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Numerical Solution of 2D Natural Convection in a
Concentric Annulus with Solid-Liquid Phase Change

R. Avila1 and F.J. Solorio1

Abstract: Heat transfer processes involving phase change either, solidification
or melting, appear frequently in nature and in industrial applications. In this paper
the convective patterns that arise from a 2D shear driven annular flow (without and
with melting), are presented. The convective annular flow with radial gravity can
be considered as a simplified model of the atmospheric flow in the terrestrial equa-
torial plane (bounded by the warm surface of the Earth and the cold tropopause).
The governing equations have been numerically solved by the Spectral Element
Method. The numerical results reported in this paper, for the cases without melting
(at two different radius ratio η=ri/ro) are in qualitative agreement with analytical
results and experimental data obtained elsewhere for 2D annular electroconvection
systems. For the cases with melting, the material between the two concentric cir-
cles (with radius ratio η=0.35) is initially solid. The melting process takes place
from the internal circle with temperature Th, where Th is greater than the melting
temperature Tm. The heat transfer rate at the internal circle and the convective flow
patterns have been obtained for the cases without shear and with shear. The Couette
shear is induced by a constant rotation of the internal circle. As the phase change
process takes place, three parameters of the system depend on the fluid layer depth:
the Rayleigh number, the Reynolds number and the radius ratio of the annular fluid
layer. We found that as the fluid layer depth increases, different flow patterns ap-
pear. We discuss the critical azimuthal mode number and its relationship with the
Nusselt number.
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1 Introduction

Phase change processes (solid-liquid) frequently appear in nature and industrial ap-
plications. In nature, the melting and solidification processes are found in geophys-
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ical systems such as the growth of Earth’s crust and the ice formation (or melting)
in the Earth’s polar regions. In industrial applications, phase change phenomena
are present in the cast of pure metals and alloys, in mono-crystal growth tech-
niques and in plastic extrusion manufacturing processes. It is well known that the
mono-crystal growth industry and the cast of pure metals processes demand a strict
quality control of the final product. The quality of the product strongly depends on
the characteristics of the convective flow patterns which may transport impurities
towards the region where the pure material is forming. In this paper the character-
istics of the convective patterns in a Boussinesq fluid confined between two circles
(annular thermal convection) are investigated.

In the first part of the paper, the convective flow patterns in 2D, annular regions
without and with shear (circular Couette flow) in the absence of phase change, are
presented. These calculations were performed to qualitatively compare the ther-
mal convective patterns with the annular electroconvection patterns appearing in
smectic-A liquid crystal thin films [Zahir, Deyirmenjian, Morris, and Bruyn (1998);
Zahir, Deyirmenjian, and Morris (1999); Deyirmenjian, Zahir, and Morris (2005);
Tsai, Zahir, Deyirmenjian, and Morris (2007)]. Even though the two systems share
the same geometry and the same symmetry groups, the comparison is qualitative
because the source of instability, the physical properties and the scales are very
different. In the calculations, the three parameters governing the pattern formation
(the radius ratio η = ri/ro, the Rayleigh number Ra and the Reynolds number Re )
have constant values.

In the second part of the paper, an additional parameter which governs the rate of
melting of the initially solid annular region, the Stefan number St, is introduced.
Notice that by inducing a melting process from the inner circle, the η , Ra and Re
parameters of the system are time dependent because the characteristic length is
directly related to the position of the interface (melting front). Hence we have a
dynamic process where the thermal convective modes are (i) appearing, (ii) disap-
pearing, and (iii) interacting, as the parameters η , Ra and Re change. To the best
knowledge of the authors, research work in annular thermal convection with shear
and melting, has not been previously reported.

The qualitative comparison performed in the first part of this research (without
phase change and without Couette flow, Re=0) has been based on the theoretical
study carried out by Langford and Rusu (1998). They investigated the stationary
and spatio-temporal flow patterns taking place in a region between two concentric
circles in a plane (two dimensional annular convection). They showed, by applying
the model independent Equivariant Bifurcation Theory, that the type of flow pat-
terns that can be observed in an annular region, are mainly determined by purely
mathematical properties such as geometry and symmetry groups. They found that
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the loss of stability (bifurcation) of the basic motionless condition leads to a convec-
tive motion which can be described as a chain of pairs of clockwise/counterclockwise
vortices around the annulus. The number of such pairs (the mode number m) de-
pends on both parameters η and Ra. Langford and Rusu (1998) analyzed those as-
pects of convective pattern formation that characterize two phenomena which occur
at very different spatial scales: (1) the atmospheric thermal convective motion in the
terrestrial equatorial troposphere, and (2) the annular electroconvection in smectic-
A liquid crystal thin films [Langford and Rusu (1998)]. For the atmospheric case,
the flow patterns appear due to the gravity force vector directed radially towards
the centre of the Earth and the temperature difference between the warm surface
of our planet and the cold tropopause. In the second case the instability source is
a radial electrical force in the suspended annular smectic liquid crystal film. The
development and use of a simplified two dimensional Boussinesq model (such as
the one developed in this investigation) to predict the atmospheric air convective
patterns in the terrestrial equatorial plane, is fully justified, from the physical point
of view. Recent observations have revealed the presence of large scale waves in
the equatorial troposphere [Tsuda, Murayama, Wiryosumarto, Harijono, and Kato
(1994a); Tsuda, Murayama, Wiryosumarto, Harijono, and Kato (1994b)]. It has
been established that in the equatorial region (where the background mean winds
are much weaker than the mean winds at middle latitudes), convection in the tro-
posphere is the main excitation source of large scale waves. Measurements in the
equatorial troposphere have also identified upward and downward large scale en-
ergy propagating waves. The analysis of the thermal convection through the use of
a two dimensional Boussinesq model, may lead to get a more clear understanding
of the atmospheric phenomena that appear in the equatorial plane.

Regarding the cases without phase change but with rotation of the inner circle,
it should be mentioned that theoretical, numerical and experimental research on
pattern formation in annular electroconvection, with imposed shear at the internal
circle, have been carried out in the weakly nonlinear regime [Zahir, Deyirmenjian,
Morris, and Bruyn (1998); Zahir, Deyirmenjian, and Morris (1999); Deyirmenjian,
Zahir, and Morris (2005); Tsai, Zahir, Deyirmenjian, and Morris (2007)]. It has
been reported that the basic mechanisms of the electrohydrodynamic convection
instability in nematic liquid crystals is analogous to the Rayleigh-Bénard convec-
tion with radial driving constant gravity force. The linear theory of the annular
convective instability is well established including the case of an annular geometry
with imposed shear [Zahir, Deyirmenjian, and Morris (1999)]. In the research on
pattern formation in annulus with circular Couette flow, it has been identified the
presence of stationary and traveling patterns, as well as localized structures.

In this investigation it has been found that in the absence of Couette shear the bi-
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furcation from the heat diffusion state to the convective condition, results in a sta-
tionary flow pattern consisting on counter-rotating pairs of vortices lying around the
circumference of the annulus. Each pair of vortices has reflection symmetry and the
overall pattern is spatially periodic and 1D in the azimuthal direction, which is in
agreement with the theoretical findings and experimental data obtained in electro-
convective phenomena [Zahir, Deyirmenjian, and Morris (1999); Zahir, Deyirmen-
jian, and Morris (2001)]. It has been also found that when Couette flow is applied
at the internal circle, an azimuthally traveling pattern is present, and the azimuthal
mode is reduced, which is also in agreement with the electroconvection experi-
ments. It has been reported that when the annular flow is sheared, the reflection
symmetry of the base state is not present. And when the flow is driven, the pattern
breaks the azimuthal symmetry, hence the pattern is free to travel azimuthally in
the direction of the mean flow [Zahir, Deyirmenjian, and Morris (2001)]. Zahir et
al. (1999) calculated the neutral stability boundary as a function of the radius ratio
η and the Reynolds number Re of the shear flow. In the research that we report in
this paper, numerical simulations were carried out aimed to study the influence of
a shear Couette flow on the natural convection and shape of the interface in a melt-
ing process that takes place in an annular region confined between two concentric
circles. The critical control parameters Ra, η and Re, and the critical azimuthal
mode number mc have been identified. It has been found that the Couette flow
suppresses the onset of the convection (similar to the electroconvection findings
i.e. Rac(η ,Re) > Rac(η ,0)). It can be concluded that the numerical simulations
reproduce qualitatively well the theoretical, numerical and experimental results ob-
tained in an electroconvection system, consequently, it is possible to mention that
the complex dynamical phenomena appearing in the melting process of a 2D con-
centric annular solid, are properly evaluated. The paper is organized as follows: In
Sec. 2 the physical and mathematical models are presented. In Sec. 3 the numerical
algorithm is briefly described. In Sec. 4 the numerical results are shown. In Sec. 5
the concluding remarks are presented.

2 Mathematical model

We have investigated the natural convection of an incompressible fluid confined in
an annular region bounded by two concentric circles with radius ri (internal) and ro

(external), see Fig. 1. The internal circle is at a temperature Th whereas the external
circle is at a temperature Tc, where Th > Tc. The convective flow patterns appear
due to the constant gravity force vector directed radially towards the centre of the
circles, and the temperature difference. It is assumed that the physical properties
(except the density) of the fluid remain constant. The density variation will be only
considered in the buoyancy term of the momentum equation (Boussinesq approx-
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Figure 1: Natural convection in a concentric annular region. Left: With no melting;
the liquid is confined in the annular region bounded by two concentric circles with
radii ri and ro. Right: With melting; initially the solid phase occupies the whole
annular region, The melting process of the solid annulus is from the internal circle.
The arrows mean clockwise rotation of the internal circle.

imation). To nondimensionalize the equations we use the gap width d=ro− ri, the
diffusive thermal time td=d2/α , where α is the thermal diffusivity, and the temper-
ature difference between the temperature of the inner circle and the temperature of
the outer circle: ∆T = Th−Tc. The temperatures in the liquid phase and in the solid
phase have been nondimensionalized as:

Θl =
Tl−Tc

Th−Tc
=

Tl−Tc

∆T
(1)

and

Θs =
Ts−Tc

Th−Tc
=

Ts−Tc

∆T
, (2)

respectively. The nondimensional temperature of the interface is written as

Θm =
Tm−Tc

Th−Tc
=

Tm−Tc

∆T
(3)

It may be observed that the range of the temperatures Θl and Θs is

0≤Θs ≤Θm and Θm ≤Θl ≤ 1 (4)

Assuming that the thermal diffusivities and the thermal conductivities in the liq-
uid and in the solid are the same i.e. αl=αs and κl=κs, the nondimensional flow
governing equations are written as

Continuity equation
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∇ ·u = 0 (5)

Momentum equation

∂u
∂ t

+u ·∇u =−∇p+Pr∇
2u+RaPrΘl (6)

Energy equation

∂Θl

∂ t
+u ·∇Θl = ∇

2
Θl (7)

where Pr is the Prandtl number defined as Pr = ν/α , (ν is the kinematic viscosity).
The parameter Ra is the Rayleigh number. It is well known that if the density of
the fluid varies linearly with the temperature, the Rayleigh number is commonly
defined as

Ra =
βg∆T d3

να
(8)

where β is the thermal expansion coefficient. The radial gravity vector acts towards
the centre of the circles; it is defined as

g =−g · er (9)

where er is the unit vector along the radial direction, and g is a gravity constant. To
study the convective pattern formation in a melting process, we also need to solve
the heat equation that governs the temperature distribution in the solid phase. How-
ever for the cases with phase change considered in this investigation, it is assumed
that the external circle remains at the same temperature than the melting point.
Therefore there is no heat transfer in the solid phase and the heat equation for the
solid was not solved. Additionally, the heat balance equation governing the rate of
displacement of the interface must be considered. As the heat transfer through the
solid phase has been neglected, the heat balance equation is written as

St v =−∇Θl ·n (10)

where v is the nondimensional velocity of the interface in the direction of the out-
ward normal unit vector n and the parameter St is the Stefan number defined as

St =
Lq

cp∆T
, (11)
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Lq is the latent heat, and cp is the specific heat. In the numerical simulations with
phase change, we assume that initially the solid phase occupies the whole annular
region. At the initial time, the temperature of the whole system is at the temper-
ature Θs=0 which is equal to the cold temperature imposed at the outer boundary
located at the external radius Ro = 1/(1−η), where η is the radius ratio, which is
defined for the non-melting cases as η = ri/ro =0.35. The phase change temper-
ature is Θm=0 (the melting temperature is equal the temperature of the outer cold
boundary), hence there is no heat transfer in the solid annulus. At a certain time, the
temperature of the internal circle (at Ri=η/(1−η)) is raised and maintained at a
temperature Θh=1, while the temperature at the outer circle is maintained at the ini-
tial temperature Θc=0, such that Θh > Θm = Θc. The thermal boundary conditions
lead to a melting process of the solid annulus from the internal surface, see Fig. 1.
We assume no slip boundary conditions for the fluid on both circles, and for the
cases with phase change, the no slip boundary condition is also assumed at the in-
terface. The internal circle may have rotation, the constant rotation vector has only
the component normal to the plane where the circles are defined (

−→
Ω = Ω3

−→
i 3). The

working fluid is water whose density is determined by the following fourth order
polynomial [Inaba and Fukuda (1984)].

ρ = ρo +bT + cT 2 +dT 3 + eT 4 (12)

where the coefficients have the following values (see Inaba and Fukuda (1984)):

b = 0.0673 kg/(m3 oC), c =−0.0089 kg/(m3 oC2) (13)

d = 8.784×10−5 kg/(m3 oC3), e =−6.621×10−7 kg/(m3 oC4), (14)

the dimensional temperature T is given in (oC) and ρ in (kg/m3). Notice that the
density has a maximum at T = 4oC, hence in the cases with melting, a region with
density inversion is present close to the interface (from T = 4oC to T = 0oC). The
nondimensional expression for the density (see Eq. (12)) is written as

ρ−ρo

ρo
= b̂∆T Θl + ĉ(∆T Θl)2 + d̂(∆T Θl)3 + ê(∆T Θl)4 (15)

where: b̂ = b/ρo 1/oC, ĉ = c/ρo 1/oC2, d̂ = d/ρo 1/oC3 and ê = e/ρo 1/oC4. It
should be mentioned that if the fourth order polynomial for the density is used, the
buoyancy term in Eq. (6) may be written in a more complicated way such as

Pr
(
R̂a1Θl + R̂a2Θ

2
l + R̂a3Θ

3
l + R̂a4Θ

4
l

)
(16)

where

R̂a1 = Ra =
b̂∆T gd3

να
, R̂a2 =

ĉ∆T 2gd3

να
, R̂a3 =

d̂∆T 3gd3

να
, R̂a4 =

ê∆T 4gd3

να
(17)
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Even though the values of the parameters ĉ, d̂ and ê are small with respect to the
value of the coefficient of the linear term b̂ (and hence the values of the Rayleigh
numbers R̂a2, R̂a3 and R̂a4 are small with respect to the value of Ra), they have been
included in the calculations in order to take into account the inversion layer between
0oC< T <4oC and the non-linear variation of the density with the temperature.

Rotation of the inner circle about the axis located at the centre of the concentric
circles leads to a Couette shear. To characterize the strength of the shear we use a
Reynolds number defined as

Re =
Ω3rid

ν
, (18)

the nondimensional expression of the rotation rate is Ω∗ = Ω3td , and the nondi-
mensional period is written as P = 2π/Ω∗. As it was established, d for the non-
melting cases is defined as d = ro− ri, whereas for the melting cases it is defined
as d = rm(t)− ri, where rm(t) is the radial position of the interface (at t = 0,
rm(t = 0) = ri). The radius ratio with melting is defined as ηI = ri/rm(t). No-
tice that as the melting process takes place, the position of the melting front rm(t)
is continuously changing, then the governing parameters Ra, Re and ηI are time
dependent.

3 The Spectral Element Method

The set of Eqs. (5)-(7) and (10) has been solved by using the Spectral Element
Method (SEM) [Patera (1984); Rønquist and Patera (1987); Rønquist (1988); Kar-
niadakis and Sherwin (1999)]. This methodology is a special case of the method of
weighted residuals which leads to the Bubnov-Galerkin formulation (the expansion
functions used to approximate the dependent variables, are the same as the weight
functions). Using the SEM the computational domain is subdivided into large
non-overlapping, quadrilateral (structured mesh), isoparametric macro-elemental
regions (h-element size). Inside them, high order piecewise polynomial expansions
(p-polynomial order) are defined. The SEM uses a polynomial nodal expansion
based on Lagrange polynomials, which are associated with a set of nodal points
that are located at the zeros of the Gauss-Lobatto-Legendre polynomials. The nu-
merical quadrature is performed using a Gauss-Lobatto-Legendre quadrature rule,
which corresponds to the same choice of the nodal points. The pressure field is
calculated by using Gauss-Legendre points whereas the velocity field is solved by
using Gauss-Lobatto-Legendre points (staggered grid approach). In the simula-
tions that we present in this paper, the computational domain, corresponding to the
union of the two phases, is a fixed domain. The liquid and solid phases are treated
as time dependent domains separated by a moving interface. For moving interface
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problems there are two basic methodologies to model the motion of the interface:
moving-grid and fixed-grid methods. In the moving-grid approach, the interface is
modeled as the boundary of a moving surface-fitted grid. This approach leads to a
proper treatment of the interface, however in fluid flow problems with melting, the
motion of the interface may conduct to a severe deformation of the mesh. In the
second method, which is based on fixed grids, the moving interface is not explicitly
tracked, but rather captured via a characteristic function [Mai-Duy, Mai-Cao, and
Tran-Cong (2007); Mai-Cao and Tran-Cong (2008)]. The algorithm of moving in-
terface used in this paper belongs to moving-grid methods. The algorithm is based
on an interface local transformation-convective correction technique, together with
a consistent interface flux evaluation [Rønquist and Patera (1987)]. A time de-
pendent moving mesh technique has been implemented, in which the temperature
distribution in each phase, is separately solved on fixed grids at every time step. In
order to correct for dynamic domains a convective term is included in the energy
equation of each phase. The new interface position is calculated by using Eq. (10).
The shape of the interface and the geometry of the mesh are updated as shown by
Rønquist and Patera (1987). After performing several tests in order to reach the
mesh independence, it was decided to discretize the computational domain by us-
ing 150 spectral elements. For the cases without melting, the liquid domain in the
concentric annulus was discretized by 30 macro-elements along the azimuthal di-
rection and 5 macro-elements along the radius. In the melting cases, the mesh for
the liquid phase was defined by 120 macro-elements (30 macro-elements along the
azimuthal direction and 4 macro-elements along the radial direction). The mesh for
the solid phase was defined by 30 macro-elements in the azimuthal direction and
1 set of macro-elements along the radial direction. The polynomial order of the
expansion functions within each macro-element, was fixed to p = 9, along each di-
rection. Using the SEM for the simulation of melting processes, both phases must
always be present. In the simulations of this paper, the initial liquid phase was
confined to a very thin annular region ([rm(t = 0)− ri]→ 0). Therefore it is a good
approximation to assume that at the beginning of the melting process, the solid
phase occupies almost the whole annular region (ro− ri). As the melting process
takes place, the interface changes its position and morphology, and the liquid phase
occupies more space within the annulus. Details of the numerical algorithm for the
solution of the fluid equations and the algorithm used to calculate the displacement
of the interface are reported by Rønquist(1988), Karniadakis and Sherwin(1999)
and Rønquist and Patera (1987).
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4 Results

Firstly we present the numerical simulations for the cases without melting. These
are qualitatively compared with the analytical results and experimental data ob-
tained in electroconvection systems [Zahir, Deyirmenjian, Morris, and Bruyn (1998);
Zahir, Deyirmenjian, and Morris (1999); Deyirmenjian, Zahir, and Morris (2005);
Tsai, Zahir, Deyirmenjian, and Morris (2007)]. Secondly, the numerical simulation
of natural convection for the cases with melting is presented.

4.1 Heat transfer in a concentric annulus with no phase change

Figure 2: Steady state temperature distribution in a concentric annulus with no
melting (t=1.02). Subcritical regime (without convection). Left: Isothermal lines,
the temperature increment between isotherms is ∆Θ=0.2. Right: Radial tempera-
ture distribution. Ra=1790, η=0.35, Re=0. Continuous line: Analytical solution
Eq. (19). Symbols: SEM solution.

4.1.1 Aspect ratio η=0.35, with no shearing (Re=0) and subcritical conditions
(Ra < Rac)

The subcritical conditions lead to a diffusive one-dimensional heat transfer problem
(basic flow without motion). It has been previously reported that the axisymmetric
conductive regime becomes unstable to a flow pattern with an azimuthal wavenum-
ber m=3 at Rac=1799 [Net, Alonso, and Sánchez (2003)]. The Ra number for this
case was fixed at Ra=1790.
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The analytical solution for the temperature distribution is

Θ(R) =
ln [R+η(1−R)]

ln(η)
(19)

where R is the nondimensional radius defined as R=(r− ri)/(ro− ri). Fig. 2 shows
the steady state isothermal lines, obtained by the SEM for a radius ratio η=0.35. It
is observed that the isothermals are concentric circles due to the one dimensional
heat conduction regime. Fig. 2 also shows the radial distribution of the temperature.
As it is seen, the analytical solution and the results provided by the SEM are in full
agreement.

Figure 3: Steady state temperature distribution in a concentric annulus with no
melting (t=6.73). Subcritical regime (without convection). Left: Isothermal lines,
the temperature increment between isotherms is ∆Θ=0.2. Right: Radial tempera-
ture distribution. Ra=450, η=0.8, Re=0. Continuous line: Analytical solution Eq.
(19). Symbols: SEM solution.

4.1.2 Aspect ratio η=0.8, with no shearing (Re=0) and subcritical conditions
(Ra < Rac)

Fig. 3 shows the steady state isothermal lines obtained by the SEM for Ra=450.
It is shown that the isothermals are again concentric circles due to the one dimen-
sional conductive regime. The radial temperature distribution is also shown. The
comparison between the analytical solution and the results provided by the SEM is
also in full agreement.
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Figure 4: Steady state natural convection in a concentric annulus with no melting
(t=1.34). Supercritical regime. Left: SEM Isothermal lines, the temperature incre-
ment between isotherms is ∆Θ=0.2. Right: SEM velocity field. Ra=2000, η=0.35,
Re=0. Critical mode number mc=3.

4.1.3 Aspect ratio η=0.35, with no shearing (Re=0), supercritical conditions
(Ra=2000)

Fig. 4 shows the steady state isothermals obtained by the SEM. It is also shown
the velocity vectors of the convective cells. It is seen that the SEM provides a con-
vective mode m=3, which is in agreement with the predictions performed by Net et
al. (2003). However Sahir et al. (1999) found in an electrically driven convection
system without rotation, that for a radius ratio η=0.35, the critical mode number,
evaluated by nonlocal stability analysis, is mc=4, which is not in agreement with
the pattern shown in Fig. 4. However it is observed that in the absence of shear,
the convective flow consists of a stationary, azimuthally one-dimensional pattern of
symmetric, counter-rotating vortex pairs, each pair of vortices has reflection sym-
metry, which is in full agreement with the results reported by Sahir et al. (1999).

4.1.4 Aspect ratio η=0.8, with no shearing (Re=0), supercritical conditions (Ra =
2240)

Fig. 5 shows the steady state isothermals obtained by the SEM. It is also shown
the velocity vectors of the convective cells. It can be observed that the numeri-
cal solution provides a convective mode number m=15, which is not in agreement
with the critical azimuthal mode number without shear mc=18, reported by Sahir
et al. (1999). Again in the absence of shear, the convective flow pattern is station-
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Figure 5: Steady state natural convection in a concentric annulus with no melting
(t=6.73). Supercritical regime. Left: SEM Isothermal lines, the temperature incre-
ment between isotherms is ∆Θ=0.2. Right: SEM velocity field. Ra=2240, η=0.8,
Re=0. Critical mode number mc=15.

ary with counter-rotating vortex pairs. Therefore, the comparison between thermal
convection and electroconvection must be only considered as qualitative.

4.1.5 Aspect ratio η=0.35, with shear (P=0.02), supercritical conditions (Ra =
7000)

This case shows the effect of a shear (applied by the clockwise rotation of the
inner circle at a rate Ω∗=325.7, Re=13), on the supercritical convective flow pattern.
First of all it should be mentioned that due to the stabilizing effect of the shear on
the convective onset (Rac increases with Re, indicating a suppression of thermal
convection), it was necessary to increase the Ra number to Ra=7000, to have the
convective onset. Fig. 6 shows the isothermal lines and the velocity field obtained
by the SEM at four different times. It is observed that the effect of a circular Couette
shear on the radially driven thermal convection is to promote the presence of a net
mean flow in the azimuthal direction. Due to the shearing we do not obtain a chain
of counter-rotating vortex pairs, but a big traveling vortex instead (i. e. the Couette
flow reduces the azimuthal mode as was reported by Sahir et al. (1999)). The
reduced critical wavenumber mc that we obtained for this case (Re=13), can not be
compared even qualitatively with previous investigations. We also reproduce the
results obtained by Sahir et al. in the sense that the traveling pattern appears as
a meandering wave. It can bee seen that when a rotation rate with period P=0.02
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(a)

(b)

(c)

(d)

Figure 6: Non-steady natural convection in a concentric annulus with no melting.
Periodic traveling pattern in a supercritical regime. Left: SEM Isothermal lines, the
temperature increment between isotherms is ∆Θ=0.1. Right: SEM velocity field.
Ra=7000, η=0.35, Re=13. Nondimensional period P=0.02.
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is applied, the flow pattern is steadily periodic (independent of initial conditions).
Our results indicate that the critical mode travels in the same sense as the inner
circle.

4.2 Heat transfer in concentric circles, with phase change St=3.9

In all the cases with phase change it is assumed that at time t=0, the annular region
is occupied by the solid phase at a temperature Θs=Θm. At a certain instant the
temperature of the inner circle is raised at a temperature Θh, whereas the outer
circle remains at a temperature Θc=Θm, therefore there is no heat transfer in the
solid annulus.

Figure 7: Non-steady natural convection in a concentric annulus with melting
St=3.9. Ra and ηI are function of time. With no shearing Re=0. (a) Isothermal lines
before convective onset t=0.12, (b) isothermal lines at convective onset t=0.35, (c)
isothermal lines at t=0.55, and (d) velocity field at t=0.55. Critical mode number
mc=7. The temperature increment between isotherms is ∆Θ=0.1.
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4.2.1 Melting of an initially solid annular region with radius ratio η=0.35, and
with no shearing (Re=0)

Fig. 7 shows the isothermals at subsequent times. Notice that as the melting process
takes place, the Ra number and the radius ratio ηI are time dependent.

Figure 8: Average Nusselt number at the internal circle. With melting process,
St=3.9. With no shearing Re=0. Ra and ηI are time dependent. Analytical solution
Eq. (20).

It can be observed that once the critical conditions are reached, the convective pat-
terns suddenly appear with an azimuthal mode number mc=7 (see Fig. 7 (d)). It
can be seen that due to the interface deformation by the convective cells, the crit-
ical mode number mc, does not change as the melting continues. The numerical
simulation finishes when the deformation of the interface is severe and the Gauss-
Lobatto-Legendre points overlap, hence a remeshing process is required. This is
one of the drawbacks of the mesh based methods such as the SEM. In order to
overcome this difficulty we propose to carry out in the future numerical simula-
tions by using the numerical technique known as Meshless Local Petrov-Galerkin
method. Meshless methods rely only on a group of arbitrarily distributed particles
in the computational domain. The meshless methods not only avoid the generation
of a numerical grid but also describe more accurately irregular geometries such as
the shape of the interface in melting processes with natural convection [Lin and
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Atluri (2000); Lin and Atluri (2001); XueHong, ShengPing, and WenQuan (2007);
Arefmanesh, Najafi, and Abdi (2008)]. Fig. 8 shows the average Nusselt number
evaluated at the internal circle. The analytical Nusselt number for the pure diffusive
case is also shown in Fig. 8. It is clear that the Nusselt number evaluated by the
SEM, suddenly increases due to the onset of the natural convection. The analytical
Nusselt number, based on the temperature distribution given by Eq. (19), has been
evaluated as

Nu(t) =−dΘ

dR̂
=− (1−ηI)[

(1−ηI) R̂+ηI
] 1

ln(ηI)
(20)

where R̂ = (r− ri)/(rm(t)− ri), and ηI = ri/rm(t).
If we perform the heat balance at the interface (R̂=1), it is possible to evaluate the
radial position of the melting front ηI(t) as a function of time in the conductive
regime.

The equation governing the displacement of the interface is written as

dη
−1
I

dt
=

1

η
−1
I St ln

(
η
−1
I

) (
1−η

η

)2

(21)

Notice that in this equation the radius ratio η is present, because we have used
the thermal time td to nondimensionalize the time derivative of the radial position
of the melting front rm(t). After solving Eq. (21), we calculate the Nu number
at the internal cylinder (R̂ = 0) through the use of Eq. (20). It is shown that in
the conductive regime, the Nusselt number evaluated by the SEM, is in agreement
with the analytical solution. It is possible to observe that the onset of the convec-
tion is around t=0.34. Solving Eq. (21), at t=0.34, the value of η

−1
I =1.7, which

corresponds to a radius ratio ηI=0.58. We have obtained a critical mode number
mc=7. According to the theory developed by Sahir et al. (1999), the critical az-
imuthal mode number for this radius ratio, without shear is around mc=8, which is
in qualitative agreement with the SEM results.

4.2.2 Melting of an initially solid annular region with radius ratio η=0.35, and
with shear (P = 0.02)

Fig. 9 shows the isothermals at different times. Notice that as the melting process is
carried out, the Rayleigh number Ra, the radius ratio ηI and the Reynolds number
Re are time dependent. It is observed that due to the shear (Ω∗=325.7), the onset of
the natural convection is delayed. In the previous case the onset appeared around
t=0.34 (see Figs. 7 and 8), whereas with shear the onset appears around t=0.44.
Solving Eq. (21), at t=0.44, the value of η

−1
I =1.79, which corresponds to a radius
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Figure 9: Non-steady natural convection in a concentric annulus with melting
St=3.9. Isothermal lines, the temperature increment between isotherms is ∆Θ=0.1
Traveling pattern in a supercritical regime. Nondimensional period P=0.02. Ra, ηI ,
Re and m parameters are time dependent parameters.

ratio ηI=0.55 and to a Reynolds number Re=5.7. Fig. 9 (b), shows that the critical
mode number (around mc=6) is less than the case with no shearing (Re=0), which
is also in agreement with Sahir et al. (1999). However as the size of the liquid
layer increases (Re number also increases) the mode number decreases. Zahir et
al. (1999) have reported that in 2D electroconvection, the critical wavenumber is
a monotonically decreasing function of the shear Reynolds number. The Nusselt
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Figure 10: Average Nusselt number at the internal circle. With melting process,
St=3.9 and shearing Ω∗=325.7 (P=0.02). Ra, ηI , Re and m parameters are time
dependent. Analytical solution Eq. (20).

Figure 11: Isothermal lines in a concentric annulus with melting St=3.9 and shear-
ing for two cases: Left: Ω∗=1628.6 (P=0.004) and Right: Ω∗=3257.2 (P=0.002).
The temperature increment between isotherms is ∆Θ=0.1. The shearing damps the
natural convection. Ra, ηI and Re parameters are time dependent.
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number behaviour is shown in Fig. 10, it is seen that the convective pattern modi-
fication leads to a complex behaviour of the Nusselt number. In Fig. 10, the letters
(a), (e) and (f), correspond to the patterns shown in Fig. 9.

Figure 12: Average Nusselt number at the internal circle. With melting pro-
cess, St=3.9 and shearing for two cases: Ω∗=1628.6 (P=0.004) and Ω∗=3257.2
(P=0.002). The shearing damps the natural convection. Ra, ηI and Re parameters
are time dependent. Analytical solution Eq. (20).

It is observed an irregular behaviour in the vicinity of the (e) point. We see that as
the mode number decreases (by the increase of the fluid layer), the mixed convec-
tion (traveling pattern and natural convection) of the large scale patterns, induces a
much higher heat transfer rate (see point (f)). It is seen in Fig. 9 that the traveling
pattern modifies the morphology of the interface, leading to an almost concentric
position of the moving boundary. Hence the deformation of the interface is not as
severe as it was in the case with no shearing (see Fig. 7).

4.2.3 Melting of an initially solid annular region with radius ratio η=0.35, and
with shear (P=0.004 and P=0.002)

In order to estimate the influence of higher values of shearing on the convective
onset, the heat transfer rate and the shape of the interface, we increased the value
of the rotation rate at Ω∗=1628.6 (P=0.004) and Ω∗=3257.2 (P=0.002). We found
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that in both cases the melting process was an almost pure diffusive phase change
process.

Figure 13: Non-steady natural convection in a concentric annulus with melting
St=3.9. Isothermal lines, the temperature increment between isotherms is ∆Θ=0.1
Traveling pattern in a supercritical regime. Nondimensional period P=0.095. Ra,
ηI , Re and m are time dependent parameters.

Fig. 11 shows the isothermal lines for both cases. It is seen that even for di-
mensionless times t=1.42 (for the case with P=0.004) and t=1.5 (for the case with
P=0.002), the isothermals are concentric circles, hence there is no convective mode
in the melting process.
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Figure 14: Average Nusselt number at the internal circle. With melting process,
St=3.9 and shearing for two cases: Ω∗=32.7 (P=0.19) and Ω∗=65.4 (P=0.095). Ra,
ηI , Re and m parameters are time dependent. Analytical solution Eq. (20).

It is also observed that in both cases, the shape of the interface is a concentric circle,
hence the shearing damps the convective cells and the shape of the interface remains
smooth. Fig. 12 shows the average Nusselt number evaluated at the internal circle
for the cases with P=0.004 and with P=0.002. The analytical solution for the pure
diffusive case, Eq. (20), is also shown. Notice that due to the damping of the
convective onset, the average Nusselt number is very low as compared with the
case with convective onset (see Fig. 10). It is seen that the Nu number for the
case with a lower rotation rate P=0.004, is higher than the case with higher angular
speed P=0.002. Even though the isothermal lines are almost concentric circles, it
is possible to observe (for the case with P=0.004), small amplitude perturbations
of the average Nusselt number, this is observed at around t=1.1. Nevertheless the
heat transfer process is dominated by a diffusive mechanism.

4.2.4 Melting of an initially solid annular region with radius ratio η=0.35, and
with shear (P=0.095 and P=0.19)

In the previous section it was shown that as the angular speed of the inner circle
is increased to values Ω∗=1628.6 and Ω∗=3257.2, the onset of the natural convec-
tion does not appear. It was also shown in section 4.2.2 that at an angular speed
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Ω∗=325.7, the mode number of the convective cells is small even though the aspect
ratio ηI=ri/rm(t) is high, hence it can be mentioned that the shearing dominates the
convective cells, see Fig. 9. In this section it was decided to reduce the angular
speed in order to investigate the influence of shear on a system where natural con-
vection is dominant. Two new cases are presented with values of the angular speed
of the inner circle at Ω∗=32.7 and Ω∗=65.4. The results shown in Figs. 13 and 14
confirm the fact that low angular speeds allow the onset of the natural convection
and pattern formation. Fig. 13 shows the time evolution of the melting process.
Fig. 13 (a) shows that the convective onset occurs (for both cases) at around t=0.34
(see also Fig. 14) with mode number mc=7. Then the onset occurs earlier than
the case with shearing with P=0.02 (Ω∗=325.7), see section 4.2.2, but at the same
time as the case without shearing, see section 4.2.1. Hence at angular speeds of the
inner circle (Ω∗=32.7 and Ω∗=65.4), the Rayleigh-Bénard convection dominates
the damping effect of the shear. The critical mode number for both cases is mc=7.
As time elapses for the case with Ω∗=32.7, the traveling pattern remains with a
mode number m=7, until the whole annular region is liquid (at t=1.2). Fig. 14
shows that the Nusselt number for the case with Ω∗=32.7 shows a smooth mono-
tonic increase, which means that there is no a significant change of the traveling
flow pattern along the melting process (constant mode number m=7). However for
the case with Ω∗=65.4, it is possible to observe that the flow pattern mode number
changes from mc=7 to mc=4. The change in the mode number begins at times larger
than t=1, where a decrease in the heat transfer rate is apparent. Notice that at time
around t=1.1, there is an irregular behaviour of the average Nusselt number and a
modification of the flow pattern. It is possible to observe that the change of flow
pattern occurs when almost the annular region is a fluid. It is interesting to mention
that even though the natural convection is dominant, the shear leads to a smooth
evolution of the interface, hence the remeshing process is not necessary as was the
case shown in section 4.2.1. Regarding the heat transfer rate evaluated at the in-
ner circle, it can be mentioned that as shearing is increased the Nusselt number is
decreased.

5 Conclusions

The Spectral Element Method has been used to calculate the natural convection of
a fluid (water) confined in a 2D circular annulus. The natural convection is driven
by a radial gravity field (self gravity). This simplified model may be applied to
calculate the thermal motion of the atmospheric wind at the terrestrial equatorial
plane. The numerical calculations without melting and with shearing, have been
successfully compared in a qualitative manner, with theoretical results and experi-
mental data obtained in a problem which has an electrical instability source. With
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no shearing we have found that there is no mean flow along the azimuthal direc-
tion. The results confirm the fact that shearing has a stabilizing effect on thermal
convection, and that the most unstable mode travels in the direction of the rotation
of the inner circle. It has been found that increasing the Re number, the net effect is
a reduction of the azimuthal mode number. The obtained numerical results for the
cases with melting and shear, have shown that as the melting process takes place,
the Re number increases, leading to a decrease of the azimuthal wavenumber. It
is shown that the traveling mode has an important effect on the shape of the in-
terface. It seems that the traveling mode transports heat from the inner circle to
the interface in a more uniform manner, consequently the annular fluid layer grows
smoothly without severe deformation of the moving boundary, hence no remeshing
is required. It has been found that as the angular speed is increased a reduction
of the average Nusselt number evaluated at the inner circle is apparent. According
to the results obtained in this research, it is possible to mention that: (i) a Couette
shear flow may control the intensity and number of convective plumes in the fluid
layer, hence the transport of impurities towards the interface is diminished, and (ii)
a Couette shear flow may control the shape of the moving interface, then the im-
perfections of the interface (which may lead to the generation of residual stresses
in the solid material) are diminished. The numerical simulations in the non-linear
regime with melting and shear constitute an important source of information about
the different bifurcations that appear in a dynamical system where the governing
parameters (Rayleigh number Ra, radius ratio ηI and Reynolds number Re) are
continuously changing. This information may also be useful to verify linear and
non-linear stability theories.
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