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A Galerkin Boundary Node Method for Two-Dimensional
Linear Elasticity

Xiaolin Li1 and Jialin Zhu2

Abstract: In this paper, a Galerkin boundary node method (GBNM) is devel-
oped for boundary-only analysis of 2D problems in linear elasticity. The GBNM
combines the variational form of a boundary integral formulation for the elastic
equations with the moving least-squares approximations for generating the trial
and test functions. Unlike the boundary node method, the main idea here is to
use the Galerkin scheme for numerical analysis, thus boundary conditions in the
GBNM can be satisfied easily and directly in the weak formulation of the boundary
integral equation. Another advantage with the Galerkin scheme is that the GBNM
can keep the symmetry and positive definiteness of the variational problems. The
error analysis and convergence study of the GBNM in Sobolev spaces are given.
Numerical examples are also presented to show the efficiency of the method.

Keywords: Meshless, moving least-squares, boundary integral equations, Galerkin
boundary node method.

1 Introduction

Boundary integral equations (BIEs) have widely used for the solution of a variety
of boundary value problems in potential theory and classical elasticity. The numer-
ical discretization of BIEs is commonly known as the boundary element method
(BEM) [Dautray and Lious (2000); Hsiao and Wendland (2008); Zhu and Yuan
(2009)]. The BEM is a well developed and powerful numerical method for linear
and exterior problems as it can reduce the dimensionality of the original problem
by one. However, the BEM still requires boundary discretization, which may cause
some inconvenience in the implementation, such as attacking complicated bound-
ary problems and moving boundary problems.

In attempts to reduce the meshing-related difficulties, a new type of method called
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meshless or meshfree method has been developed in recent years. The main fea-
ture of this type of method is the absence of an explicit mesh, and the approximate
solution is constructed entirely based on a set of scattered nodes. Different kinds of
meshless methods, such as the smoothed particle hydrodynamics [Moulinec, Issa,
Marongiu, and Violeau (2008)], the element free Galerkin method (EFGM) [Be-
lytschko, Krongauz, Organ, and Fleming (1996); Chen, Chi, and Lee (2009)], the
meshless local Petrov-Galerkin (MLPG) method [Atluri and Shen (2002)], the re-
producing kernel particle method [Shaw and Roy (2007); Namdeo and Manohar
(2008)], the radial basis functions method [Libre, Emdadi, Kansa, Rahimian, and
Shekarchi (2008)] and the h-p meshless method [Duarte and Oden (1996)] have
been proposed and achieved remarkable progress in solving a wide range of bound-
ary value problems in solid [Hagihara, Tsunori, Ikeda, and Miyazaki (2007); Wen
and Hon (2007); Wu, Chiu, and Wang (2008)], fluid [Mai-Duy, Mai-Cao, and
Tran-Cong (2007); Kosec and Sarler (2008); Ho-Minh, Mai-Duy, and Tran-Cong
(2009)], electromagnetic [Shim, Ho, Wang, and Tortorelli (2008); Haq, Islam, and
Ali (2008)] and dynamic [Liu, Chen, Li, and Cen (2008); Haq, Islam, and Uddin
(2009)]. Particularly, these methods has also been successfully applied for prob-
lems with moving interface [Mai-Cao and Tran-Cong (2008)], large deformation
[Wong and Shie (2008); Chen, Chi, and Lee (2009)] and crack propagation [Wen,
Aliabadi, and Liu (2008); Zhang and Chen (2008); Sageresan and Drathi (2008);
Li, Liu, and Wang (2008)]. These meshless methods followed the idea as the finite
element method (FEM), in which the problem domain is discretized.

The idea of meshless has also been applied in BIEs, such as the boundary node
method (BNM) [Mukherjee and Mukherjee (1997)], the meshless local boundary
integral equation (LBIE) method [Atluri, Sladek, Sladek, and Zhu (2000)] and the
boundary point interpolation method (BPIM) [Gu and Liu (2002). In these BIEs-
based methods, the LBIE method is equivalent to a sort of MLPG approaches,
which use local weak forms over a local sub-domain and shape functions from the
moving least-squares (MLS) approximations. The LBIE method and the MLPG
methods are very promising methods, and have been implemented for problems in
potential theory [Pini, Mazzia, and Sartoretto (2008)], elasticity [Atluri, Sladek,
Sladek, and Zhu (2000); Han and Atluri (2004); Atluri, Liu, and Han (2006);
Long, Liu, and Li (2008); Sellountos, Sequeira1, and Polyzos (2009); Zheng, Long,
Xiong, and Li (2009); Sladek, Sladek, and Solek (2009)], heat conduction [Wu,
Shen, and Tao (2007); Sladek, Sladek, Tan, and Atluri (2008)], thermodynamics
[Sladek, Sladek, Zhang, and Solek (2007); Sladek, Sladek, Solek, and Wen (2008);
Sladek, Sladek, Solek, Wen, and Atluri (2008)], magnetics [Johnson and Owen
(2007); Zhao and Nie (2008)] and fluid [Ma (2007); Arefmanesh, Najafi, and Abdi
(2008); Mohammadi (2008); Ma and Zhou (2009)]. The LBIE method, however, is
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not strictly a boundary method since it requires evaluation of integrals over certain
surfaces (called Ls in [Atluri, Sladek, Sladek, and Zhu (2000)]) that can be regarded
as ’closure surfaces’ of boundary elements.

The BNM is formulated using the MLS approximations and the technique of BIEs.
Compared to the LBIE method and other domain type meshless methods, this ap-
proach and the BPIM require only a nodal data structure on the bounding surface
of a body whose dimension is less than that of the domain itself. So like the BEM,
they are superior in treating problems dealing with infinite or semi-infinite domains.
The BNM has been successfully applied for the solution of problems in potential
theory [Mukherjee and Mukherjee (1997)] and linear elasticity [Kothnur, Mukher-
jee, and Mukherjee (1999)]. However, because the MLS approximations lack the
delta function property, it is difficulty to exactly satisfy boundary conditions in the
BNM. The strategy used in the BNM to impose boundary conditions involves a
new definition of the discrete norm used for the construction of the MLS approx-
imations. This strategy doubles the number of system equations. Recently, based
on using the point interpolation method to construct shape functions, Gu and Liu
(2002) developed the BPIM to solve 2D elastostatics. The BPIM can exactly sat-
isfy boundary conditions, since its shape functions possess delta function property.
But the compatibility of field function approximation cannot be always ensured in
this method [Liu and Gu (2004)]. In addition, as in the BNM, the system matrices
in the BPIM are nonsymmetric.

A boundary-type meshless method, the Galerkin boundary node method (GBNM),
is discussed in this paper. In this approach, an equivalent variational form of a
BIE is used for representing the boundary value problem, and the trial and test
functions of the weak formulation are constructed by the MLS approximations. An
advantage with the Galerkin scheme is that boundary conditions can be satisfied
easily and directly via multiplying the MLS shape function and integrating over
the boundary. Besides, the GBNM inherits the symmetry and positive definiteness
of the variational problems. Symmetrical formulations improve solution efficiency
and can be easily coupled with the FEM or other established meshless methods
such as the EFGM. This coupled technique is especially suited for problems with an
unbounded domain. The GBNM has been applied to problems in potential theory
[Li and Zhu (2009a,b)]. In this paper, we extend the frontiers of the GBNM for
boundary-only analysis of the interior and exterior linear elastic problems in two
dimensions.

It is well known that one limitation of the meshless methods found in the litera-
ture is that few of them have a rich mathematical background to justify their use.
Namely, mathematical proofs of conditions sufficient to guarantee that these meth-
ods will converge to the true solution are not available. To the best of our knowl-
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edge, the theoretical basis of BIEs-based meshless methods is just being studied
and far from completion. In this article, we also provide error estimates for the
GBNM in Sobolev spaces.

An outline of this paper is as follows. In Section 2, we introduce some notations
to be used later. Section 3 presents the MLS scheme. Section 4 gives a detailed
numerical implementation of the GBNM for 2D linear elasticity. The convergence
of this approach will be stated in Section 5. Section 6 provides some numerical
results. Section 7 contains conclusions.

2 Notations

Let Γ be a smooth, simple closed curve in the plane and let Ω and Ω′ denote its
interior and exterior respectively. A generic point in R2 is denoted by x = (x1,x2)
or y = (y1,y2).
For any point x∈ Γ, we use ℜ(x) to denote the domain of influence of x. Let QN =
{xi}N

i=1 be an arbitrarily chosen set of N boundary nodes xi. The set QN is used for
defining a finite open covering {ℜi}N

i=1 of Γ composed of N balls ℜi centered at
the points xi, i = 1,2, · · · ,N, where ℜi = ℜ(xi) is the domain of influence of xi.

Assume that there have κ (x) boundary nodes that lie on ℜ(x). Then, we use the
notation I1, I2, · · · , Iκ to express the global sequence number of these nodes, and
define ∧(x) = {I1, I2, · · · , Iκ}.
Let wi, i = 1,2, · · · ,N, denote weight functions that belong to the space C`

0 (ℜi),
`≥ 0, with the following properties:

wi (x) > 0, ∀x ∈ℜi; ∑
i∈∧(x)

wi (x) = 1, ∀x ∈ Γ (1)

Besides, we use the notation

ℜ
i = {x ∈ Γ : xi ∈ℜ(x)} , 1≤ i≤ N (2)

for the set of boundary points whose influence domain includes the boundary node
xi. We emphasize that for different boundary point x, because ℜ(x) varies from
point to point, ℜi ≡ℜi if and only if the radii of ℜ(x) is a constant for any x ∈ Γ.

Let τ be an arbitrary real number, we denote by Hτ (Γ) the Sobolev spaces as well
as their interpolation spaces on Γ for noninteger τ [Hsiao and Wendland (2008);
Zhu and Yuan (2009)]. Moreover, we define the following weighted Sobolev space
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[Dautray and Lious (2000); Hsiao and Wendland (2008); Zhu and Yuan (2009)]

W 1
0

(
Ω
′)={

v ∈D ′
(
Ω
′) :

v√
1+ r2 ln(2+ r2)

∈ L2 (
Ω
′) , ∂v

∂xi
∈ L2 (

Ω
′) , i = 1,2

}
(3)

where r =
√

x2
1 + x2

2. It is a reflexive Banach space equipped with its natural norm:

‖v‖W 1
0 (Ω′) =

(∥∥∥∥ v√
1+ r2 ln(2+ r2)

∥∥∥∥2

L2(Ω′)
+

2

∑
i=1

∥∥∥∥ ∂v
∂xi

∥∥∥∥2

L2(Ω′)

)1/2

(4)

Observe that all the local properties of the space W 1
0 (Ω′) coincide with those of the

Sobolev space H1 (Ω′). As a consequence, the traces of these functions on Γ satisfy
the usual trace theorems.

3 The moving least squares (MLS) method

In the MLS method, the numerical approximation starts from a cluster of scattered
nodes instead of elements. Assume that x(s) ∈ Γ, the MLS approximation for a
given function v is defined as [Li and Zhu (2009a)]

v(x)≈M v(x) =
N

∑
i=1

Φi (x)vi (5)

where M is an approximation operator, and

Φi (x(s)) =


β

∑
j=0

Pj (s)
[
A−1 (s)B(s)

]
jk, i = Ik ∈ ∧(x)

0, i /∈ ∧(x)
(6)

and the matrices A(s) and B(s) being defined by

A(s) = ∑
i∈∧(x(s))

wi (s)P(si)PT (si) (7)

B(s) = [wI1 (s)P(sI1) ,wI2 (s)P(sI2) , · · · ,wIκ
(s)P(sIκ

)] (8)

in which s is a local co-ordinate of the boundary point x on Γ, P(s) is a vector of
the polynomial basis, β +1 is the number of terms of the monomials.

In order to make sense of the definition of the MLS approximations, the matrix
A(s) must be invertible. The corresponding work can be found in [Duarte and
Oden (1996)].
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For our subsequent error analysis the following conditions will be assumed from
now on.

Assumption. There exist

A1. A nonnegative integer γ such that the MLS shape functions Φi (x) ∈Cγ (Γ)
and the boundary Γ is a Cγ curve.

A2. An upper bound of the radii of weight functions. That is, a constant h such
that the radii of weight functions is less than h.

A3. A constant integer K such that each point on Γ is covered by at most K shape
functions.

A4. A uniform bound of the weight function and its derivatives. Namely, con-
stants Cw1 and Cw2 independent with h such that Cw1h− j ≤

∥∥∂ jwi (x)
∥∥

L∞(Γ) ≤
Cw2h− j, 1≤ i≤ N.

Remark 3.1 From [Duarte and Oden (1996)], if monomials Pj ( j = 0,1, · · · ,β )
and weight functions wi (i = 1,2, · · · ,N ) are γ-times continuously differentiable,
then Φi (x) ∈Cγ (Γ).

Remark 3.2 Assumption (A3) is quite natural since, otherwise, as the number of
boundary nodes lie on a local area increases, the shape functions tend to be more
and more linearly dependent in the local area.

We list below some properties of the MLS shape functions Φi [Li and Zhu (2009a)].

Property 3.1 Φi (x) ∈Cγ

0

(
ℜi
)
, 1≤ i≤ N.

Property 3.2 We have a constant C independent of h such that

‖Φi (x)‖Hk(Γ) ≤Chm−k ‖Φi (x)‖Hm(Γ) , 1≤ i≤ N, −γ ≤ m≤ k, 0≤ k ≤ γ (9)

The following theorem gives an approximation estimate for the MLS scheme, which
is central to the convergence proof of the proposed GBNM [Li and Zhu (2009a)].

Theorem 3.1 Assume that v(x) ∈ Hγ+1 (Γ). Let M v(x) = ∑
N
i=1 Φi (x)vi, then

‖v(x)−M v(x)‖Hk(Γ) ≤Chγ+1−k ‖v(x)‖Hγ+1(Γ) (10)

where 0≤ k ≤ γ and C is a constant independent of h.
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4 The Galerkin boundary node method

In this section the GBNM for the approximation of 2D linear elasticity is intro-
duced. In this approach, meshless shape functions are constructed with the MLS
technique and are used in a Galerkin setting for the approximation of the weak form
of BIEs.

4.1 Galerkin procedures

We consider the boundary value problem consisting of the linear elastic equation
for the displacement field u = (u1,u2):{

µ∆u+(λ + µ)grad (divu) = 0, in Ω or Ω′

u|
Γ

= g, on Γ
(11)

where µ > 0 and λ >−µ are given Lamé constants, and g = (g1,g2) is a prescribed
function on Γ. In the case of the exterior problem, we append to problem (11) the
following condition at infinity:

|ui (x)|= O(1) , i = 1,2, as |x| → ∞ (12)

We introduce the stress tensor σ and strain tensor ε

σi j (u) = λδi j

2

∑
k=1

εkk (u)+2µεi j (u) ; εi j (u) =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
, i, j = 1,2 (13)

where δi j is the Kronecker symbol. Let q = (q1,q2) stands for the jump through Γ

of n ·σ (u), i.e.,

qi =
2

∑
j=1

σi j (u)n j

∣∣∣∣∣
int

Γ

−
2

∑
j=1

σi j (u)n j

∣∣∣∣∣
ext

Γ

, i = 1,2 (14)

where n is the outward normal direction on Γ. Then as indicated in [Hsiao and
Wendland (2008); Zhu and Yuan (2009)], condition (12) implies that∫

Γ

qi (y) dSy = 0, i = 1,2 (15)

The classical way of solving problem (11) using integral equations consists in using
a simple layer representation. Let U∗i j (i, j = 1,2) be the Kelvin solution

U∗i j (x,y) =
λ +3µ

4πµ (λ +2µ)

[
δi jln

1
r

+
λ + µ

(λ +3µ)
r,ir, j

]
(16)
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where r = |x−y| and r,i = (xi− yi)
/

r. Then the solution of the elastic problem
(11) can be represented as

u j (x) =
2

∑
i=1

∫
Γ

U∗i j (x,y)qi (y) dSy +ξ j, x ∈ R2 (17)

in which ξ = (ξ1,ξ2) is an unknown constant vector. The unknown ξ arises because
the displacement field at infinity is not zero for 2D problems.

From Eqs. (13) and (17), the stress σ reads

σi j (x) =
2

∑
k=1

∫
Γ

D∗ki j (x,y)qk (y) dSy, x ∈ R2 (18)

where the third order tensor component D∗ki j (k, i, j = 1,2) is

D∗ki j (x,y) = λδi j

2

∑
l=1

∂U∗kl

∂xl
+ µ

(
∂U∗ki

∂x j
+

∂U∗k j

∂xi

)

=
−1

2π (λ +2µ)r

[
µ
(
δkir, j +δk jr,i−δi jr,k

)
+2(λ + µ)r,ir, jr,k

]
(19)

Now giving g ∈
(
H1/2 (Γ)

)2
, Eq. (17) leads to the boundary relation

g j (x) =
2

∑
i=1

∫
Γ

U∗i j (x,y)qi (y) dSy +ξ j, x ∈ Γ (20)

which is suitable for the solution of the interior as well as the exterior problem.

Let
◦

Hk (Γ) =
{

f ∈ Hk (Γ) ,
∫

Γ

f (y) dSy = 0

}
, k ∈ R (21)

then formula (20) is associated with the following variational problem: find q ∈( ◦
H−1/2 (Γ)

)2

such that

b
(
q,q′

)
=

2

∑
j=1

∫
Γ

g j (x)q′j (x) dSx, ∀q′ ∈
( ◦

H−1/2 (Γ)
)2

(22)

with

b
(
q,q′

)
=

2

∑
i, j=1

∫
Γ

∫
Γ

U∗i j (x,y)qi (y)q′j (x) dSy dSx (23)
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As in the three dimensional case [Dautray and Lious (2000); Zhu and Yuan (2009)],
it can be verified that the boundary integral formulation (20) defines an isomor-

phism from
◦

H−1/2 (Γ) onto H1/2 (Γ)
/
R, and the bilinear form b(·, ·) is continuous

and coercive on

( ◦
H−1/2 (Γ)

)2

[Hsiao and Wendland (2008)]. Thus, by the Lax-

Milgram theorem, we have:

Theorem 4.1 If g ∈
(
H1/2 (Γ)

)2
, then the variational prolem (22) admits a unique

solution q ∈
( ◦

H−1/2 (Γ)
)2

, and the elastic problem (11) has one and only one

solution u ∈
(
H1 (Ω)

)2∪
(
W 1

0 (Ω′)
)2

.

4.2 Approximation

Let

W = span{Φi,1≤ i≤ N} , Vh (Γ) = W ×W (24)

the basis functions Φi defined in Eq. (6). Let

◦
Vh (Γ) =

{
f ∈Vh (Γ) ,

∫
Γ

fi (y) dSy = 0, i = 1,2

}
(25)

Since Assumption (A1) implies that Φi (x) ∈Hm (Γ)⊂H−1/2 (Γ) for −1
/

2≤m≤

γ , the variational problem (22) can be approximated by: find qh =
(
qh

1,q
h
2

)
∈
◦
Vh (Γ)

such that

b
(

qh,q′
)

=
2

∑
i=1

∫
Γ

gi (x)q′i (x) dSx, ∀q′ ∈
◦
Vh (Γ) (26)

In this way, we must take into account the constraint∫
Γ

qh
i (y) dSy = 0, i = 1,2 (27)

in the process of approximation. For the convenience of numerical implementation
we introduce a Lagrangian multiplier to replace the constraint (27). Let

a(ξ ,q) =
2

∑
i=1

∫
Γ

ξiqi (y) dSy, ∀q ∈Vh (Γ) , ξ ∈ R2 (28)
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then the Galerkin form for problem (11) can be set as the following saddle-point
problem:

find
(
qh,ξ

)
∈Vh (Γ)×R2 such that ∀ (q′,ξ ′) ∈Vh (Γ)×R2

b
(
qh,q′

)
+a(ξ ,q′) =

2
∑

i=1

∫
Γ

gi (x)q′i (x) dSx

a
(
ξ ′,qh

)
= 0

(29)

The general results of [Brezzi (1974)] can be applied to the particular case, we
have:

Theorem 4.2 Problem (26) admits only one solution qh ∈
◦
Vh (Γ) and there exists

ξ ∈ R2 such that
(

qh,ξ
)

is the unique solution of problem (29).

On Vh (Γ), the Galerkin approximation qh of the real solution q may be written as

qh
k (x) =

N

∑
i=1

Φi (x)q(i)
k , k = 1,2 (30)

Substituting Eq. (30) into Eq. (29), by virtue of Property 3.1, one gets a (2N +2)∗
(2N +2) linear system
[
a11

ji

] [
a12

ji

] [
c1

jk

][
a21

ji

] [
a22

ji

] [
c2

jk

][
b1

ki

] [
b2

ki

]
[0]



{

q(i)
1

}{
q(i)

2

}
{ξk}

=


{

f 1
j

}{
f 2

j

}
{0}

 (31)

in which i, j = 1,2, · · · ,N; k = 1,2 and

aml
ji =

∫
ℜ j

∫
ℜi

U∗ml (x,y)Φi (y)Φ j (x) dSy dSx (32)

c1
j1 = b1

1 j = c2
j2 = b2

2 j =
∫

ℜ j
Φ j (x) dSx (33)

c1
j2 = b1

2 j = c2
j1 = b2

1 j = 0 (34)

f m
j =

∫
ℜ j

gm (x)Φ j (x) dSx (35)

with m, l = 1,2. Besides, ℜ j and ℜi are defined by Eq. (2), and are parts of the
boundary Γ. As in the EFGM and the BNM, these integrations can be numerically
calculated by employing a cell structure.
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Remark 4.1 Since the cell can be of any shape and the only restriction is that
the unions of all cells equal the integral area, the concept of cell is quite different
from that of an element in the BEM. Thus, the GBNM is a boundary type meshless
method.

Remark 4.2 The boundary function g(x) are multiplied by Φ j (x) and integrated
on Γ. As a consequence, boundary conditions can be implemented accurately de-
spite the MLS approximations lacking the delta function property.

Remark 4.3 The system matrix in Eq. (31) is symmetric.

Once q(i)
k and ξk are found the approximate solution uh =

(
uh

1,u
h
2

)
of displacement

u can be evaluated from an approximation form of Eq. (17)

uh
j (x) =

2

∑
i=1

∫
Γ

U∗i j (x,y)qh
i (y) dSy +ξ j

=
2

∑
i=1

N

∑
m=1

q(m)
i

∫
ℜm

U∗i j (x,y)Φm (y) dSy +ξ j, j = 1,2, x ∈ R2 (36)

and the approximate solution σh of the stress tensor σ can be determined by

σ
h
i j (x) =

2

∑
k=1

∫
Γ

D∗ki j (x,y)qh
k (y) dSy

=
2

∑
k=1

N

∑
m=1

q(m)
k

∫
ℜm

D∗ki j (x,y)Φm (y) dSy +ξ j, i, j = 1,2, x ∈ R2 (37)

5 Error estimates

In this section, we will prove that the result obtained using the GBNM converge to
the solution of the elastic problem (11) gradually. In order to prove some theorems,
we need the following inverse property.

Lemma 5.1 For any qh (x) ∈ Vh (Γ), there is a constant C independent of h such
that∥∥qh (x)

∥∥
(Hk(Γ))2 ≤Chm−k

∥∥qh (x)
∥∥

(Hm(Γ))2 , −γ ≤ m≤ k, 0≤ k ≤ γ (38)

Proof. The proof follows from Property 3.2 and involves only algebraic manipula-
tions. Details can be found in [Li and Zhu (2009a)].

For the meshless solution qh of the variational problem (26), we have the following
error estimates.
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Theorem 5.1 Let q and qh be solutions of variational problems (22) and (26),
respectively. Assume that q ∈

(
Hm+1 (Γ)

)2
, then∥∥q−qh

∥∥
(H−1/2(Γ))2 ≤Chm+3/2 ‖q‖(Hm+1(Γ))2 (39)

where 0≤ m≤ γ and C is a constant independent of h.

Proof. Subtraction Eq. (26) from Eq. (22) yields

b
(

q−qh,q′
)

= 0, ∀q′ ∈
◦
Vh (Γ) (40)

then according to q′− qh ∈
◦
Vh (Γ), and using the continuity of the bilinear form

b(·, ·), one gets

b
(

q−qh,q−qh
)

= b
(

q−qh,q−q′
)

+b
(

q−qh,q′−qh
)

= b
(

q−qh,q−q′
)

≤ C2
∥∥q−qh

∥∥
(H−1/2(Γ))2

∥∥q−q′
∥∥
(H−1/2(Γ))2 (41)

and applying the coerciveness of b(·, ·) yields

b
(

q−qh,q−qh
)
≥C1

∥∥q−qh
∥∥2

(H−1/2(Γ))2 (42)

thus for any q′ ∈
◦
Vh (Γ), we obtain∥∥q−qh

∥∥
(H−1/2(Γ))2 ≤C inf

q′∈
◦
Vh(Γ)

∥∥q−q′
∥∥
(H−1/2(Γ))2 (43)

Since q′ is an arbitrary element in
◦
Vh (Γ), let

q′ = Shq (44)

where Sh denotes a projection from L2 (Γ) onto
◦
Vh (Γ). Note that qh 6= Shq. Hence,∥∥q−qh

∥∥
(H−1/2(Γ))2 ≤C‖q−Shq‖(H−1/2(Γ))2 (45)

On the other hand, from Theorem 3.1, we have

‖q−Shq‖(H0(Γ))2 ≤ ‖q−M q‖(H0(Γ))2 ≤Chm+1 ‖q‖(Hm+1(Γ))2 (46)
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thus according to a classical duality argument we deduce

‖q−Shq‖(H−1(Γ))2 = sup
f∈(H1(Γ))2

∫
Γ
(q−Shq) · fdS
‖f‖(H1(Γ))2

= sup
f∈(H1(Γ))2

∫
Γ
(q−Shq) · (f−Shf) dS
‖f‖(H1(Γ))2

≤ sup
f∈(H1(Γ))2

‖q−Shq‖(H0(Γ))2 ‖f−Shf‖(H0(Γ))2

‖f‖(H1(Γ))2

≤ Chm+2 ‖q‖(Hm+1(Γ))2 (47)

hence using an interpolation theorem of Sobolev spaces [Zhu and Yuan (2009)]
leads to

‖q−Shq‖(H−1/2(Γ))2 ≤‖q−Shq‖1/2
(H0(Γ))2 ‖q−Shq‖1/2

(H−1(Γ))2 ≤Chm+3/2 ‖q‖(Hm+1(Γ))2

(48)

Substituting Eq. (48) into Eq. (45) the proof ended.

Theorem 5.2 Let 1
/

2 ≤ k ≤ γ + 2, then we have a constant C independent of h
such that∥∥q−qh

∥∥
(H−k(Γ))2 ≤Chm+k+1 ‖q‖(Hm+1(Γ))2 , 0≤ m≤ γ (49)

Proof. Let q̃ = (q̃1, q̃2) ∈
( ◦

Hk−1 (Γ)
)2

be the solution of

g̃ j (x) =
2

∑
i=1

∫
Γ

Ui j (x,y) q̃i (y) dSy +ξ j, x ∈ Γ (50)

then according to Theorem 4.1,

‖q̃‖(Hk−1(Γ))2 ≤C‖g̃‖(Hk(Γ)
/
R)2 (51)

thus it follows from the classical duality argument that

∥∥q−qh
∥∥
(H−k(Γ))2 = sup

g̃∈(Hk(Γ)
/
R)2

∣∣∫
Γ

(
q−qh

)
· g̃dS

∣∣
‖g̃‖(Hk(Γ)

/
R)2

≤C sup
q̃∈(Hk−1(Γ))2

∣∣b(q−qh, q̃
)∣∣

‖q̃‖(Hk−1(Γ))2
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(52)

Now, we have from Eq. (40) that

b
(

q−qh, q̃
)

= b
(

q−qh, q̃−Shq̃
)

+b
(

q−qh,Shq̃
)

= b
(

q−qh, q̃−Shq̃
)

(53)

where Sh is a projection from L2 (Γ) onto
◦
Vh (Γ). Therefore, using the continuity of

the bilinear form b(·, ·) and inequality (48), we have

b
(

q−qh, q̃−Shq̃
)
≤ C

∥∥q−qh
∥∥
(H−1/2(Γ))2 ‖q̃−Shq̃‖(H−1/2(Γ))2

≤ Chm+k+1 ‖q‖(Hm+1(Γ))2 ‖q̃‖(Hk−1(Γ))2 (54)

The proof is completed via gathering Eqs. (52)-(54).

Remark 5.1 Theorem 5.2 shows that the highest rate of the convergence achieved
by our Galerkin method for the density function q is O

(
h2γ+3

)
in H−γ−2 (Γ).

Now we are in a position to estimate an error between the solution u given by Eq.
(17) and the approximate solution uh given by Eq. (36).

Theorem 5.3 There exists a constant C independent of h such that∥∥u−uh
∥∥

(H1(Ω))2×(W 1
0 (Ω′))2 ≤Chm+3/2 ‖q‖(Hm+1(Γ))2 , 0≤ m≤ γ (55)

Proof. It follows immediately from Theorems 4.1 and 5.1.

Theorem 5.4 There exists δ > 0, for ∀x∈R2 with d (x,Γ) = miny∈Γ {|x−y|} ≥ δ ,
we have

∣∣u(x)−uh (x)
∣∣≤C

(
γ+2

∑
l=0

(d (x,Γ))−l

)
hm+γ+3 ‖q‖(Hm+1(Γ))2 (56)

∣∣∂ αu(x)−∂
αuh (x)

∣∣≤C

(
γ+2

∑
l=0

(d (x,Γ))−l−|α|
)

hm+γ+3 ‖q‖(Hm+1(Γ))2 (57)

where 0≤ m≤ γ , |α|= α1 +α2 > 0 and C is a constant independent of h.
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Proof. According to Eqs. (17) and (36),

∣∣u j (x)−uh
j (x)

∣∣ =

∣∣∣∣∣ 2

∑
i=1

∫
Γ

U∗i j (x,y)
(

qi (y)−qh
i (y)

)
dSy

∣∣∣∣∣
≤

2

∑
i=1

∥∥U∗i j (x,y)
∥∥

Hγ+2(Γ)

∥∥qi (y)−qh
i (y)

∥∥
H−γ−2(Γ), j = 1,2 (58)

Because of d (x,Γ)≥ δ > 0, we have

∥∥U∗i j (x,y)
∥∥

Hγ+2(Γ) ≤C
γ+2

∑
l=0

(d (x,Γ))−l, i, j = 1,2 (59)

Thus by gathering Eqs. (49), (58) and (59) we can prove Eq. (56). The proof of
Eq. (57) is similar.

Theorem 5.4 obtained the error of the displacement field u and its derivatives out-
side the neighborhood of Γ, which shows extremely high accuracy can be achieved
not only for u but also for its derivatives. As a direct consequence, we state an error
between the stress tensor σ and its approximate solution σh.

Corollary 5.1 Let σ and σh be given by Eqs. (18) and (37), respectively. Then
under conditions of Theorem 5.4, we have

∣∣σ (x)−σ
h (x)

∣∣≤C

(
γ+2

∑
l=0

(d (x,Γ))−l−1

)
hm+γ+3 ‖q‖(Hm+1(Γ))2 (60)

where 0≤ m≤ γ and C is a constant independent of h.

Remark 5.2 Contrary to the case of the domain type methods, such as the FEM,
Theorem 5.4 and Corollary 5.1 indicate that the errors of stress σ and displacement
u in the GBNM are all of the same order.

Now we examine the case inside the neighbor of Γ.

Theorem 5.5 There exists δ > 0, for any x ∈ R2 with d (x,Γ) < δ and for given
ε > 0, we have a constant C independent of h such that∣∣u(x)−uh (x)

∣∣ ≤C (δ )hm+1−ε ‖q‖(Hm+1(Γ))2 , ε ≤ m≤ γ (61)
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Proof. We have∣∣u j (x)−uh
j (x)

∣∣≤ 2

∑
i=1

∥∥Ui j (x,y)
∥∥

H−ε (Γ)

∥∥qi (y)−qh
i (y)

∥∥
Hε (Γ) (62)

Let k = 2
1+ε

, then 0 < k < 2. Thus according to the Sobolev imbedding theorem,
L2 (Γ) ↪→ Lk (Γ) ↪→ H−ε (Γ). As a result,∥∥Ui j (x,y)

∥∥
H−ε (Γ) ≤C‖ln |x−y|‖H−ε (Γ) ≤C‖ln |x−y|‖L2(Γ) (63)

Let Γ∗ = {y ∈ Γ : |x−y|< δ} and `x = maxy∈Γ {|x−y|}, then

‖ln |x−y|‖2
L2(Γ) =

∫
Γ/Γ∗
|ln |x−y||2 dSx +

∫
Γ∗
|ln |x−y||2 dSx

≤
∫

Γ/Γ∗
(max{|ln`x| , |lnδ |})2 dSy +δ |lnδ |2 +2δ |lnδ |+2

∫
Γ∗

dSy

≤mes(Γ)
(

max{|ln`y| , |lnδ |}2
)

+δ |lnδ |2 +2δ |lnδ |+2mes(Γ)

(64)

so∥∥Ui j (x,y)
∥∥

H−ε (Γ) ≤C (δ ) (65)

Besides, using the triangle inequality yields∥∥q−qh
∥∥

(Hε (Γ))2 ≤ ‖q−Shq‖(Hε (Γ))2 +
∥∥Shq−qh

∥∥
(Hε (Γ))2 (66)

On the one hand, according to Lemma 5.1, Theorem 3.1 and Eq. (46) we have

‖q−Shq‖(Hε (Γ))2 ≤ ‖q−M q‖(Hε (Γ))2 +‖M q−Shq‖(Hε (Γ))2

≤ ‖q−M q‖(Hε (Γ))2 +Ch−ε ‖M q−Shq‖(H0(Γ))2

≤ ‖q−M q‖(Hε (Γ))2 +Ch−ε

{
‖M q−q‖(H0(Γ))2

+‖q−Shq‖(H0(Γ))2

}
≤ Chm+1−ε ‖q‖(Hm+1(Γ))2 , ε ≤ m≤ γ (67)

and, on the other hand, from Lemma 5.1, Theorem 5.1 and Eq. (48) we also have∥∥Shq−qh
∥∥

(Hε (Γ))2 ≤ Ch−1/2−ε
∥∥Shq−qh

∥∥
(H−1/2(Γ))2

≤ Ch−1/2−ε

(
‖Shq−q‖(H−1/2(Γ))2 +

∥∥q−qh
∥∥
(H−1/2(Γ))2

)
≤ Chm+1−ε ‖q‖(Hm+1(Γ))2 , ε ≤ m≤ γ (68)
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Thus,∥∥q−qh
∥∥

(Hε (Γ))2 ≤Chm+1−ε ‖q‖(Hm+1(Γ))2 , ε ≤ m≤ γ (69)

Finally, the theorem follows by collecting Eqs. (62), (65) and (69).

Remark 5.3 Because ∂u
/

∂n is discontinuous at the points of Γ, we cannot obtain
error of |∂u−∂uh| inside the neighborhood of Γ.

6 Numerical experiments

In the following test examples we restrict ourselves to elastic problems whose ana-
lytic are available and, therefore, our numerical solutions can easily be compared.
Here we used uniformly distributed boundary nodes. Besides, the polynomial basis
is chosen as a quadratic basis, and the weight function is a cubic spline function

wi (x) =


2
/

3−4d2 +4d3, d ≤ 1
/

2
4
/

3−4d +4d2−4d3
/

3, 1
/

2 < d ≤ 1
0, d > 1

(70)

where d = |x−xi|
/

h, h is the radius of the weight functions. In all examples, h is
taken to be 3.0d̄, with d̄ as the nodal spacing.

6.1 Patch test

Consider the standard patch test in a square of dimensional 1× 1. The origin of
the coordinate is located on the left lower corner of the patch. This is a Dirichlet
problem for the displacements [Kothnur, Mukherjee, and Mukherjee (1999)]

u1 = 2x1 +3x2, u2 = 3x1 +2x2 (71)

The comparison of the exact solutions and numerical solutions with 40 nodes are
plotted in Fig. 1. It is clearly shown that the numerical solutions are in excel-
lent agreement with the exact solutions. Thus we can conclude that the proposed
method can pass the patch test successfully.

Besides, Tab. 1 shows the comparison of the displacements obtained by the GBNM
and the BNM [Kothnur, Mukherjee, and Mukherjee (1999)] at various points. It
can be found that the GBNM results are more accurate than the BNM results.

6.2 Cantilever beam

The second example involves the well-known cantilever beam which is shown in
Fig. 2. The length and width of the beam are L = 48m and D = 12m, respectively.
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Figure 1: Displacement u and its derivatives at x2 = 0.5 for the patch test

Table 1: Relative errors at various points for the patch test (N = 80)

Location
Error in [u1]% Error in [u2]%
GBNM BNM GBNM BNM

0.25, 0.25 0.004 0.336 0.004 0.336
0.25, 0.50 -0.001 0.180 0.000 0.051
0.25, 0.75 -0.002 0.116 0.000 -0.014
0.50, 0.25 0.000 0.051 -0.001 0.180
0.50, 0.50 -0.003 0.000 -0.003 0.000
0.50, 0.75 -0.004 -0.096 -0.003 -0.011
0.75, 0.25 0.000 -0.014 -0.002 -0.012
0.75, 0.50 -0.003 -0.012 -0.004 -0.027
0.75, 0.75 -0.007 -0.011 -0.007 -0.011

The load is P = 1000kN. A plain stress condition is considered. The other pa-
rameters that are used in our analysis are Young’s modulus E = 3.0×107kPa and
Poisson’s ration ν = 0.3. The analytical solution is given by

u1 =
Px2

6EI

[
(6L−3x1)x1 +(2+ν)

(
x2

2−
D2

4

)]
(72)
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u2 =− P
6EI

[
3νx2

2 (L− x1)+(4+5ν)
D2x1

4
+(3L− x1)x2

1

]
(73)

where the moment of inertia I of the beam is given by I = D3
/

12.

The stresses corresponding to the displacements are

σ11 =
P(L− x1)x2

I
, σ22 = 0, σ12 =− P

2I

(
D2

4
− x2

2

)
(74)

Figure 2: A cantilever beam with a parabolic traction at the free end

Fig. 3 and Fig. 4 display a comparison between the present numerical results with
the exact solutions for displacement u and stress σ , respectively. In this analy-
sis, we applied 80 boundary nodes. Excellent agreement between the solutions is
achieved in both figures.

To show the convergence of the presented method, regularly distributed 20, 40, 80
and 160 nodes are used. In this study, the ratio of the number of nodes on A1A2

and A3A4 to that on A1A4 and A2A3 is kept constant and equal to 4. The results of
convergence of u are shown in Fig. 5. It is observed that the numerical rate matches
our theoretical result.

For investigating the behavior of points far away from the boundary and near the
boundary, the values of the numerical approximations of displacement u and stress
σ at some inner points are given in Tab. 2. The results show that the error decreases
with the increase of the boundary nodes. The numerical convergence rates of u and
σ match our theoretical results for points far away from the boundary. While points
lie in the neighborhood of Γ, the numerical results of u also confirm the theoretical
error statements.
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Figure 3: Results of displacement u for cantilever beam at the section x1 = L
2

Figure 4: Stress σ along the line x1 = L
2 for the cantilever beam
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Figure 5: The convergence for the cantilever problem

Table 2: Approximations and convergence rates for the cantilever beam

x1, x2
Numerical solutions

Exact Rates
N=20 N=40 N=80 N=160

30.0, 0.00

u1(∗10−7) -0.28745 0.05436 -0.00270 0.00040 0.00000 3.28
u2(∗10−2) -0.41851 -0.41896 -0.41875 -0.41875 -0.41875 3.32
σ11 0.99897 -0.15223 -0.00230 0.00026 0.00000 4.18
σ22 -0.71990 0.27087 0.00170 0.00002 0.00000 5.25
σ12(∗102) -0.79391 -1.32595 -1.24983 -1.24991 -1.25000 4.55

12.0, 1.20

u1(∗10−3) 0.13400 0.13682 0.13632 0.13632 0.13632 4.58
u2(∗10−2) -0.08112 -0.08304 -0.08267 -0.08268 -0.08268 3.40
σ11(∗102) 3.10274 3.08926 3.00069 3.00009 3.00000 3.75
σ22(∗101) 4.07492 -2.08392 -0.01153 -0.00117 0.00000 4.28
σ12(∗102) -1.61741 -1.06580 -1.20098 -1.20017 -1.20000 4.08

30.0, 5.0000 u1(∗10−2) 0.11262 0.11432 0.11407 0.11410 0.11410 3.07
30.0, 5.9000 u1(∗10−2) 0.13355 0.13566 0.13504 0.13515 0.13515 2.52
30.0, 5.9900 u1(∗10−2) 0.13500 0.13741 0.13699 0.13726 0.13726 2.57
30.0, 5.9990 u1(∗10−2) 0.13512 0.13754 0.13713 0.13741 0.13748 1.27
30.0, 5.9999 u1(∗10−2) 0.13513 0.13755 0.13714 0.13742 0.13750 1.20



22 Copyright © 2009 Tech Science Press CMES, vol.45, no.1, pp.1-29, 2009

6.3 Exterior problems

The following displacement field, which is an exact solution of the elasticity Navier
equations of problem (11), is imposed at the displacement nodes on the boundary:

u1 =
x1

x2
1 + x2

2

, u2 =
x2

x2
1 + x2

2

, in Ω
′ = R2/([−1,1]× [−1,1]) (75)

This exterior problem is solved for the plane strain case with the Poisson’s ration
ν = 0.3 and Young’s modulus E = 2.5. The numerical results are compared against
analytical solutions as shown in Fig. 6 and Fig. 7. In this analysis, we employed 32
boundary nodes. The numerical solutions are seen to capture the behavior of the
exact solutions very well.

Figure 6: Displacement u for the exterior problem along the line x1 = 2

When four different regular nodes arrangements of 2, 4, 8 and 16 nodes on each
edge have been used, the convergence rate is plotted with respect to Sobolev norms
in Fig. 8. Here again, the convergence is in accordance with our theoretical result.

The values of the numerical solutions of u and σ at some inner points are displayed
in Tab. 3. As we expected, the results from the proposed meshless method gradually
converge to the exact values along with the decrease of the radii of the weight
functions, and the numerical results also confirm theoretical results.
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Figure 7: Stress components for the exterior problem along x1 = 2

Figure 8: Convergence of the exterior problem

7 Conclusions

The Galerkin boundary node method (GBNM) based on a variational formulation
of BIEs and the MLS technique is developed in this paper for linear elasticity. Com-
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Table 3: Approximations and convergence rates for the exterior problem

x1, x2
Numerical solutions

Exact Rates
N=8 N=16 N=32 N=64

10.0, 10.0

u1(∗10−1) 0.59006 0.54211 0.50013 0.50006 0.50000 4.01
u2(∗10−1) 0.01625 0.49683 0.50023 0.50004 0.50000 4.47
σ11(∗10−3) -0.48694 0.13116 0.00067 -0.00023 0.00000 4.08
σ22(∗10−2) -0.15504 0.00608 -0.00011 0.00001 0.00000 4.61
σ12(∗10−2) -1.11253 -0.94890 -0.96191 -0.96164 -0.96154 3.69

0.2, 1.1000 u2 0.83392 0.88297 0.88010 0.87995 0.88000 3.41
0.2, 1.0100 u2 0.82090 0.94168 0.93179 0.95181 0.95274 2.05
0.2, 1.0010 u2 0.81914 0.93864 0.93041 0.95444 0.96065 1.31
0.2, 1.0001 u2 0.81898 0.93835 0.93030 0.95457 0.96145 1.27

pared with domain type meshless method, such as the EFGM, the LBIE method and
the MLPG approach, the new approach is a boundary type meshless method which
has the well-known dimensionality of the BEM; compared with the conventional
BEM, it is a meshless method which requires only a nodal data structure on the
bounding surface of the domain to be solved; compared with other meshless meth-
ods such as the BNM and the EFGM where introducing the MLS also, boundary
conditions in the GBNM can be satisfied easily and directly in terms of multiplying
the boundary function by a test function and integrating over the boundary.

We set up a framework for error estimates of the GBNM in Sobolev spaces. The
error results show that the error bound of the numerical solution is directly related to
the radii of the weight functions. Besides, the displacement field and the stress field
possess L∞-superconvergence outside the neighborhood of Γ, they hold the same
convergence rate. Furthermore, we have got the convergence of the displacement
in L∞ norm in the vicinity of Γ. Some numerical tests have been given and the
numerical results are accurate and are in agreement with the theoretical analysis.

In the GBNM, the symmetry and positive definiteness of the variational problems
can be kept. The property of symmetry can be an added advantage in coupling
the GBNM with the FEM or other established meshless methods. This coupled
technique is especially suited for the problems with unbounded domain. This is a
subject of the further studies.
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