation (12a)), algo-
rithm 1 becomes very efficient: only BEM systems of equations must be dealt
with, which are usually of reduced dimension. On the other hand, according to
algorithm 2, two systems of equations must be dealt with independently at each
time-step: one related to the BEM and another related to the FEM (see equation
(17)). However, the FEM time-marching technique employed in algorithm 1 is
conditionally stable, whereas, in algorithm 2, it is unconditionally stable, once ap-
propriate Newmark parameters are considered (the Trapezoidal Rule, for instance).
Thus, larger FEM time-steps may be considered in algorithm 2, which reduces the
computational costs of the analysis.

6 Numerical Applications

In the next sub-sections, some numerical applications are presented, illustrating the
potentialities of the proposed methodologies. In the first application, the electro-
magnetic field associated to an infinitely long wire, carrying a time-linear current,
is analysed. In the second example, the electromagnetic wave propagation between
two parallel lines of wires is discussed. The present work focuses on the analysis
of homogeneous media (where standard time-domain FEM-BEM coupling proce-
dures may become unstable), taking into account different time discretizations for
each FEM/BEM sub-domain.

For all the applications that follow, within the FEM sub-domains, the trapezoidal
rule (η1 = 0.25 and η2 = 0.50) is considered for the Green-Newmark Method and
linear finite and boundary elements are adopted.

6.1 Infinite domain analysis

In the present application, the electromagnetic field surrounding an infinitely long
wire, carrying a time-linear current, is studied (Soares and Vinagre, 2008; Soares,
2008). A sketch of the model and the adopted spatial discretizations are depicted
in Fig.2: 2344 triangular finite elements and 80 boundary elements are employed
in the analyses (the radius of the FEM-BEM interface is defined by R = 1m). For
temporal discretization, the selected BEM time-step is given by ∆tB = 2 · 10−10s
and analyses considering ∆tF = (1/8)∆tB and ∆tF = (1/16)∆tB are carried out.
The physical properties of the medium (air) are: µ = 1.2566 · 10−6H/m and ε =
8.8544 ·10−12F/m.

Fig.3 shows the modulus of the electric field intensity obtained at points A and B
(see Fig.2) considering the two discussed FEM-BEM coupling algorithms. Ana-
lytical time histories (Machado, 2006) are also depicted in Fig.3, highlighting the
good accuracy of the numerical results (one should notice that good accuracy is ob-
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Figure 2: Sketch of the infinite domain model: circular FEM-BEM interface en-
closing the FEM sub-domain and the centrally located wire.

served in spite of the quite different FEM/BEM time-steps considered, illustrating
the robustness of the proposed methodologies).

In order to evaluate the efficiency of the proposed formulations, their CPU times
were compared to those provided by an iterative FEM-BEM coupling approach,
as described by Soares (2008) and implemented considering multi-level time-step
discretizations. Taking into account the current application, the adoption of the
explicit coupling procedures provides a CPU time reduction of, at least, 34% for
∆tF = (1/8)∆tB and 45% for ∆tF = (1/16)∆tB. As one can observe, the proposed
methodologies not only are robust, but also very efficacious.

6.2 Finite domain analysis

In this sub-section, two parallel lines of wires are considered and the electromag-
netic field evolution within these lines is analysed. A sketch of the model and the
adopted spatial discretizations are depicted in Fig.4: 40 square finite elements and
28 boundary elements are employed in the analyses (the geometry of the model is
defined by L = 1m).

First, a homogeneous medium analysis is considered, and both materials 1 and 2
are air. The selected BEM time-step is given by ∆tB = 2 · 10−10s and analyses
considering ∆tF = (1/4)∆tB and ∆tF = (1/8)∆tB are carried out. Fig.5 shows the
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Figure 3: Time-history results for the electric field intensity at points A and B
considering FEM-BEM coupled analyses and different temporal discretizations for
each sub-domain: (a) algorithm 1; (b) algorithm 2.
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Figure 4: Sketch of the finite domain model: opposite lines of wires and sub-
domains spatial discretizations.

electric field intensities obtained at points A, B, C, D and E (see Fig.4) considering
the two FEM-BEM coupling algorithms. Analytical time histories (Miles, 1961)
are, once again, also depicted in Fig.5, illustrating the good accuracy of the nu-
merical results. It must be noticed that the application in focus is a very important
benchmark since the analytical answer is known and it represents a rather complex
numerical computation (in spite of its geometrical and load simplicity) once there
are successive reflections occurring at the model extremities and these multiple re-
flections can emphasize some numerical aspects, such as instabilities and excessive
numerical damping.

Taking into account time-domain BEM formulations, spurious oscillations may oc-
cur when bounded domains are analysed (in infinite domain analyses, these spuri-
ous oscillations are usually dissipated towards infinity). In order to avoid this kind
of instabilities, the present work employs the multi-level time-step technique to be
able to adopt optimal temporal discretizations for BEM sub-domains. Although,
if additional procedures to smooth BEM results are necessary, the following refer-
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Figure 5: Time-history results for the electric field intensity at points A, B, C, D and
E considering FEM-BEM coupled analyses and different temporal discretizations
for each sub-domain (air-air model): (a) algorithm 1; (b) algorithm 2.
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Figure 6: Time-history results for the electric field intensity at points A, B, C, D
and E considering different FEM-BEM coupling procedures (air-water model).

A heterogeneous medium analysis is also carried out, considering material 1 as be-
ing water (εR = 78) and material 2 as air. In this case, the value of the wave prop-
agation velocity in the FEM sub-domain is much lower, and the time discretization
adopted can be given by: ∆tF = ∆tB = 2 · 10−10s. Time history results at points
A, B, C, D and E are depicted in Fig.6, considering the two FEM-BEM coupling
algorithms discussed here, as well as the iterative FEM-BEM coupling procedure
(Soares, 2008). As can be seen, good agreement is observed. The discrepancy be-
tween the results depicted in Fig.6 is due to the adoption of lumped matrices M in
equations (12) and in the last term of equation (16b) and consistent matrices in the
iterative FEM-BEM coupling algorithm (one should observe that a poor spatial dis-
cretization is being considered). If a consistent matrix M is considered in equation
(16b), the results related to the coupling algorithm 2 are visually the same as those
related to the iterative FEM-BEM coupling, plotted in Fig.6.

7 Conclusions

In this work, two explicit time-domain FEM-BEM coupling algorithms are dis-
cussed. The formulations are very attractive since they allow each sub-domain
of the global model to be independently and optimally treated (existing codes or
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computer programs can be easily employed in the coupled analyses once simple
interface routines are implemented).

The FEM sub-domains are analysed considering time-marching procedures (namely
the Central Difference Method, which is conditionally stable, and the Green-Newmark
Method, which is unconditionally stable) which do not take into account the BEM
field values at the present time-step and, as a consequence, the coupled system
of equations can be properly uncoupled at the current time-step, rendering a very
efficient methodology. Moreover, the coupling algorithms are discussed in con-
junction with a multi-level time-step methodology, which allows considering better
temporal discretizations within each sub-domain of the global model, improving
the flexibility, accuracy and stability of the analyses.

At the end of the paper, numerical applications are considered, illustrating the good
level of accuracy of the proposed formulations (one should observe that sub-domain
time-step differences greater than fifteen times have been considered in the exam-
ples without any damage to the accuracy of the coupled analysis). In fact, the ro-
bustness and efficiency of the proposed algorithms are remarkable, improving the
competitiveness of time-domain FEM-BEM coupling procedures to analyse com-
plex electromagnetic models.
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