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Abstract: Here we develop a general purpose pre/post conditioner T, to solve
an ill-posed system of linear equations, Ax = b. The conditioner T is obtained in
the course of the solution of the Laplace equation, through a boundary-collocation
Trefftz method, leading to: Ty = x, where y is the vector of coefficients in the Tr-
efftz expansion, and x is the boundary data at the discrete points on a unit circle.
We show that the quality of the conditioner T is greatly enhanced by using multiple
characteristic lengths (Multiple Length Scales) in the Trefftz expansion. We further
show that T can be multiplicatively decomposed into a dilation TD and a rotation
TR. For an odd-ordered A, we develop four conditioners based on the solution of
the Laplace equation for Dirichlet boundary conditions, while for an even-ordered
A we develop four conditioners employing the Neumann boundary conditions. All
these conditioners are well-behaved and easily invertible. Several examples involv-
ing ill-conditioned A, such as the Hilbert matrices, those arising from the Method
of Fundamental Solutions, those arising from very-high order polynomial interpo-
lations, and those resulting from the solution of the first-kind Fredholm integral
equations, are presented. The results demonstrate that the presently proposed con-
ditioners result in very high computational efficiency and accuracy, when Ax = b
is highly ill-conditioned, and b is noisy.
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1 Introduction

In this paper we propose novel techniques to solve the system of linear equations:

Ax = b, (1)

when A is highly ill-conditioned. The solution of such an ill-posed system of linear
equations is an important issue for many engineering problems.

We develop a new pre- or post-conditioner T, which is derived from a multi-scale
Trefftz boundary-collocation method for solving the Laplace equation. By using
this new conditioner, we redefine

x = Ty, or alternatively x = T−1y,

such that, we can solve a better-conditioned system of linear equations:

Bizi = bi, i = 1,2,3,4,

where

B1 = AT, B2 = AT−1, B3 = TA, B4 = T−1A,

and correspondingly,

z1 = y = T−1x, z2 = y = Tx, z3 = x, z4 = x,

b1 = b, b2 = b, b3 = Tb, b4 = T−1b.

In a practical use of linear equations in engineering problems, the data b are rarely
given exactly; instead, noises in b are unavoidable due to the measurement and
modeling errors. Therefore, we may encounter the problem such that the numerical
solution of an ill-posed system of linear equations may deviate from the exact one
to a great extent, when A is severely ill-conditioned and b is perturbed by noise.

To account for the sensitivity to noise, it is customary to use a “regularization"
method to solve this sort of ill-posed problem [Kunisch and Zou (1998); Wang and
Xiao (2001); Xie and Zou (2002); Resmerita (2005)], where a suitable regulariza-
tion parameter is used to suppress the bias in the computed solution, by seeking
a better balance of the approximation error and the propagated data error. There
are several techniques developed, following the pioneering work of Tikhonov and
Arsenin (1977). For a large scale system, the main choice is to use the iterative
regularization algorithm, where a regularization parameter is represented by the
number of iterations. The iterative method works if an early stopping criterion is
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used to prevent the introduction of noisy components into the approximated solu-
tions.

The conjugate gradient method (CGM) is rather popularly employed to solve the
normal equation [obtained from Eq. (1)]:

ATAx = ATb, (2)

where the superscript T denotes the transpose. Hanke (1992, 1995), and Hanke
and Hansen (1993) have demonstrated that the performance of the CGM can be
improved by the use of a right smoothing preconditioner. In the past, most re-
searchers used the finite difference matrix as a preconditioner [Calvetti, Reichel
and Shuibi (2005)].

In the last decade, a great attention has been paid to further develop the precondi-
tioning technique, which improves the condition number of the governing matrix,
for ill-posed problems. Given a suitable matrix P, let the linear system in Eq. (1)
be replaced by a preconditioned one PAx = Pb. The ideal preconditioning matrix
is the inverse of A, which evidently makes the preconditioned leading coefficient
matrix to have a condition number of n. However, numerically speaking it is not
possible to set up the preconditioning matrix exactly to be equal to the inverse of A
when A is highly ill-conditioned. For computational reality, it is then vey important
to find the approximate inverse of A. To find a general purpose preconditioner may
be very difficult and most preconditioners found in the literature are designed for
specific type of applications. The following mentioned works are a few of them.
For ill-posed problems, many preconditioners for regularized Tikhonov problem
have been developed. For example, Jacobsen, Hasen and Saunders (2003) have de-
veloped a subspace preconditioned Least-Square QR (LSQR). Some precoditioners
reformulate the original problem into a band-width matrix, such that one can use
the advantages for a banded matrix. For example, the Cardinal preconditioner has
been adopted to solve the PDE by the radial basis function representations [Brown,
Ling, Kansa and Levesley (2005)]. For Toeplitz matrix, there exists a vast litera-
ture concerning its preconditioner, e.g., Chan (1988), and Chan and Nagy (1992).
For ill-posed Toeplitz matrices with differentiable generating functions, Estatico
(2009) has developed preconditioners to tackle the ill-posed behavior. An adaptive
preconditioner has been developed to deal with the nonlinear system of equations
[Loghin, Ruiz, Touhami (2006)]. For a general purpose preconditioner, an attempt
using multigrid algorithm has been constructed [Dendy (1983)].

To solve Eq. (1), we may introduce an equivalent linear system by using a postcon-
ditioner:

AM−1y = b, y = Mx. (3)
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The challenge is to find a suitable matrix M, such that AM−1 has a spectrum that
is favorable for iterative solution with the Krylov subspace method, and whose
inverse M−1 can be efficiently calculated.

In a series of papers, Erlangga and his coworkers [Erlangga, Vuik and Oosterlee
(2004, 2006); Erlangga, Oosterlee and Vuik (2006); van Gijzen, Erlangga and Vuik
(2007); Erlangga (2008)] extended the method of the Laplacian preconditioner first
advocated by Bayliss, Goldstein and Turkel (1983) for the Helmholtz equation, to
a shifted-Laplacian preconditioner for the different kind of Helmholtz equations.
In the shifted-Laplacian preconditioner method, M is defined as arising from a
discretization of

M =−∆−κ
2(x,y)(β1−β2i), (4)

where κ is the wave number of the Helmholtz equation. The boundary conditions
were set identically to be the same as those for the original Helmholtz equation. The
influence of parameters β1 and β2 was evaluated by Erlangga, Vuik and Oosterlee
(2004).

In the above mentioned papers, the domain discretization methods, such as the
FEM or the FDM, are employed to realize the discretizations of M . The shifted-
Laplacian preconditioner approach has some drawbacks in that the resulting matrix
of the domain type is large-dimensional, because they act on the unknown nodal
values in the domain, which may itself lead to an ill-conditioned matrix of M,
and the use of complex numbers is not suitable for the real linear system. More
concisely, the shifted-Laplacian preconditioner is designed only for the Helmholtz
equation, which does not guarantee its efficacy for other ill-conditioned linear sys-
tems. In the shifted-Laplacian preconditioner, the inverse of M should be approxi-
mated, since there does not exist an explicit form.

In this paper we propose an operator-based Laplacian conditioner, which can over-
come the above drawbacks. A multi-scale Trefftz method of boundary collocation
type is used to solve the Laplace equation, and thus we can explicitly derive M and
its inverse M−1. The new conditioners are, hopefully, universally applicable for the
general purpose of reducing the ill-posedness of a linear system of equations.

Previously, Liu and Atluri (2008) have developed a very efficient technique of a
fictitious time integration method (FTIM) to solve nonlinear algebraic equations by
transforming them exactly into a system of ordinary differential equations (ODEs).
Then, Liu and Atluri (2009a) applied this theory to a system of linear equations,
and observed that the resulting linear ODEs have a better filtering property to solve
some ill-posed linear problems. Liu and Chang (2009) have further combined this
FTIM technique with a non-standard group preserving scheme [Liu (2005)] to solve
many linear equations of the Hilbert type. Recently, Liu and Atluri (2009b) have
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developed a novel interpolation technique, allowing one to use very high-order
polynomials, and thus solve very accurately some ill-posed linear problems, such as
the numerical differentiation of noisy data and computation of the inverse Laplace
transform.

In this paper we introduce a novel and general approach to resolve the ill-posedness
of highly ill-conditioned system of linear equations, by utilizing a discrete solution
of the partial differential equation (PDE) of the Laplacian type. The other parts of
the present paper are arranged as follows. In Section 2 we introduce a new multi-
scale Trefftz method for the Laplace equation in arbitrary plane domain, and the
reason for this formulation is given. This derivation naturally leads to a new set of
the multi-scale T-complete functions. In Section 3 we consider a direct boundary-
collocation method, to find the multi-scale transformation matrix, which can be
further decomposed into a dilation matrix followed by a rotation matrix. The use of
this transformation matrix as a general-purpose pre- or post-conditioner to solve
the system of equations, Ax = b, when A is highly ill-conditioned, is discussed.
Here, very importantly, we view the unknown vector x in the above linear equa-
tions to be related to a set of boundary nodal values xi = x(θi) at the collocated
points. Indeed, we embed the unknown vector x into a fictitious quantity x(θ) on
a fictitious coordinate θ ∈ [0,2π]. In Section 4 we use the transformation matrix
found in Section 3 as preconditioners and postconditioners of ill-posed system of
linear equations. In Section 5 we solve the Neumann problem by a multi-scale
Trefttz method, in order to obtain a transformation matrix for the even-dimensional
system of linear equations. To test the validity of reducing the condition numbers
of highly ill-posed linear systems, some examples, including the Hilbert matrices,
those arising in the method of fundamental solutions (MFS), the Vandermonde ma-
trices appearing in the polynomial interpolations, and those arising in the solution
of the first-kind Fredholm integral equation, are investigated. Finally, we give some
conclusions in Section 7.

2 A multiple-characteristic-length Trefftz method for solving the Laplace
equation

Recently, Li, Lu, Huang and Cheng (2007) have given a fairly comprehensive com-
parison of the Trefftz, collocation and other boundary methods. They concluded
that the collocation Trefftz method (CTM) is the simplest algorithm and provides
the most accurate solution with the best numerical stability. However, the con-
ventional CTM may have a major drawback in that the resulting system of linear
equations is extremely ill-conditioned. In order to obtain an accurate solution of
the linear equations, some special techniques, e.g., preconditioner and truncated
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singular value decomposition (SVD), are required.

In order to overcome these difficulties, which appear in the conventional CTM, Liu
(2007a, 2007b, 2007c, 2008a) proposed a modified Trefftz method, and refined this
method by taking a single characteristic length into the T-complete functions, such
that, the condition number of the resulting linear equations system can be greatly
reduced. Then, Liu (2008b) found that the desirable property of the modified Tr-
efftz method can be used to modify the MFS by relating the coefficients obtained
from these two methods by a linear transformation, as shown in Eq. (50) of the
above cited paper.

Nevertheless, the above method, which uses a single characteristic length in the se-
ries expansion can easily result in an unstable solution, such as for degenerate scale
problems and singular problems, when utilizing the high-order T-complete func-
tions [Chen, Liu and Chang (2008)]. In this paper we first overcome this problem
by a new proposal of a multiple-characteristic-length modified Trefftz method for
the Laplace equation in an arbitrary plane domain.

Here we first consider a new method to solve the boundary value problem of a
body in an arbitrary plane domain, posed by the Laplace equation and a Dirichlet
boundary condition on a non-circular boundary:

∆u = urr +
1
r

ur +
1
r2 uθθ = 0, r < ρ, 0≤ θ ≤ 2π, (5)

u(ρ,θ) = x(θ), 0≤ θ ≤ 2π, (6)

where x(θ) is a boundary function, and r = ρ(θ) is a given contour describing the
boundary shape of the interior domain Ω. The contour Γ in the polar coordinates is
described by Γ = {(r,θ)|r = ρ(θ), 0≤ θ ≤ 2π}.
Liu (2007a, 2007b, 2007c, 2008a) has proposed a modified Trefftz method, by
supposing that

u(r,θ) = a0 +
m

∑
k=1

[
ak

(
r

R0

)k

coskθ +bk

(
r

R0

)k

sinkθ

]
, (7)

where

R0 ≥ ρmax = max
θ∈[0,2π]

ρ(θ) (8)

is a constant which is greater than the characteristic length of the problem domain
which is being considered. Besides, m is a positive integer chosen by the user, and
a0,ak,bk, k = 1, . . . ,m are unknown coefficients.
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Recently, Chen, Liu and Chang (2008) have applied the modified collocation Tre-
fftz method (MCTM) to a discontinuous boundary value problem, a singular prob-
lem and a degenarate scale problem, of the Laplace equation, by using much higher-
order terms with m larger than 100, and they showed that the MCTM is more pow-
erful and robust against noise than other numerical methods.

A slender body has a large aspect ratio; for example, an ellipse with semiaxes a and
b is slender if the aspect ratio a/b is large. Under this condition the above expansion
by a single characteristic length R0 may be ineffective and inaccurate because when
we require that a/R0 < 1, the power term (b/R0)k will be very small, leading to a
large round-off error in the computation of coefficients. Therefore, we replace
Eq. (7) by the following expansion involving multiple-characteristic-lengths Rk:

u(r,θ) =
a0

R1
+

m

∑
k=1

[
ak

(
r

R2k

)k

coskθ +bk

(
r

R2k+1

)k

sinkθ

]
, (9)

where Rk is a sequence of constant numbers defined by the user.

Therefore, we have introduced a set of new multi-scale Trefftz basis functions:{
1

R1
,

(
r

R2k

)k

coskθ ,

(
r

R2k+1

)k

sinkθ , k = 1,2, . . .

}
. (10)

This set forms a new T-complete basis, and the solution of u can be expanded by
these bases. The efficiency of this multi-scale Trefftz method (MSTM) to solve the
Laplace equation in a slender ellipse with very large aspect ratio, is demonstrated
in Section 6.1.

3 The Trefftz boundary-collocation method

By imposing condition (6) on Eq. (9) we can obtain

a0

R1
+

m

∑
k=1

[
ak coskθ

(
ρ(θ)
R2k

)k

+bk sinkθ

(
ρ(θ)
R2k+1

)k
]

= x(θ). (11)

Here we employ the collocation method to find the coefficients ak and bk. Eq. (11)
is imposed at a number of collocated points (ρ(θ j),θ j) by choosing

θ j =
2 jπ

n
, n = 2m+1. (12)

When the index j runs from 1 to n we obtain a system of linear equations of the
order n:

Ty = x, (13)
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where

y = [a0,a1,b1, · · · ,am,bm]T

is the vector of unknown coefficients,

x = [x1,x2, . . . ,x2m,x2m+1]T

is the vector of discrete boundary values with x j = x(θ j), and T is a transformation
matrix, given by

T :=

1
R1

ρ1
R2

cosθ1
ρ1
R3

sinθ1 . . .
(

ρ1
R2k

)k
coskθ1

(
ρ1

R2k+1

)k
sinkθ1

1
R1

ρ2
R2

cosθ2
ρ2
R3

sinθ2 . . .
(

ρ2
R2k

)k
coskθ2

(
ρ2

R2k+1

)k
sinkθ2

...
...

...
...

...
...

1
R1

ρn−1
R2

cosθn−1
ρn−1
R3

sinθn−1 . . .
(

ρn−1
R2k

)k
coskθn−1

(
ρn−1
R2k+1

)k
sinkθn−1

1
R1

ρn
R2

cosθn
ρn
R3

sinθn . . .
(

ρn
R2k

)k
coskθn

(
ρn

R2k+1

)k
sinkθn

. . .
(

ρ1
R2m

)m
cosmθ1

(
ρ1

R2m+1

)m
sinmθ1

. . .
(

ρ2
R2m

)m
cosmθ2

(
ρ2

R2m+1

)m
sinmθ2

...
...

...

. . .
(

ρn−1
R2m

)m
cosmθn−1

(
ρn−1

R2m+1

)m
sinmθn−1

. . .
(

ρn
R2m

)m
cosmθn

(
ρn

R2m+1

)m
sinmθn


, (14)

where we use ρ j = ρ(θ j) for simplicity of notation.

Because our aim here is to seek a simple pre-conditioning matrix T, which serves
to transform the general variable x to a new variable y in Eq. (13), with T being as
simple as possible, we can conveniently assume that the problem domain is a unit
disk, i.e., ρi = 1, and thus the transformation matrix can be decomposed to

T = TRTD, (15)
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where

TR =


1 cosθ1 sinθ1 · · · cos(mθ1) sin(mθ1)

1 cosθ2 sinθ2 · · · cos(mθ2) sin(mθ2)
...

...
... · · ·

...
...

1 cosθn sinθn · · · cos(mθn) sin(mθn)

 , (16)

TD =



1
R1

0 0 0 · · · 0 0

0 1
R2

0 0 · · · 0 0

0 0 1
R3

0 · · · 0 0

...
...

... · · ·
...

...
...

0 0 0 0 · · ·
(

1
R2m

)m
0

0 0 0 0 · · · 0
(

1
R2m+1

)m


. (17)

It is interesting to observe that T is the result of a transformation first by a dilation
matrix TD, followed by a transformation by a rotation matrix TR. If Ri = 1, i =
1, . . . ,n, then TD reduces to an identity matrix In.

Furthermore, due to the orthogonal property of TR we have

TT
RTR =



n 0 0 · · · 0

0 n
2 0 · · · 0

0 0 n
2 · · · 0

...
...

... · · ·
...

0 0 0 · · · n
2


. (18)

Through some derivations we can prove that [Liu (2008b)]

T−1
R =

2
n



1
2

1
2

1
2 · · · 1

2

cosθ1 cosθ2 cosθ3 · · · cosθn

sinθ1 sinθ2 sinθ3 · · · sinθn

...
...

... · · ·
...

cos(mθ1) cos(mθ2) cos(mθ3) · · · cos(mθn)

sin(mθ1) sin(mθ2) sin(mθ3) · · · sin(mθn)


. (19)
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Hence, from Eq. (15) it follows that

T−1 = T−1
D T−1

R , (20)

where T−1
D is easily calculated from Eq. (17).

Thus the conditioners T and T−1 are easily defined in closed-form, and may be
universally employed to solve an ill-conditioned system of equations, Ax = b, as
outlined below.

4 Presently proposed preconditioners and postconditioners to solve Ax = b,
when A is ill-conditioned

It is known that for an ill-posed linear system

Ax = b, (21)

it is very hard to find the solution x ∈ Rn by directly inverting the system ma-
trix A ∈ Rn×n, when A is highly ill-conditioned. Therefore, some preconditioners
and postconditioners have been proposed, in the past literature, to reduce the ill-
posedness of the above system [Calvetti, Reichel and Shuibi (2005)]. The choice
of an appropriate conditioner for ill-posed linear systems is absolutely not an easy
task. To the best of our knowledge, there does not appear a systematic algorithm to
find these conditioners.

In this paper we propose to use T in Eqs. (15), (16) and (17), and its inverse ma-
trix T−1 of Eq. (20) as the conditioners, and the several numerical examples given
below will verify that our strategy is effective.

By inserting Eq. (13) for x into Eq. (21) we have

By = b, (22)

where the new system matrix is

B := AT. (23)

We solve Eq. (22) for y and then find the solution of x by

x = Ty. (24)

The roles of the vectors x and y in Eq. (13) can be interchanged, in as much as
when one is viewed as an input, another one is viewed as an output; hence, we may
also write

Tx = y, (25)
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by viewing x as an input and y as an output. Similarly, by inserting Eq. (25) for x
into Eq. (21) we have

By = b, (26)

where the new system matrix is

B := AT−1. (27)

We solve Eq. (26) for y and then find the solution of x by

x = T−1y. (28)

The above two strategies are known as the postconditioning (or right-preconditioning)
techniques.

We can also give a preconditioner of Eq. (21) by T:

Bx = Tb, (29)

where the new system matrix is

B := TA. (30)

Then we solve Eq. (29) directly for x. Similarly, a preconditioning of Eq. (21) by
T−1 leads to

Bx = T−1b, (31)

where the new system matrix is

B := T−1A. (32)

The above two strategies are known as the preconditioning (or left-preconditioning)
techniques.

For definiteness we write the above four different system matrices by

B1 := AT, B2 := AT−1, B3 := TA, B4 := T−1A. (33)

Correspondingly, the conditioner is called a Bi-conditioner, if Bi is used as the new
system matrix, instead of the ill-conditioned matrix A.
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5 The transformation matrices for even-dimensional system

In the derivations of Sections 3 and 4 we have assumed that the dimension of the
linear system is n = 2m+1.

When we are concerned with the solution of an even-dimensional system, we
can let n = 2m. In order to obtain the transformation matrices for such an even-
dimensional system, we can simply drop out the first column of T in Eq. (14),
where we define a set of the new angles of θk by

θk =
2kπ

n+1
, n = 2m. (34)

Consequently, while we drop out the first column of TR in Eq. (16), the first row
of T−1

R in Eq. (19) is dropped out, and the first column and the first row of TD in
Eq. (17) is dropped out as well.

Alternatively, we can consider a Neumann boundary condition given by

un(ρ,θ) = x(θ), 0≤ θ ≤ 2π, (35)

where n is the outward-normal direction of the boundary. Through some effort we
can derive [Liu (2008c)]

un(ρ,θ) = η(θ)
[

∂u(ρ,θ)
∂ρ

− ρ ′

ρ2

∂u(ρ,θ)
∂θ

]
, (36)

where

η(θ) =
ρ(θ)√

ρ2(θ)+ [ρ ′(θ)]2
. (37)

For the Neumann boundary condition, the general solution of u is also given by
Eq. (9), but the constant term a0/R1 should be deleted there. By imposing condition
(35) we can obtain

m

∑
k=1

[akEk(θ)+bkFk(θ)] = x(θ), (38)

where

Ek(θ) :=
(

ρ(θ)
R2k

)k [
η

k
ρ

coskθ +η
kρ ′

ρ2 sinkθ

]
, (39)

Fk(θ) :=
(

ρ(θ)
R2k+1

)k [
η

k
ρ

sinkθ −η
kρ ′

ρ2 coskθ

]
. (40)
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When the problem domain is a unit disk, i.e., ρ(θ) = 1, we have η = 1 and
ρ ′ = 0, and by the collocation technique we can obtain a relation between x =
[x1,x2, . . . ,x2m−1,x2m]T and y = [a1,b1, · · · ,am,bm]T given by Eq (13), but with the
following transformation matrix:

T :=



1
R2

cosθ1
1

R3
sinθ1 . . . k

(
1

R2k

)k
coskθ1 k

(
1

R2k+1

)k
sinkθ1

1
R2

cosθ2
1

R3
sinθ2 . . . k

(
1

R2k

)k
coskθ2 k

(
1

R2k+1

)k
sinkθ2

...
...

...
...

...

1
R2

cosθn−1
1

R3
sinθn−1 . . . k

(
1

R2k

)k
coskθn−1 k

(
1

R2k+1

)k
sinkθn−1

1
R2

cosθn
1

R3
sinθn . . . k

(
1

R2k

)k
coskθn k

(
1

R2k+1

)k
sinkθn

. . . m
(

1
R2m

)m
cosmθ1 m

(
1

R2m+1

)m
sinmθ1

. . . m
(

1
R2m

)m
cosmθ2 m

(
1

R2m+1

)m
sinmθ2

...
...

...

. . . m
(

1
R2m

)m
cosmθn−1 m

(
1

R2m+1

)m
sinmθn−1

. . . m
(

1
R2m

)m
cosmθn m

(
1

R2m+1

)m
sinmθn


. (41)

This transformation matrix can be decomposed into

T = TRTD, (42)

where

TR =


cosθ1 sinθ1 · · · cos(mθ1) sin(mθ1)

cosθ2 sinθ2 · · · cos(mθ2) sin(mθ2)
...

... · · ·
...

...

cosθn sinθn · · · cos(mθn) sin(mθn)

 , (43)

TD =



1
R2

0 0 · · · 0 0

0 1
R3

0 · · · 0 0

...
... · · ·

...
...

...

0 0 0 · · · m
(

1
R2m

)m
0

0 0 0 · · · 0 m
(

1
R2m+1

)m


. (44)
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Similarly, the four different conditioners listed in Eq. (33) can employ the matrix
T in Eq. (41), while dealing with an even-ordered system. Up to here, we have
finished the theoretical developments of the new conditioners. The main ideas are
viewing the unknown x in Eq. (21) as a set of discrete boundary values for the
Laplace equation, and using a multi-scale expansion and collocation technique to
find the relation between x and the coefficients y in the multi-scale Trefftz solution
of the Laplace equation. Therefore, we may name this new technique as a Multi-
Scale Trefftz-Collocation Laplacian Conditioner (MSTCLC). Through some calcu-
lations, we find the condition number of T to be in the order of n, which is very low,
and this T is suitable to reduce the condition number of the ill-posed linear systems.

6 Numerical tests

Some well-known numerical examples which lead to the solution of equations of
the type of Eq. (21) with a highly ill-conditioned A are investigated in this section.

A measure of the ill-posedness of Eq. (21) can be gauged by calculating the condi-
tion number of A [Stewart (1973)]:

cond(A) = ‖A‖‖A−1‖. (45)

Here, ‖A‖ is the Frobenius norm of A defined by ‖A‖ :=
√

∑
n
i, j=1 A2

i j, where Ai j

is the i j-th component of A. The Frobenius norm of a matrix is a direct extension
of the Euclidean norm for a vector. For arbitrary ε > 0, there exists a matrix norm
‖A‖ such that ρ(A)≤ ‖A‖ ≤ ρ(A)+ ε , where ρ(A) is a radius of the spectrum of
A. Therefore, the condition number of A can be estimated by

cond(A) =
maxσ(A) |λ |
minσ(A) |λ |

, (46)

where σ(A) is the collection of the eigenvalues of A.

Eq. (21) with the matrix A having a large condition number, usually implies that
an arbitrarily small perturbation in the forcing function b may lead to an arbitrarily
large perturbation of the solution vector x. Speaking roughly, the numerical solu-
tion of Eq. (21) may lose the accuracy of k decimal points when cond(A) = 10k.

Without exception, the conjugate gradient method (CGM) is employed here to solve
the linear equations and to find the inverse matrices. Initial guesses for x and for y
are both to be zero values.
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6.1 A slender ellipse

In order to validate the multi-scale Trefftz method (MSTM) proposed in Section
2, we first consider an ellipse with semiaxes a and b, and the contour in the polar
coordinates is described by

ρ(θ) =
ab√

a2 sin2
θ +b2 cos2 θ

. (47)

For comparison purpose, the exact solution of the Laplace equation is given by

u(x,y) = ey cosx = er sinθ cos(r cosθ), (48)

and thus the Dirichlet data on the whole boundary can be obtained by inserting
Eq. (47) for r into the above equation.

We fix a = 200b = 200. In Fig. 1(a) we compare the exact solution with the
numerical solutions, along a unit circle inside the slender ellipse, obtained by a
single-characteristic-length Trefftz expansion with R0 = 400 and by a multiple-
characteristic-length Trefftz expansion with R1 = 1, and R2k = R2k+1 = ρ(θ2k)+R0,
where R0 = 50. For both cases we use m = 25. The convergence criteria used in the
CGM for the solutions of coefficients are both given by 10−14. From Fig. 1(b) it
can be seen that the accuracy obtained by the multiple-characteristic-length Trefftz
expansion is increased by almost three orders as compared to that obtained by the
single-characteristic-length Trefftz expansion.

6.2 Hilbert matrices

The problems with an ill-conditioned A may appear in several fields. For example,
finding an (n− 1)-order polynomial function p(x) = a0 + a1x + . . .+ an−1xn−1 to
best match a continuous function f (x) in the interval of x ∈ [0,1]:

min
deg(p)≤n−1

∫ 1

0
| f (x)− p(x)|dx, (49)

leads to a problem governed by Eq. (21), where A is the n×n Hilbert matrix defined
by

Ai j =
1

i−1+ j
, (50)
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Figure 1: For a very slender ellipse with an aspect ratio 200, (a) comparison of the
exact solution and numerical solutions obtained by a Single-Characteristic-Length
Trefftz expansion and by a Multiple-Characteristic Length Trefftz expansion, and
(b) comparison of the numerical errors.

x is composed of the n coefficients a0,a1, . . . ,an−1 appearing in p(x), and

b =


∫ 1

0 f (x)dx∫ 1
0 x f (x)dx

...∫ 1
0 xn−1 f (x)dx

 (51)

is uniquely determined by the function f (x).
The Hilbert matrix is a well-known example of a highly ill-conditioned matrix,



On Solving the Ill-Conditioned System 297

which can be seen from the fact that cond(A) = 1.1748× 1019 when n = 50, and
cond(A) = 10348 when n = 200. In general, cond(A) = e3.5n when n is large.

For this case we take TD = In. In Fig. 2 we plot the condition numbers of Bi, i =
1,2,3,4 with respect to n. It can be seen that for those four matrices the condition
numbers are controlled with a certain range of 105 to 1014. The condition numbers
of B1 and B3 are of the same orders and are smaller than that of B2 and B4.
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Figure 2: Comparing the condition numbers of four different conditioners with
respect to the dimensions n = 2m+1, of the Hilbert matrices.

Encouraged by the above well-conditioning behavior of the Hilbert matrices after
the MSTCLC conditioning, now, we are ready to solve a very difficult problem of
a best approximation of the function ex by an (n−1)-order polynomial, where we
fix n = 50. The Neumann type B3-conditioner is used in this calculation, where the
dilation scales are taken to be R2i = R2i+1 = R0 = 10000. We compare the exact
solution ex with the numerical solutions without noise and with a noise σ = 0.01
in Fig. 3(a). The absolute errors are also shown in Fig. 3(b). The results are rather
good. The original technique using p(x) = a0 + a1x/R0 + . . .+ an−1(x/R0)n−1 by
Liu and Atluri (2009b) for the polynomial interpolation could not be applied here
to solve the best approximation by using very-high-order polynomial. Indeed, we



298 Copyright © 2009 Tech Science Press CMES, vol.44, no.3, pp.281-311, 2009

0.0 0.2 0.4 0.6 0.8 1.0

x

1.0

1.5

2.0

2.5

3.0

f(
x
)

Exact

Numerical with �=0

Numerical with �=0.01

(a)

0.0

0.1

0.2

0.3

0.4

A
b
so

lu
te

 E
rr

or
s

0.0 0.2 0.4 0.6 0.8 1.0

x

Numerical with �=0

Numerical with �=0.01

Figure 3: The best polynomial approximation by using the B3-conditioner: (a)
comparing the exact and numerical results, and (b) the numerical errors.

have found that the technique of Liu and Atluri (2009b) leads to a huge error in
the order of 1045. The reason may be that in the polynomial interpolation of Liu
and Atluri (2009b), the resulting Vandermonde matrix can be well-conditioned by
the dilation matrix alone (see also Section 6.4 below), but in the best polynomial
approximation method of Eq. (49), the resulting Hilbert matrix cannot be well-
conditioned by a dilation matrix alone, but must also be accompanied by a rotation
matrix.
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In order to compare the numerical solutions with exact solutions we suppose that
x1 = x2 = . . . = xn = 1, and then by Eq. (50) we have

bi =
n

∑
j=1

1
i+ j−1

. (52)

Liu and Chang (2009) have calculated this problem by taking n = 200, and found
that most algorithms failed. The numerical results for m = 100 (n = 201) calculated
by the B1-conditioner are plotted in Fig. 4 by displaying the numerical errors. If no
noise is involved, the accuracy is very good, and smaller than 0.006. When a large
noise 0.001 is added on the data b, the errors are still smaller than 0.1.
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Figure 4: Numerical errors, without/with noise, for a very large n = 201 of the
Hilbert matrix, solved by a B1-conditioner.

Next, we consider

xi = 2sin(pi)exp[pi(1− pi)], pi = i× 1
n
,

bi =
n

∑
j=1

1
i+ j−1

x j +σR(i) (53)
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Figure 5: Solution of the Hilbert matrix with dimension n = 100 by using a B3-
conditioner: (a) comparing the exact and numerical solutions without/with noise,
and (b) the numerical errors.

with m = 25 (n = 50) and 0 < pi ≤ 1. This problem is more difficult than the
previous one with constant x1 = . . . = xn = 1.

We apply the technique in Section 5 to this problem by choosing R2k = R2k+1 =
(kRk

0)
1/k, k = 1, . . . ,m, where R0 = 1.1 is used, and using T as a preconditioner.

When there is no noise, the numerical result is very accurate as comparing it with
the exact solution in Fig. 5(a). The error as shown in Fig. 5(b) is smaller than 0.014.
When the noise is imposed in a level of σ = 10−4, we use the CGM with a loose
convergent criterion 10−5. The result is plotted in Fig. 5(a) by the dashed-dotted
line, and the error as shown in Fig. 5(b) by the dashed line is smaller than 0.09.
These results are better than that calculated by Liu and Chang (2009).
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6.3 The problem of ill-conditioned matrices A arising in the Method of Funda-
mental Solutions

In the potential theory, it is well known that the method of fundamental solutions
(MFS) can be used to solve the Laplace problems when a fundamental solution is
known.

The MFS has a broad application in engineering computations. However, the MFS
has a serious problem in that the resulting system of linear equations is always
highly ill-conditioned, when the number of source points is increased [Golberg and
Chen (1996)], or when the distances between the source points are increased [Chen,
Cho and Golberg (2006)]. The convergence analysis of MFS has demonstrated
that the approximation improves when the source radius tends to infinity; see. e.g.,
Smyrlis and Karageorghis (2004). Nevertheless, a commonly encountered problem
is its poor accuracy as the source radius is increased to a large vaule in the numerical
computation. The ill-conditioning of the MFS makes it very difficult to achieve
very accurate approximations by the numerical solutions of the boundary value
problems.

In the MFS the solution of u at the field point z = (r cosθ ,r sinθ) can be expressed
as a linear combination of fundamental solutions U(z,s j):

u(z) =
n

∑
j=1

c jU(z,s j), s j ∈Ω
c, (54)

where n = 2m+1 is the number of source points, c j are the unknown coefficients,
and s j are the source points located in the complement Ωc of Ω. For the Laplace
equation we have the fundamental solutions

U(z,s j) = lnr j, r j = |z− s j|. (55)

In a practical application of MFS, usually the source points are uniformly located
on a circle with a radius R0, such that after imposing the boundary condition with
u|∂Ω = h(θ) on Eq. (54) we obtain a linear equations system:

Ax = b, (56)

where

Ai j = U(zi,s j), x = (c1, · · · ,cn)T, b = (h(θ1), · · · ,h(θn))T, (57)

and zi = (ρ(θi)cosθi,ρ(θi)sinθi), s j = (R0 cosθ j,R0 sinθ j).



302 Copyright © 2009 Tech Science Press CMES, vol.44, no.3, pp.281-311, 2009

In this example we consider a complex epitrochoid with the boundary shape

ρ(θ) =
√

(a+b)2 +1−2(a+b)cos(aθ/b), (58)

x(θ) = ρ cosθ , y(θ) = ρ sinθ (59)

with a = 4 and b = 1. For comparison we also consider an exact solution, given by

u(x,y) = ex cosy. (60)

The exact boundary data can be obtained by inserting Eqs. (58) and (59) into the
above equation.

For this case by using the B1-conditioner with a postconditioning matrix T, we take
R1 = 1/(n lnR0), R2k = R2k+1 = 1/(2k/n)1/k, k = 1, . . . ,m, such that TD is not an
identity matrix. The condition numbers are compared in Fig. 6. It can be seen that
the postconditioning technique used here can reduce the condition numbers about
three orders. Numerical solutions and the exact solution along a circle with a radius
3 are compared in Fig. 7(a), and the numerical errors are shown in Fig. 7(b), from
which it can be seen that the accuracy by using the postconditioning technique is
raised about four orders. Liu (2008b) has proposed a modification technique of the
MFS, but has not mentioned its mathematical foundation as presented here from
the view point of the transformation matrix obtained from the Laplace equation.
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Figure 6: Comparing the condition numbers with respect to n, for the matrices
arising in the MFS, without/with a B1-conditioner.
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6.4 Polynomial interpolation

Polynomial interpolation is the interpolation of a given data set by a polynomial. In
other words, given some data points, such as obtained by sampling of a measure-
ment, the aim is to find a polynomial which goes exactly through these points.

Given a set of n data points (xi,yi) where no two xi are the same, one is looking for
a polynomial p(x) of degree at most n−1 with the following property:

p(xi) = yi, i = 1, . . . ,n, (61)
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where xi ∈ [a,b], and [a,b] is a spatial interval of our problem domain.

The unisolvence theorem states that such a polynomial p(x) exists and is unique,
and can be proved by using the Vandermonde matrix. Suppose that the interpolation
polynomial is in the form of

p(x) =
n

∑
i=1

cix
i−1, (62)

where xi constitute a monomial basis. The statement that p(x) interpolates the data
points means that Eq. (61) must hold.

If we substitute Eq. (62) into Eq. (61), we obtain a system of linear equations in the
coefficients ci. The system in a matrix-vector form reads as

1 x1 x2
1 . . . xn−2

1 xn−1
1

1 x2 x2
2 . . . xn−2

2 xn−1
2

...
...

... . . .
...

...
1 xn−1 x2

n−1 . . . xn−2
n−1 xn−1

n−1
1 xn x2

n . . . xn−2
n xn−1

n




c1

c2
...

cn−1

cn

=


y1

y2
...

yn−1

yn

 . (63)

We have to solve the above system for ci to construct the interpolant p(x). The
matrix transpose on the left is commonly referred to as a Vandermonde matrix
denoted by V, which is known to be highly ill-conditioned.

For this case we use the B2-conditioner by taking

T−1
D =



1 0 . . . 0 0
0 1

r1
. . . 0 0

...
... . . .

...
...

0 0 . . . 1
rn−2

n−2
0

0 0 . . . 0 1
rn−1

n−1

 , (64)

where ri = |xi+1± r0|; the minus sign is used for xi+1 < 0, while the plus sign is
used for xi+1 ≥ 0, and r0 is a positive constant.

In order to show the accuracy of the new postconditioning technique we consider
the following interpolated function:

f (x) =
1

1+(x−1)2 , 0≤ x≤ 2. (65)

We first show the condition numbers of B2 with respect to n in Fig. 8(a). It is
interesting that the condition numbers decrease when n increases. We take m = 30
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with respect to n obtained by a B2-conditioner, (b) the numerical errors for an
example.

(n = 61) and r0 = 1. The absolute error is plotted in Fig. 8(b). Very accurate results
are obtained, where the maximum error is about 3.4×10−6.

Recently, Liu and Atluri (2009b) have proposed a novel interpolation technique of
very-high-order polynomial by using

p(x) =
n

∑
α=0

āα

(
x

R0

)α

, (66)

where R0 is a characteristic length. Under the parameters n = 60 and R0 = 2.8



306 Copyright © 2009 Tech Science Press CMES, vol.44, no.3, pp.281-311, 2009

we show the accuracy for the function in Eq. (65) in Fig. 8(b) by the dashed line,
where the maximum error is about 8.4× 10−6. It is also very accurate, but the
present MSTCLC is slightly better.

6.5 The first-kind Fredholm integral equation

To demonstrate the applications of the new conditioning theory, we further consider
a highly ill-posed first-kind Fredholm integral equation:∫ b

a
K(s, t)x(t)dt = h(s), s ∈ [c,d]. (67)

Let us discretize the intervals of [a,b] and [c,d] into n−1 subintervals by noting that
∆t = (b−a)/(n−1) and ∆s = (c−d)/(n−1). Let x j := x(t j) be a numerical value
of x at a grid point t j, and let Ki, j = K(si, t j) and hi = h(si), where t j = a+( j−1)∆t
and si = c+(i−1)∆s. Through a trapezoidal rule, Eq. (67) can be discretized into
the following linear algebraic equations:

∆t
2

Ki,1x1 +∆t
n−1

∑
j=2

Ki, jx j +
∆t
2

Ki,nxn = hi, i = 1, . . . ,n. (68)

Then, we solve∫
π

0
escos tx(t)dt =

2
s

sinhs, s ∈ [0,π/2], (69)

which has an exact solution x(t) = sin t.

For this case we take Ri = 10, i = 1, . . . ,n, and use m = 80 (n = 161) in the B1-
conditioner in Section 4. The numerical error is shown in Fig. 9(a), which has an
accuracy in the order of 10−2. This result is competive with that calculated by Liu
and Atluri (2009a) by using a fictitious time integration method.

As a second example, we consider the problem of finding x(t) in the following
equation, solving by a B3-conditioner in Section 5:∫ 1

0
k(s, t)x(t)dt =

1
6
(s3− s), s ∈ [0,1], (70)

where

k(s, t) =
{

s(t−1) if s < t,
t(s−1) if s≥ t,

(71)

and x(t) = t is the exact solution.
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Figure 9: The numerical errors in solving the first-kind Fredholm integral equations
(a) by using a B1-conditioner, and (b) solving by a B3-conditioner in Section 5.

In Fig. 9(b) we show the numerical errors under a noise σ = 0.001 by the solid line,
and a dashed line for the un-noised case, where m = 50 (n = 100) were used for
both cases. As compared with the results calculated by Calvetti, Reichel, Shuibi
(2005) without considering noise, our result with an L2-norm error 4.6× 10−8 for
the same case is much improved with about five orders.
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7 Conclusions

Novel “Multi-Scale Trefftz-Collocation Laplacian Conditioners” (MSTCLCs) are
developed in this paper, for the first time, to overcome the ill-posedness of severely
ill-conditioned system of linear equations: Ax = b. We considered x to be a finite-
dimensional set of discrete boundary values, on a unit circle, of the Laplace equa-
tion. We propose a Trefftz expansion involving multiple-characteristic-lengths to
solve the Laplace equation in an arbitrary plane domain under Dirichlet or Neu-
mann boundary conditions. By using the collocation technique, we could find the
transformation matrix T between x and y as shown in Eq. (13). The transformation
matrix T can be decomposed into a dilation matrix TD followed by a rotation matrix
TR. For an odd-dimensional linear system, four conditioners Bi, i = 1,2,3,4 were
derived in Section 4 based on the Dirichlet boundary condition, and similarly, for
an even-dimensional linear system, four Bi, i = 1,2,3,4 were derived in Section 5
based on the Neumann boundary condition. These conditioners have very low con-
dition numbers and are invertible, thus greatly reducing the condition numbers of
the ill-posed linear systems investigated in this paper, which include the ill-posed
linear systems obtained from the Hilbert matrices, from the method of fundamental
solutions, from polynomial interpolations, and from solving the first-kind Fred-
holm integral equations. When the new conditioners are applied, we found that
the condition numbers do not increase fast or not increase at all with respect to
the dimension n of the investigated systems. Therefore, we can obtain very accu-
rate solutions of the ill-posed linear systems, even when a large noise exists in the
given data. In this new theory, there exists a beautiful structure of four dualities:
cosθ and sinθ , dilation and rotation, Dirichlet and Neumann, and odd and even
dimension. The new algorithms have better computational efficiency and accuracy,
which may be applicable to many engineering problems with ill-posedness. Even
for a middling ill-posed system of linear equations, the MSTCLC can increase the
accuracy several orders.
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