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An Optimal Fin Design Problem in Estimating the Shapes
of Longitudinal and Spine Fully Wet Fins

Cheng-Hung Huang1 and Yun-Lung Chung1

Abstract: The optimum shapes for the longitudinal and spine fully wet fins are
estimated in the present inverse design problem by using the conjugate gradient
method (CGM) based on the desired fin efficiency and fin volume. One of the
advantages in using CGM in the inverse design problem lies in that it can handle
problems having a large number of unknown parameters easily and converges very
fast. Results obtained by using the CGM to solve the inverse design problems are
justified based on the numerical experiments. Results show that when the Biot
number and relative humidity are varied, the optimum fin efficiency and optimum
fin shape will also be changed.

Nomenclature

Ā(x̄) cross-section area of fin
Bi1,Bi2 Biot number
h̄1, h̄2 convective heat transfer coefficient
h̄m mass transfer coefficient
h̄ f g latent heat of condensation of moisture
J functional defined by equation (3)
J′ gradient of functional defined by equation (17)
k̄ thermal conductivity
L̄ reference length
p̄(x̄) perimeter of fin
q actual heat transfer rate through fin
Q ideal heat transfer rate through fin
r(x) fin radius for spine fins and fin thickness for longitudinal fins
T̄ dimensional temperature of fin
v(r) estimated fin volume
V given fin volume
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w fin width

Greeks

α weighting coefficient
β search step size
γ conjugate coefficient
θ(x) estimated dimensionless temperature of fin
∆θ(x) sensitivity function defined by equation (8)
Ω computational domain
λ (x) Lagrange multiplier defined by equation (15)
δ (·) Dirac delta function
η estimated fin efficiency
Φ desired fin efficiency
ε convergence criteria
ω̄ specific humidity
ω̄a specific humidity of surrounding air

Superscript

n iteration index
_ dimensional quantities

1 Introduction

Finned surfaces have been in use over a long period of time for dissipation of heat
by convection or by radiation. Finned surfaces are widely seen in many engineering
applications such as air-conditioning, refrigeration, cryogenics and cooling systems
in industrial. For this reason it is quite nature that many works have been done in
order to improve the design of the fins.

The design criterions of fins are different for various applications, but the primary
concern is the fin volume (or weight) and fin efficiency and it is highly desirable to
optimize the shape of fins based on these two constraints. The optimum dimensions
are those for which maximum (or desired) fin efficiency is obtained for some fixed
volume of the fin. Although the fin efficiency of the estimated fin by optimum
design process is superior than that for the conventional fin, it may be limited to use
in actual practice since the resulting profile shape may be difficult to manufacture
and fabricate.
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Numerous studies have been conducted to optimize the dimensions of spine and
longitudinal fins of various profiles subject to convection. For pure conducting fins,
a criterion for optimum shape was proposed by Schmidt (1926) using the principle
of a constant heat flux. This result was confirmed later by Duffin (1959) by using
a variational method. In their studies, the fin profile is calculated as a parabola and
has a zero thickness at the outer edge. An optimum shape of purely radiating fin was
obtained by Wilkins (1960) for a variety of geometries. For convective and radia-
tive fins, Kern and Kraus (1972) have presented a thorough study of the optimum
design of finned surfaces. Aziz (1992) has published a survey article where the
optimum dimensions of straight fins, annular fins and spines of different profiles
with many numerical examples are included. Razelos (1983) and Chung (1983)
have independently presented the optimum dimensions of convective pin fin with
cylindrical, conical, concave parabolic and convex parabolic profiles. A review
on extended surfaces over six decades is available in the work by Kraus (1988).
Chung and Iyer (1993) used an integral approach to determine the optimum dimen-
sions for rectangular longitudinal fins and cylindrical pin fins. Yeh (1996) used
the Lagrange’s multiplier method to find the optimum dimensions of longitudinal
rectangular and cylindrical pin fins.

In all the references above the optimum shape of fins are determined based on either
minimum weight or maximum heat transfer rate through fin base. The fin design
problems based on desired fin efficiency for some specified fin volume have never
been seen in the literatures. For this reason, Huang and Hsiao (2003) and Huang
and Wu (2007) developed the inverse design algorithm using Conjugate Gradient
Method (CGM) to estimate the optimum shapes for Fourier and Non-Fourier fins,
respectively, based on desired fin efficiency.

For the air conditioning equipment, the surface temperature of the evaporator fin is
generally below the dew point of the surrounding air and therefore moisture is con-
densed on the fin surface to evolve latent heat. For this reason mass transfer occurs
simultaneously with the heat transfer. Many investigations [McQuiston (1975),
Coney, Sheppard and El-Shafei (1989), Wu and Bong (1994), Kundu (2002, 2007)
and Pirompugd, Wang and Wongwises (2007)] have devoted to analyze the effect
of condensation on the performance of different fins for only some fixed geometry,
i.e. the direct problem analysis.

Recently Kundu (2008) applied the variational principle to determine the optimum
profiles of longitudinal, annular and spine fins, respectively, operating in dehumid-
ifying conditions. The cost function is selected as the maximization of heat transfer
rate and the design constraints are selected as either fin volume or both fin volume
and length. Sharqawy and Zubair (2008) examined the closed-form solutions for
efficiency of fully wet straight fins of different configurations when subjected to
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simultaneous heat and mass transfer mechanisms. For any given fin profile area
they will find the optimum fin thickness by keeping all parameters constant and
considering fin thickness as the only independent variable in the fin heat transfer
equation. The cost function is also selected as the maximization of heat transfer
rate.

Various inverse algorithms have been applied to many different engineering prac-
tical applications. Huang and Chen (2008) applied the steepest descent method
(SDM) in a three-dimensional shape identification problem to estimate the un-
known irregular shape of internal cavity. Jeong and Kallivokas (2008) employed
the apparatus of partial-differential-equation-constrained optimization to the in-
verse scattering problem in identifying the shape and location of a rigid scatterer
fully buried in a homogeneous halfplane, when illuminated by surficial (line) wave
sources generating SH waves. Liu (2008) applied a Lie-group shooting method to
the inverse vibration problem to simultaneously estimate the time-dependent damp-
ing and stiffness functions by using two sets of displacement as inputs. Mera et
al (2006) developed an inverse algorithm by combining evolution strategies, the
boundary element method and super-elliptical parameterization for detecting in-
clusions parameterized by super ellipses in non-destructive evaluation and testing.

The objective of the present work is to develop an inverse design algorithm using
the Conjugate Gradient Method (CGM) to estimate the optimum shapes of the spine
and longitudinal wet fins based on desired fin efficiency. This subject has never
been examined before.

In this work the algorithm of the CGM in estimating the optimum shapes of spine
and longitudinal wet fins based on desired fin efficiency for some specified fin vol-
ume will be given in detail. Moreover, the influence of relative humidity and Biot
number on the optimum fin shape is also discussed. The CGM derives from pertur-
bation principle, and transforms the inverse problem to the solution of three prob-
lems, namely, the direct problem, the sensitivity problem and the adjoint problem.
The above three problems will be derived in the next few sections.

2 The Direct Problem

The following fin design problem is considered to illustrate the methodology in
designing the optimum shape for the spine and longitudinal fully wet fins based on
the desired fin efficiency and a specified fin volume.

The mathematical expression for the steady-state fully wet fin problem in dimen-
sional form can be obtained as:

d
dx̄

[Ā(x̄)
dT̄
dx̄

] =
h̄1 p̄(x̄)

k̄
{T̄ − T̄a + h̄ f g

h̄m

h̄1
[ω̄(T̄ )− ω̄a]}; in 0 < x̄ < L̄ in Ω (1a)
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T̄ = T̄b; at x̄ = 0 (1b)

k̄
dT̄
dx̄

+ h̄2T̄ = h̄2T̄a; at x̄ = L̄ (1c)

here the over-bar “̄” represents dimensional quantities.

Ā(x̄) and p̄(x̄) represent the cross-section area and perimeter of fin; k̄ is the constant
thermal conductivity of fin; T̄b and T̄a are the fin base temperature at x̄ = 0 and am-
bient air temperature, respectively. h̄1 and h̄2 are the heat transfer coefficients on
fin surface and at fin tip x̄ = L̄, respectively. h̄m and h̄ f g are the mass transfer coeffi-
cient and latent heat of condensation of moisture, respectively, ω̄ and ω̄a represent
the specific humidity and specific humidity of surrounding air, respectively.

For spine fins Ā(x̄) = π r̄(x̄)2 and p̄(x̄) = 2π r̄(x̄), and r̄(x̄) represents fin radius. For
longitudinal fins Ā(x̄) = r̄(x̄)× w̄ and p̄(x̄) ≈ 2w̄, (the assumption of r̄(x̄)� w̄ is
used) and r̄(x̄) is fin thickness. Here w̄ is the width of longitudinal fins.

If the following dimensionless quantities are defined

θ =
T̄a− T̄
T̄a− T̄b

; x =
x̄
L̄

; r =
r̄
L̄

;Bi1 =
h̄1L̄

k̄
; Bi2 =

h̄2L̄

k̄
; w =

w̄
L̄

Finally the dimensionless fully wet fin equation can be obtained as

d
dx

[
F1(x)

dθ(x)
dx

]
= 2Bi1F2(x){θ(x)+ h̄ f g

h̄m

h̄1

[ω(T̄ )− ω̄a]
(T̄b− T̄a)

; in 0 < x < 1 (2a)

θ = 1; at x = 0 (2b)

dθ

dx
+Bi2θ = 0; at x = 1 (2c)

Where F1(x) = r(x)2 and F2(x) = r(x) for spine fully wet fins while F1(x) = r(x)
and F2(x) = 1.0 for longitudinal fully wet fins. Besides, in accordance with the

Chilton-Colburn analogy [Threlkeld (1970)], we have h̄1
h̄m

= Cp,aL2/3
e . Figures 1a

and 1b illustrate the dimensionless geometry for the longitudinal and spine fully
wet fins considered here.

The direct problem considered here is concerned with the determination of the
temperature distribution of fully wet fin and its efficiency when the shape of fin and
the boundary conditions are given and known.

3 The Fully Wet Fin Design Problem

For the fully wet fin design problem, the shape of fully wet fin, i.e. r(x), is regarded
as being unknown, but everything else in equation (2) is known. In addition, the
desired fin efficiency and fin volume are specified.
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Figure 1(a): The longitudinal fully wet fin.

 

Figure 1(b): The spine fully wet fin.
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The solution of the present fin design problem is to be obtained in such a way that
the following functional is minimized:

J(r) = [q(r)−ΦQ(r)]2 +α[v(r)−V ]2 (3)

here q(r) and Q(r) are the actual (or estimated) and ideal heat transfer rate of fully
wet fin, respectively. v(r) and V represent the estimated and desired (or given) fin
volume. Φ is the desired fin efficiency and α is the weighting coefficient.

The first term on the right hand side is the square of the deviation between the
actual and desired heat transfer rate through fully wet fin. The second term on the
right hand side is the square of the deviation between the estimated and desired fin
volume.

If the value of functional J(r) is less than the specified stopping criterion ε , stop
the iterative process and the optimal shape of fully wet fins is obtained, otherwise,
continue the iteration until the stopping criterion is satisfied.

Here q = q̄
q̄re f

, Q = Q̄
q̄re f

and v = v̄
v̄re f

are defined and the reference quantities and are
given as

q̄re f = h̄1L̄2(T̄a− T̄b) (4a)

v̄re f = L̄3 (4b)

For spine fins we have

q̄ =
L̄∫

x̄=0

h̄1[2π r̄(x̄)]{(T̄a− T̄ )+ h̄ f g
h̄m

h̄1
[ω̄a−ω(T̄ )]}dx̄ (5a)

Q̄ =
L̄∫

x̄=0

h̄1[2π r̄(x̄)]{(T̄a− T̄b)+ h̄ f g
h̄m

h̄1
[ω̄a− ω̄b]}dx̄ (5b)

v̄ =
L̄∫

x̄=0

π r̄(x̄)2dx̄ (5c)

therefore the dimensionless quantities for q, Q and v can be obtained as

q =
1∫

x=0

2πr(x){θ(x)+ h̄ f g
h̄m

h̄1

[ω̄a−ω(T̄ )]
(T̄a− T̄b)

}dx (5d)
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Q =
1∫

x=0

2πr(x){1+ h̄ f g
h̄m

h̄1

[ω̄a− ω̄b]
(T̄a− T̄b)

}dx (5e)

v =
1∫

x=0

πr(x)2dx (5f)

For longitudinal fins, we assumed r̄(x̄)� w̄ to obtain

q̄ =
L̄∫

x̄=0

h̄1(2w̄){(T̄a− T̄ )+ h̄ f g
h̄m

h̄1
[ω̄a−ω(T̄ )]}dx̄ (6a)

Q̄ =
L̄∫

x̄=0

h̄1(2w̄){(T̄a− T̄b)+ h̄ f g
h̄m

h̄1
[ω̄a− ω̄b]}dx̄ (6b)

v̄ =
L̄∫

x̄=0

w̄r̄(x̄)dx̄ (6c)

Finally the dimensionless quantities for q, Q and v can be expressed as

q =
1∫

x=0

2w{θ(x)+ h̄ f g
h̄m

h̄1

[ω̄a−ω(T̄ )]
(T̄a− T̄b)

}dx (6d)

Q =
1∫

x=0

2w{1+ h̄ f g
h̄m

h̄1

[ω̄a− ω̄b]
(T̄a− T̄b)

}dx (6e)

v =
1∫

x=0

wr(x)dx (6f)

The fully wet fin design problem can now be stated as follows: by utilizing the
above mentioned functional J[r(x)], estimate the optimum shape of fully wet fin,
i.e. the values of r(x), such that the actual (or estimated) heat transfer rate of fully
wet fin, q, approaches to ΦQ and the estimated fin volume, v, approaches to the
desired fin volume, V.

The conjugate gradient method has the ability in optimizing the above fin design
problem and will be discussed in detail in the next section.
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4 Conjugate Gradient Method (CGM) for Minimization

The following iterative process based on the CGM [Alifanov (1974)] is now used
to estimate the unknown fin shape r(x) by minimizing the functional J[r(x)].

rn+1(x) = rn(x)−β
nPn(x) (7a)

Here β n is the search step size in going from iteration n to iteration n+1 and Pn(x)
is the direction of descent (i.e. search direction) given by

Pn(x) = J
′n(x)+ γ

nPn−1(x) (7b)

which is a conjugation of the gradient in the outward normal direction J′n(x) at
iteration n and the direction of descent Pn−1(x) at iteration n-1. The conjugate
coefficient is defined as [Alifanov (1974)]

γ
n =

1∫
x=0

(J
′n)2dx/

1∫
x=0

(J
′n−1)2dx; with γ0 = 0 (7c)

It should be noted that when γn = 0 for any n, in equation (7b), the direction of
descent Pn(x) becomes the gradient direction, i.e. the Steepest Descent Method
(SDM) is obtained. The convergence of the above iterative procedure in minimizing
the functional J is guaranteed in [Lasdon, Mitter and Warren (1967)].

To perform the iterations according to equation (7a), we need to compute a search
step size β n and the gradient of the functional J′n(x). In order to develop expres-
sions for the determination of these two quantities, a “sensitivity problem” and an
“adjoint problem” need be constructed as described below.

5 Sensitivity Problem and Search Step Size

The sensitivity problem can be obtained from the original direct problem defined
by equation (2) in the following manner: It is assumed that when r(x) undergoes
a variation ∆r(x), θ(x) and ω̄ are perturbed by ∆θ(x) and ∆ω̄ , respectively. Re-
placing in the direct problem r(x) by r(x)+∆r(x), θ(x) by θ(x)+∆θ(x) and ω̄ by
ω̄ +∆ω̄ , subtracting the resulting expressions from the direct problem and neglect-
ing the second-order terms, the following sensitivity problem for the sensitivity
function ∆θ(x) are obtained.

d
dx

[F3(x)
d∆θ

dx
]+

d
dx

[F4(x)
dθ

dx
] = 2Bi1F5(x)+2Bi1

h̄mh̄ f g

(T̄b− T̄a)h̄1
F6(x); in 0 < x < 1

(8a)
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∆θ = 0; at x = 0 (8b)

d∆θ

dx
+Bi2∆θ = 0; at x = 1 (8c)

here F3(x)= r(x)2,F4(x)= 2r(x)∆r(x), F5(x)= r(x)∆θ(x)+θ(x)∆r(x) and F6(x)=
r(x)∆ω̄ +ω̄∆r(x)−ω̄a∆r(x) for spine fins while F3(x)= r(x), F4(x)= ∆r(x), F5(x)=
∆θ(x) and F6(x) = ∆ω̄ for longitudinal fins.

The functional J(rn+1) for iteration n+1 is obtained by rewriting equation (3) as

J(rn+1) = [q(rn−β
n pn)−ΦQ(rn−β

n pn)]2 +α[v(rn−β
n pn)−V ]2 (9a)

where we have replaced rn+1 by the expression given by equation (7a). If the terms
q(rn−β n pn), Q(rn−β n pn) and v(rn−β n pn) are linearized by a Taylor expansion,
equation (9a) takes the form

J(rn+1) = {q(rn)−β
n[∆q(pn)−Φ∆Q(pn)]−ΦQ(rn)}2

+ α[v(rn)−β
n∆v(pn)−V ]2 (9b)

Here the expressions for ∆q, ∆Q and ∆v can be obtained by using ∆q = q(r+∆r)−
q(r), ∆Q = Q(r + ∆r)−Q(r) and ∆v = v(r + ∆r)− v(r) and neglecting the high
order terms. Eventually, for spine fully wet fins we have

∆q =
1∫

x=0

2π{r∆θ +θ∆r + h̄ f g
h̄m

h̄1

[∆r(ω̄a− ω̄(T̄ ))− r∆ω̄(T̄ )]
(T̄a− T̄b)

}dx (10a)

∆Q =
1∫

x=0

2π∆r

[
1+ h̄ f g

h̄m

h̄1

(ω̄a− ω̄b)
(T̄a− T̄b)

]
dx (10b)

∆v =
1∫

x=0

2πr∆rdx (10c)

for longitudinal fully wet fins we have

∆q =
1∫

x=0

2w{∆θ − h̄ f g
h̄m

h̄1

[∆ω(T̄ )]
(T̄a− T̄b)

}dx (11a)

∆Q = 0 (11b)

∆v =
1∫

x=0

w∆rdx (11c)
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The sensitivity function ∆θ(x) is taken as the solutions of problem (8) by letting
∆k =−Pn. Once ∆θ (x) is obtained, the above quantities can all be calculated.

The search step size β n is determined by minimizing the functional given by equa-
tion (9b) with respect to β n. The following expression results:

β
n =

(q−ΦQ)(∆q−Φ∆Q)+α (v−V )∆v

(∆q−Φ∆Q)2 +α∆v2
(12)

6 Adjoint Problem and Gradient Equation

To obtain the adjoint problem, equation (2a) is multiplied by the Lagrange multi-
plier (or adjoint function) λ (x) and the resulting expression is integrated over the
correspondent space domain. The result is then added to the right hand side of
equation (3) to yield the following expression for the functional J[r(x)]:

J(r) = (q−ΦQ)2 +α(v−V )2

+
1∫

x=0

λ (x){ d
dx

[F1(x)
dθ(x)

dx
]−2Bi1F2(x){θ(x)+ h̄mh̄ f g

[ω̄(T̄ )− ω̄a]
(T̄b− T̄a)h̄1

}dx (13)

The variation ∆J is obtained by perturbing r by r + ∆r, θ by θ + ∆θ , q by q +
∆q, Q by Q + ∆Q and v by v + ∆v in equation (13), subtracting from the resulting
expression the original equation (13) and neglecting the second-order terms. We
thus find

∆J = 2(q−ΦQ)(∆q−Φ∆Q)+α[2(v−V )∆v]

+
1∫

x=0

λ (x){ d
dx

[F3(x)
d∆θ

dx
]+

d
dx

[F4(x)
dθ

dx
]−2Bi1F5(x)−2Bi1

h̄mh̄ f g

(T̄b− T̄a)h̄1
F6(x)}

dx (14)

In equation (14), the domain integral term is reformulated using integration by
parts; the boundary conditions of the sensitivity problem given by equations (8b)
and (8c) are utilized and then ∆J is allowed to go to zero. The vanishing of the inte-
grands containing ∆θ leads to the following adjoint problem for the determination
of λ (x):

d
dx

[F7(x)
dλ

dx
]+4(q−ΦQ)F8(x) = 2λBi1F9(x)[1+

dω̄

dθ

h̄mh̄ f g

(T̄b− T̄a)h̄1
]; at 0 < x < 1

(15a)
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λ = 0; at x = 0 (15b)

dλ

dx
+Bi2λ = 0; at x = 1 (15c)

where F7(x) = r2(x), F8(x) = πr(x) and F9(x) = r(x) for spine fully wet fins and
F7(x) = r(x), F8(x) = w and F9(x) = 1 for longitudinal fully wet fins.

Finally, the following integral term is left for spine fully wet fins

∆J =
1∫

x = 0

{2π[2(q−ΦQ)(θ −Φ)+2αr(v−V )]+ [2rλ
dθ

dx
δ (x−1)−2r

dθ

dx
dλ

dx
]

−2λBi1[θ −
h̄mh̄ f g

h̄1(T̄b− T̄a)
(ω̄− ω̄a)}∆rdx (16a)

and the following integral term is left for longitudinal fully wet fins

∆J =
1∫

x=0

{2αw(v−V )+ [λ
dθ

dx
δ (x−1)− dθ

dx
dλ

dx
]}∆rdx (16b)

Where δ (•) is the Dirac delta function. From definition [Alifanov (1974)], the
functional increment can be presented as

∆J =
1∫

x=0

J′∆rdx (16c)

A comparison of equations (16a), (16b) and (16c) leads to the following expres-
sion for the gradient J’(x) of the functional J[r(x)] for spine and longitudinal fins,
respectively:

J′(x) = 2π[2(q−ΦQ)(θ −Φ)+2αr(v−V )]

+[2rλ
dθ

dx
δ (x−1)−2r

dθ

dx
dλ

dx
]−2λBi1[θ−

h̄mh̄ f g

h̄1(T̄b− T̄a)
(ω̄−ω̄a)], for spine fins

(17a)

and

J′(x) = 2αw(v−V )+
[

λ
dθ

dx
δ (x−1)− dθ

dx
dλ

dx

]
, for longitudinal fins (17b)

The calculation of gradient equations is the most important part of CGM since it
plays a significant role of the optimum fin calculation.
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7 Computational Procedure

The computational procedure for the solution of this fully wet fin design problem
using conjugate gradient method may be summarized as follows:

Suppose rn(x) is available at iteration n.

Step 1. Solve the direct problem given by equation (2) for θ (x).

Step 2. Examine the stopping criterion ε . Continue if not satisfied.

Step 3. Solve the adjoint problem given by equation (15) for λ (x).

Step 4. Compute the gradient of the functional J’n from equation (17).

Step 5. Compute the conjugate coefficient γn and direction of descent Pn from
equations (7c) and (7b), respectively.

Step 6. Set ∆r(x) = Pn(x), and solve the sensitivity problem given by equation (8)
for ∆θ(x). Then ∆q, ∆Q and ∆v can be calculated.

Step 7. Compute the search step size β n from equation (12).

Step 8. Compute the new estimation for rn+1(x) from equation (7a) and return to
step 1.

8 Results and Discussions

The purpose of this work is to apply the CGM in the present inverse fin design
algorithm in estimating the optimum shapes for the fully wet longitudinal and spine
fins based on the desired fin efficiency and fin volume.

Before examining the inverse design problem that we are going to consider here,
one should make sure first that the solution for the direct problem is correct, oth-
erwise the discussions of the optimum design solutions will become meaningless.
For all the calculations considered in this work, the equations for determining the
specific humidity ω̄ are adopted from Sharqawy and Zubair (2007).

To test the accuracy of the present numerical solution we have solved for the tem-
perature distributions and fin efficiency for longitudinal and spine fins, respectively,
and then compared with the results obtained from analytical expressions [Sharqawy
and Zubair (2008, 2009)].

The following calculation conditions were considered in Sharqawy and Zubair
(2008) for longitudinal fins and in Sharqawy and Zubair (2009) for spine fins:

m0L̄ =

√
2h̄1

k̄r̄(0)
L̄ =

√
2Bi1L̄
r̄(0)

= 0.8; T̄a = 27◦C; T̄b = 7◦C (18)

Fin thickness at fin base can always be calculated for any specified fin volume



262 Copyright © 2009 Tech Science Press CMES, vol.44, no.3, pp.249-279, 2009

with given fin length, and therefore the Biot number Bi1 can also be calculated
in Equation (18) and used in Equation (2) for fin temperature calculations. When
fin volume equals 0.003 and fin length equals 1, the Biot number for rectangular
and concave longitudinal fin profiles are obtained as Bi1 = 0.00096 and 0.00288,
respectively. Similarly the Biot number for pin and concave spine fin profiles are
obtained as Bi1 = 0.00989 and 0.02211, respectively.

For the case when space increment used in finite difference equation of fin is taken
as ∆x = 0.01, and Bi2 = 0, the exact [Sharqawy and Zubair (2008, 2009)] and
numerical fin temperature distributions for fully wet longitudinal and spine fins
using different fin profiles with relative humidity φ equal to 100%, 80%, 60% and
0% (dry fin) are shown in Figures 2 and 3, respectively. The exact [Sharqawy and
Zubair (2008, 2009)] and numerical fin efficiency η for various fin profiles and
working conditions are also shown in Tables 1a and 1b for longitudinal and spine
fines, respectively. From these results it is concluded that the numerical solution
for the direct problem is very accurate in the present study.

Table 1(a): The comparison of exact and numerical longitudinal fin efficiency.

Fin Relative Rectangular fin Triangular fin Concave fin
volume humidity Bi1 Exact Numerical Exact Numerical Exact Numerical

V φ η η η η η η

0.015

60%
0.05 0.239 0.240 0.308 0.308 0.337 0.337
0.075 0.195 0.196 0.256 0.256 0.286 0.286

0.1 0.169 0.170 0.224 0.225 0.253 0.253

80%
0.05 0.229 0.230 0.297 0.296 0.326 0.326
0.075 0.187 0.188 0.247 0.247 0.276 0.276

0.1 0.162 0.163 0.216 0.216 0.244 0.244

100%
0.05 0.222 0.223 0.288 0.288 0.318 0.318
0.075 0.181 0.182 0.240 0.240 0.269 0.269

0.1 0.157 0.158 0.209 0.210 0.238 0.238

One should note that the initial guess of the fin shape is always necessary for the
present iterative algorithm. To make it more convenient to be applied, it is always
assumed that, for a fixed fin volume, the initial shapes for longitudinal and spine
fin design problems are the rectangular and pin fins, respectively.

To illustrate the ability of the present inverse design algorithm in estimating the op-
timum shape for fins from the knowledge of the desired fin efficiency, the following
two problems are considered, i.e. (I). the fully wet longitudinal fin design problems
and (II). the fully wet spine fin design problems.
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Figure 2(a): The comparison of present numerical solutions with exact solutions
for rectangular longitudinal fin profile.
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Figure 2(b): The comparison of present numerical solutions with exact solutions
for concave longitudinal fin profile.
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Figure 3(a): The comparison of present numerical solutions with exact solutions
for pin spine fin profile.
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Figure 3(b): The comparison of present numerical solutions with exact solutions
for concave spine fin profile
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Figure 4(a): The comparison of fin efficiency for longitudinal fins with
Bi1 = 0.05 and φ = 100%.
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Figure 4(b): The optimum fin shapes for longitudinal fins with Bi1 = 0.05 and φ =
100%
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8.1 The Fully Wet Longitudinal Fin Design Problems

The optimum shape of longitudinal fins is first examined by considering perfect
fin efficiency, i.e. Φ = 1.0 and using ∆x = 0.01, Bi1= 0.05, 0.075 and 0.1, Bi2 = 0
and φ = 100%, 80% and 60%, respectively. The desired fin volume is given in the
range from V = 0.003 to V = 0.015 with increment 0.003 and the width of fin w is
assumed as unity. It is impossible to obtain the optimum shape of longitudinal fin
having Φ = 1.0, but the fin shape with best fin efficiency can still be obtained.

The determination of value for weighting coefficient α is important in the present
algorithm since its value affects the rate of convergence. When α is small, the
constraint for fin volume is loose which means the estimated fin volume may have
discrepancy with the desired fin. At the same time, the product of β n and Pn (i.e.
the corrected value of fin radius) becomes larger, this also implies that the rate of
convergent will be faster. To compromise with both requirements, the value of α

is chosen as 10000 at the beginning and is increased gradually during the iterative
process.

The value of objection function J can not be decreased to a small number for the
case Φ = 1.0, therefore the iterative process is stopped when (Jn− Jn−1) < 10−8.
By executing the above stated inverse design algorithm, the optimum shape of fully
wet longitudinal fin for various desired fin volumes can be obtained. The results of
these optimum fin design problems are also summarized in Table 2.

Figure 4a indicates the optimum efficiency of the estimated longitudinal fin and
three commonly seen longitudinal fins with rectangular, triangular and concave
parabolic profiles with φ = 100%. Figure 4b shows the estimated optimum fin
shape for different given fin volumes with φ = 100%.

From Figures 4a, 4b and Table 2 we learned that for a fixed fin volume, the effi-
ciency of the optimum fin is just slightly higher than the common longitudinal fins.
This is because the fin width w is fixed and we can adjust only the fin thickness
r(x) to optimize the fin efficiency. However, the fin thickness has much less weight
than fin width in calculating the total fin surface. For this reason the optimum fin
shape can improve only slightly the fin efficiency. Moreover it is noticed that the
optimum fin efficiency increases as relative humidity φ decreases. This is because
that when φ decreases the specific humidity ω̄ also decreases and this will increase
the humidity difference between ambient air and fin surface, as a result increase the
fin efficiency.

It is of interest to check the influence of Biot number Bi1 on the estimated fin
efficiency and fin shape. Figure 5a shows the optimum fin efficiency for different
fin volumes when Bi1 is increased from 0.05 to 0.075 and then to 0.1 with Bi2 = 0
and φ = 60 %. From this figure it is noticed that as the Biot number Bi1 increases,
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Table 2: The estimated results for longitudinal fin design problems.
Desired Desired Biot Estimated

Final Fin Efficiency Number of Iterations
Efficiency Volume No. Volume

Φ V Bi1 V φ = 100% φ = 80% φ = 60% φ = 100% φ = 80% φ = 60%

1

0.003

0.05

0.003 0.193 0.198 0.203 80 92 367
0.006 0.006 0.242 0.249 0.256 174 276 126
0.009 0.009 0.273 0.284 0.294 980 492 272
0.012 0.012 0.304 0.314 0.323 492 27 186
0.015 0.015 0.328 0.337 0.348 13 60 216
0.003

0.075

0.003 0.168 0.173 0.178 39 136 626
0.006 0.006 0.211 0.218 0.224 45 49 109
0.009 0.009 0.243 0.248 0.256 62 181 279
0.012 0.012 0.267 0.273 0.277 330 386 353
0.015 0.015 0.289 0.295 0.304 54 38 150
0.003

0.1

0.003 0.153 0.157 0.161 91 300 304
0.006 0.006 0.192 0.198 0.203 193 57 39
0.009 0.009 0.221 0.226 0.233 33 77 167
0.012 0.012 0.242 0.249 0.254 409 51 484
0.015 0.015 0.262 0.268 0.277 113 45 253

0.2

0.006

0.05

0.006 0.199 0.199 0.200 16 12 73
0.009 0.009 0.199 0.200 0.199 16 9 49
0.012 0.012 0.199 0.199 0.200 5 6 31
0.015 0.015 0.200 0.200 0.200 9 11 11
0.006

0.075

0.006 0.199 0.199 0.199 18 15 15
0.009 0.009 0.199 0.199 0.199 19 107 13
0.012 0.012 0.199 0.200 0.200 27 77 85
0.015 0.015 0.200 0.200 0.199 14 14 8
0.009

0.1
0.009 0.199 0.199 0.199 15 16 19

0.012 0.012 0.199 0.199 0.199 15 15 17
0.015 0.015 0.199 0.199 0.199 18 13 15

0.25

0.009
0.05

0.009 0.249 0.250 0.249 19 14 13
0.012 0.012 0.249 0.249 0.250 17 17 10
0.015 0.015 0.249 0.249 0.249 23 13 13
0.012

0.075
0.012 0.249 0.249 0.249 15 15 49

0.015 0.015 0.249 0.249 0.250 13 13 39
0.015 0.1 0.015 0.249 0.249 0.250 25 11 48

the optimum fin efficiency decreases. The reason for this is because when Bi1
increases the fin surface temperature will become closer to ambient air temperature
and this will decrease the temperature difference between them, as a result decrease
the fin efficiency.

Figure 5b shows the optimum fin shapes for Bi1 = 0.05, 0.075 and 0.1, respectively
with fixed fin volume V = 0.009 and relative humidity φ= 60 %. Table 2 listed some
information for the optimum longitudinal fully wet fin design problems that were
considered here. From Figure 5b and Table 2, it is learned that as the Biot number
increases, the fin base thickness r(0) also increases but the rest part of fin thickness
r(x) decreases to obtain lower fin surface temperature and specific humidity and
thus increase fin efficiency.

Next we will examine the present design algorithm by giving both designed fin
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Figure 5(a): The optimum fin efficiency for longitudinal fins by varying Bi1.
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Figure 5(b): The optimum fin shapes for longitudinal fins at V = 0.009 by varying
Bi1.
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Figure 6(a): The designed fin shapes for longitudinal fins at V = 0.015, φ = 80%
and Bi1 = 0.075.
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Figure 6(b): The designed fin shapes for longitudinal fins at V = 0.015, φ = 80%
and Bi1 = 0.1.
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efficiency and fin volume, then estimate the optimum fin shape that corresponding
to different relative humidity. The desired fin efficiency is always less than the
optimum efficiency, it is expected that the value of the objection function J can be
decreased to a small number, so the stopping criteria under this consideration is
taken as ε = 10−8.

A comparison of optimum fin shape with the fin shapes with efficiency Φ = 0.2 and
0.25 and three common longitudinal fins is shown in Figure 6a for V = 0.015, Bi1 =
0.075, Bi2 = 0.0 and φ = 80 %. Then similar calculating conditions except for Bi1
= 0.1 are used and the results are presented in Figure 6b. From Figures 6a and 6b it
can be learned that as the desired fin efficiency is less than the optimum efficiency,
fin base thickness r(0) becomes thinner but the rest of fin thickness r(x) becomes
thicker. Moreover the outer edge of the fin surface will become thicker than the
optimum one.

8.2 The Fully Wet Spine Fin Design Problems

Firstly, the optimum shape of fully wet spine fins is examined by considering per-
fect fin efficiency, i.e. Φ = 1.0 and using φ = 60%, 80% and 100%, ∆x = 0.01, Bi1
= 0.5, 0.75 and 1.0, Bi2 = 0. The desired fin volume is given in the range from V
= 0.002 to V = 0.005 with increment 0.001. It is impossible to obtain the shape of
spine fin having Φ = 1.0 under this consideration, however, the optimum fin shape
can still be obtained with best fin efficiency.

The value of α is chosen as 10000 at the beginning and is increased gradually
during the iterative process as was mentioned previously. The stopping criteria
under this consideration is that when(Jn−Jn−1) < 10−10, stop the iterative process.
By performing the above stated inverse design algorithm, the optimum shape of
fully wet spine fin for various desired fin volumes can be obtained. The results of
these optimum fin design problems are also summarized in Table 3.

From Table 3 it is noticed that as the Biot number Bi1 increases, the optimum fin
efficiency η also increases. For a fin with fin shape fixed, when Bi1 is increased
fin surface temperature will be decreased, as a result, the fin efficiency will also be
decreased. However, in the present case, the fin shape can be adjusted automati-
cally by the present algorithm to obtain optimum shape that matches best with the
constraints. Therefore, it is possible that the fin efficiency increases even when Biot
number increases.

Figure 7a shows the efficiency of the estimated optimum spine fin and four com-
monly seen spine fins with Bi1 = 1.0, φ = 100% and V = 0.002 to 0.005. Figure 7b
illustrated the estimated optimum fin shape for various desired fin volumes. From
Table 3, Figures 7a and 7b it is learned that for same desired fin volume, the effi-



272 Copyright © 2009 Tech Science Press CMES, vol.44, no.3, pp.249-279, 2009

Table 3: The estimated results for spine fin design problems.
Desired Desired Biot Estimated

Fin Efficiency Number of Iterations
Efficiency Volume No. Volume

Φ V Bi1 V φ = 100% φ = 80% φ = 60% φ = 100% φ = 80% φ = 60%

1

0.002

0.5

0.002 0.908 0.904 0.896 144 99 98
0.003 0.003 0.902 0.896 0.894 117 89 121
0.004 0.004 0.897 0.895 0.884 191 84 111
0.005 0.005 0.893 0.891 0.875 61 49 96
0.002

0.75

0.002 0.913 0.908 0.899 61 112 108
0.003 0.003 0.903 0.900 0.899 96 99 58
0.004 0.004 0.901 0.904 0.888 87 46 20
0.005 0.005 0.897 0.897 0.879 101 96 81
0.002

1

0.002 0.916 0.912 0.902 133 61 143
0.003 0.003 0.910 0.903 0.903 134 151 100
0.004 0.004 0.904 0.908 0.892 149 35 107
0.005 0.005 0.899 0.901 0.882 135 34 127

0.8

0.002

0.5

0.002 0.800 0.799 0.799 7 12 51
0.003 0.003 0.800 0.800 0.799 10 52 10
0.004 0.004 0.799 0.799 0.800 52 42 22
0.005 0.005 0.800 0.800 0.799 45 11 32
0.002

0.75

0.002 0.800 0.799 0.799 8 9 8
0.003 0.003 0.799 0.799 0.800 10 8 51
0.004 0.004 0.800 0.800 0.800 7 53 9
0.005 0.005 0.800 0.799 0.799 9 48 28
0.002

1

0.002 0.799 0.800 0.799 43 9 14
0.003 0.003 0.800 0.799 0.800 8 15 8
0.004 0.004 0.799 0.799 0.799 15 10 58
0.005 0.005 0.799 0.799 0.799 12 54 32

0.6

0.002

0.5

0.002 0.600 0.600 0.599 12 10 25
0.003 0.003 0.599 0.600 0.600 11 24 13
0.004 0.004 0.599 0.599 0.599 25 14 40
0.005 0.005 0.600 0.599 0.600 12 10 34
0.002

0.75

0.002 0.600 0.600 0.600 12 12 8
0.003 0.003 0.600 0.599 0.600 14 9 16
0.004 0.004 0.600 0.599 0.599 9 23 12
0.005 0.005 0.599 0.599 0.599 30 13 46
0.002

1

0.002 0.600 0.600 0.599 8 9 23
0.003 0.003 0.600 0.599 0.599 11 19 28
0.004 0.004 0.600 0.599 0.599 9 29 36
0.005 0.005 0.600 0.599 0.600 10 11 17

ciency of the optimum fin is indeed higher than that for the conventional spine fins.

Figures 8a and 8b show the optimum fin shapes for Bi1 = 0.5, 0.75 and 1 with
desired fin efficiency Φ = 0.8 and desired fin volume V = 0.003 at φ = 100% and
60%, respectively, with ε = 10−10. From these two figures it is noted that as the
Biot number and relative humidity increase, the fin base thickness r(0) also in-
creases but the rest part of fin thickness r(x) decreases to obtain same fin efficiency
and volume.
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Figure 7(a): The comparison of fin efficiency for spine fins with Bi1 = 1.0 and φ =
100%.
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Figure 7(b): The optimum fin shapes for spine fins with Bi1 = 1.0 and φ = 100%.
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Figure 8(a): The designed spine fins at V = 0.003, φ = 100% and Φ = 0.8 by varying
Bi1.
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Figure 8(b): The designed spine fins at V = 0.003, φ = 60% and Φ = 0.8 by varying
Bi1.
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Figure 9(a): The designed spine fins at V = 0.005, Bi1= 1.0 and Φ = 0.7 by varying
φ .
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Figure 9(b): The designed spine fins at V = 0.005, Bi1= 0.5 and Φ = 0.7 by varying
φ .
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Figure 10(a): The comparison of optimum and designed fin shapes with many other
fin shapes at V = 0.005 with Bi1 = 1.0 and φ = 100%.
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Figure 10(b): The comparison of optimum and designed fin shapes with many other
fin shapes at V = 0.005 with Bi1 = 1.0 and φ = 60%.
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Figures 9a and 9b illustrate the optimum fin shapes for φ = 60%, 80% and 100%
with desired fin efficiency Φ = 0.7 and desired fin volume V = 0.005 at Bi1 = 1, and
0.5, respectively. From Figures 9a and 9b we learned that the tendency is similar
to that in Figures 8, i.e. as the Biot number and relative humidity increase, the fin
base thickness r(0) also increases.

Finally a comparison of optimum fin shape with the fin shapes of designed effi-
ciency Φ = 0.5, 0.6, 0.7 and 0.8 and four commonly seen spine fins is shown in
Figures 10a and 10b for V = 0.005, Bi1 = 1.0 and Bi2 = 0.0 at φ = 100 % and 60%,
respectively. From Figures 10a and 10b it is learned that as the desired fin efficiency
is less than the optimum efficiency, fin base thickness r(0) becomes thinner but the
rest of fin thickness r(x) becomes thicker and the outer edge of the fin surface will
become thicker than the optimum one to satisfy the desired fin volume.

From the above discussions it is concluded that the present fin design algorithm
has the ability in designing optimum longitudinal and spine fully wet fins under the
specified constraints and the rate of convergence is also very fast.

9 Conclusions

The conjugate gradient method (CGM) was applied successfully for the solution
of the inverse design problem in estimating the optimum shape of the spine and
longitudinal fully wet fins. Several test cases involving different design consid-
erations were examined. The optimum fin shape obtained by the present design
algorithm using the CGM always has higher fin efficiency than the commonly seen
fins. Moreover, we also notice that when the Biot number and relative humidity
are varied, the optimum fin efficiency and optimum fin shape will also be changed.
The results also show that the fin efficiency can be improved greatly for the spine
fully wet fins by the present design algorithm but can be increased only a little for
the longitudinal fully wet fins.
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