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A Discontinuous Galerkin Meshfree Modeling of Material
Interface
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Abstract: A discontinuous Galerkin meshfree formulation is proposed to solve
the potential and elasticity problems of composite material where the material inter-
face has to be appropriately modeled. In the present approach the problem domain
is partitioned into patches or sub-domains and each patch holds the same mate-
rial properties. The discretized meshfree particles within a patch are classified as
one particle group. Various patches occupied by different particle groups are then
linked using the discontinuous Galerkin formulation where an averaged interface
flux or traction is constructed based on the fluxes or tractions computed from the
adjacent patches. The gradient jump condition across the material interface is accu-
rately captured by the boundary of the neighboring particle groups. The continuity
of the primary field variable and the resulting interface flux or traction across the
material interface is enforced weakly in the variational form through the corre-
sponding constraints. There are no additional unknowns like Lagrange multipliers
and special interface functions as well in the proposed approach. The effectiveness
of the present method is demonstrated by several typical numerical examples.

Keywords: meshfree method, discontinuous Galerkin formulation, composite ma-
terial, material interface, gradient jump

1 Introduction

Significant progress has been made on the class of meshfree or meshless methods
since the early 1990s due to their advantages on solving large deformation prob-
lems with severe mesh distortion, high order problems like thin plates and shells,
and moving boundary problems like crack propagation. These methods with fast
growing research interests and applications mainly comprise: smoothed particle hy-
drodynamics method (SPH) [Lucy (1977), Gingold and Monaghan (1977), Wong
and Shie (2008)], radial basis function method (RBF)[Kansa (1990), Kosec and
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Sarler (2008), Wen et al (2008)], diffusive element method (DEM) [Nayroles et
al (1992)], element free Galerkin method (EFG) [Belytschko et al (1994, 1996),
Chen et al (2009)], reproducing kernel particle method (RKPM) [Liu et al (1995),
Chen et al (1996), Wu et al (2008)], partition of unity method (PUM) [Babuška and
Melenk (1996), Sethuraman and Rajesh (2009)], meshless local Petrov-Galerkin
method (MLPG) and its mixed generalizations [Atluri and Zhu (1998), Atluri et al
(2006a, 2006b), Li and Atluri (2008a, 2008b), Mohammadi (2008), Sladek et al
(2008), Pini et al (2008)], local boundary integral equation method (LBIE) [Zhu
et al (1998), Chen et al (2007), Sellountos et al (2009)], method of fundamental
solutions (MFS)[Golberg and Chen (1998), Liu(2008), Marin(2008)], natural ele-
ment method (NEM) [Sukumar et al (1998)], reproducing kernel element method
(RKEM) [Liu et al (2004)], etc. A comprehensive review of the state of the art for
meshfree methods can be found in the monographs by Atluri and Shen (2002), Liu
(2003), Atluri (2004), Li and Liu (2004), and the articles by Babuška et al (2003),
Monaghan (2005).

Among the various types of meshfree methods the moving least square (MLS)
[Lancaster and Salkauskas (1983)] and reproducing kernel (RK) [Liu et al (1995)]
meshfree approximations are often employed as the shape function. It turns out
that the MLS and RK approximations are equivalent if monomial basis is em-
ployed [Atluri and Shen (2002)]. The globally conforming and highly smoothing
properties of MLS/RK meshfree approximation enable the meshfree methods work
particularly well for problems requiring higher order continuity, such as thin plate
and shell problems we just mentioned at the beginning. For general problems a
smooth stress field can also be directly obtained without needing any special post-
processing. On the other hand this smoothing characteristic could cause severe
solution oscillation when dealing with the problems involving material interface
such as composite material problems. The reason lies behind this undesired re-
sult is that the smooth MLS/RK meshfree shape functions with overlapping local
supports can not properly model the gradient jump condition across the material
interface and thus special techniques are required for the Galerkin meshfree formu-
lations to properly treat the material interface.

Several methods have been developed to model the material interface. Codes and
Moran (1996) introduced the interface continuity conditions into the variational
form of meshfree discretization using Lagrange multipliers. This approach leads
to more additional unknowns to be solved. Krongauz and Belytschko (1998) mod-
eled the material interface by adding a special jump function into the conventional
MLS/RK approximation of the dependent field variable. Additional unknowns as-
sociated with the special jump function are required as well in this method. The
special jump function was also built into the meshfree shape function by Wang



A Discontinuous Galerkin Meshfree Modeling of Material Interface 59

et al (2003) based upon the consistency conditions and no additional unknowns
are introduced in this approach. However in this method the coupled meshfree
shape function is much more involved than the conventional MLS/RK approxi-
mation. In the category of MLPG methods, the methods of MLPG2 and MLPG5
were combined to effectively treat the material discontinuity by Li et al (2003). In
this approach the consistency conditions can not be preserved since different basis
functions were used by MLPG2 and MLPG5. Batra et al (2004) used two MLPG
formulations and systematically compared the methods of Lagrange multiplier and
jump function for material interface treatment. Masuda and Noguchi (2006) em-
ployed a discontinuous derivative basis function in the MLS/RK approximation to
simulate the interface discontinuity. In this formulation it is noticed the discontin-
uous basis function actually also serves as a special gradient jump function and the
related meshfree shape function has to be modified.

Meanwhile the discontinuous Galerkin (DG) methods have also attracted a lot of
research effort and have been applied to different problems [Oden at al (1998),
Cockburn et al eds (2000), Zienkiewicz et al (2003), Engel et al (2004), Liu et al
(2009)]. In the DG formulation the continuity of the field variable and its resulting
interface flux or traction across the element boundary is imposed in the weak form.
In this paper the Galerkin meshfree methods such as EFG and RKPM are reformu-
lated under the discontinuous Galerkin framework to treat the interface problems of
composite material. Both potential and elasticity problems are discussed. Within
this approach the problem domain is decomposed into patches or sub-domains and
the construction of meshfree approximation over each patch is standard and fully
independent. The meshfree particles in each patch are named as one particle group.
The domains occupied by different particle groups are then combined together us-
ing the discontinuous Galerkin formulation where an averaged interface flux or
traction is constructed based on the fluxes and tractions obtained from the neighbor-
ing patches. No additional unknowns like Lagrange multipliers as well as special
interface functions appear in this formulation. The gradient jump of the dependent
field variable is properly captured by the boundary of the adjacent patches and the
continuity of the dependent field variable and the associated flux or traction cross-
ing the material interface is realized weakly through an augmented variational form
including the corresponding continuity constraints.

This paper is organized as follows. The MLS/RK approximation is briefly sum-
marized and the incompatibility of the patch-based MLS/RK approximation is dis-
cussed in Section 2. In Section 3 the discontinuous Galerkin meshfree formulations
are presented for potential and elasticity problems to treat the material interface.
Section 4 presents several benchmark numerical examples to examine the effec-
tiveness of the proposed approach. Finally conclusions are drawn in Section 5.
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2 MLS/RK Approximation and Incompatibility of Patch-based Approxima-
tion

2.1 MLS/RK Approximation

In MLS/RK approximation, the problem domain Ω is discretized by a set of parti-
cles xI , I = 1,2, ...,NP, and the approximation of the field variable u(x), denoted
by uh(x), can be expressed as:

uh(x) =
NP

∑
I=1

ΨI(x)dI (1)

with ΨI(x) and dI being the MLS/RK shape function and nodal coefficient associ-
ated with the particle I, respectively. The shape function ΨI(x) takes the following
form:

ΨI(x) = hT (xI−x)b(x)φa(xI−x) (2)

where b(x) is a position dependent coefficient vector. φa(xI−x) is the kernel func-
tion that centers at xI and has a compact support a, and h(xI−x) is a vector of n-th
order monomial basis defined as:

hT (xI−x) =
{

1,(xI− x),(yI− y),(xI− x)2, ...,(xI− x)n, ...,(yI− y)n} (3)

The coefficient vector can be obtained by imposing the following n-th order repro-
ducing conditions:

NP

∑
I=1

ΨI(x)xi
Iy

j
I = xiy j, i, j = 0,1,2, ...,n (4)

Eq. (4) can be further recast into a vector form as:

NP

∑
I=1

ΨI(x)h(xI−x) = h(0) (5)

Introducing Eq. (2) into Eq.(5) yields:

M (x)b(x) = h(0) (6)

where M (x) is the moment matrix given by:

M (x)≡
NP

∑
I=1

h(xI−x)hT (xI−x)φa(xI−x) (7)
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Solving b(x) = M−1(x)h(0) from Eq.(6) and thus the MLS/RK shape function
finally becomes:

ΨI(x) = hT (0)M−1(x)h(xI−x)φa(xI−x) (8)

 
Figure 1: Meshfree discretization of a two-phase composite

2.2 Incompatibility of Patch-based MLS/RK Approximation

As we know for a given function the MLS/RK approximation defined by Eqns.
(1) and (8) produces a approximation which has the same order of smoothness as
that of the kernel function φa(xI − x). Here the widely used cubic B-spline func-
tion is employed as the kernel function and thus the MLS/RK is C2 continuous
over the problem domain. On the other hand, when one treats a heterogeneous
material like a two-phase composite as shown in Fig. 1, it is natural to separate
the problem domain into two patches or sub-domains Ω(1) and Ω(2) with different
material properties, i.e., Ω =∪2

e=1Ω(e). After the meshfree discretization the mesh-
free particles are also arranged into two particle groups, namely G(1) and G(2) for
the patches Ω(1) and Ω(2), respectively. The number of particles within G(1) and
G(2) are denoted by NP1 and NP2, on the martial interface Γs there are NS particles
that are shared by G(1) and G(2). Clearly the total number of meshfree particles is
NP = NP1 +NP2−NS. The MLS/RK approximations in each patch are constructed
independently as follows:

uh(1)(x) = ∑
I∈G(1)

Ψ
(1)
I (x)d(1)

I , uh(2)(x) = ∑
J∈G(2)

Ψ
(2)
J (x)d(2)

J (9)
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where Ψ
(1)
I , d(1)

I and Ψ
(2)
J , d(2)

J are the MLS/RK shape functions and nodal un-

knowns for the two patches. Note Ψ
(1)
I ’s, I = 1,2, ...,NP1, are built purely us-

ing the particles in G(1) and only the particles in G(2) are employed to construct
Ψ

(2)
I ’s, J = 1,2, ...,NP2. However due to the overlapping effect of the various

MLS/RK shape functions, this straightforward patched-based MLS/RK approxi-
mation scheme would lead to truncated kernel supports and thus yields an incom-
patible approximation across the material interface. Next we illustrate this incom-
patibility through two examples.

 
Figure 2: Patch-based 1D meshfree approximation

First let’s consider a 1D function f (x) = x3− x2, x ∈ [0, 5], the problem domain
is partitioned into two patches Ω(1) = [0, 2.5] and Ω(2) = [2.5, 5]. The meshfree
discretization with 11 uniformly spaced particles is shown in Fig. 2, a linear basis
function with a normalized support size of 3.0 is employed in the MLS/RK ap-
proximation. Here the MLS/RK approximation is carried out in the two patches
independently using Eq. (9) and the result as shown in Fig. 2 apparently proves
that a discontinuity of the approximate f (x) occurs at the interface of these two
patches.

To further look at the incompatibility of patch-based approximation, an approxi-
mation of the 2D function: f (x) =−[(x−5)3− x2 + y3− y2] as shown in Fig. 3(a)
is considered. The problem domain is Ω = [0, 10]× [0, 5] that is equally parti-
tioned into two patches: Ω(1) = [0, 5]× [0, 5], Ω(2) = [5, 10]× [0, 5]. Similar to
the 1D case, the discretization is regular with 10× 5 particles. The basis order
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(a) (b) 
 

Figure 3: Patch-based 2D meshfree approximation: (a) f (x); (b) approximation of
f (x)

and normalized support size of the MLS/RK approximation in each patch are 1
and 3.0, respectively. The patch-based meshfree approximation of f (x) is plotted
in Fig. 3(b). It again demonstrates that at the interface of the two patches there
is an incompatibility. To ensure the convergence of the meshfree method, this in-
compatibility has to be treated properly. In this study the discontinuous Galerkin
formulation is employed to remove this incompatibility.

3 Discontinuous Galerkin Meshfree Formulation for Interface Problems

3.1 Potential Problem

Without loss of generality we start with a potential problem with two phase ma-
terial properties as shown in Fig. 1, where the problem domain Ω consists of two
patches Ω(1) and Ω(2) that are separated by the material interface Γs. The governing
equation of a potential problem can be stated as:

divq+ s = 0 in Ω

n ·q = t on Γt

u = g on Γg
(10)

where div denotes the divergence operator, s is the source term, Γt and Γg denote
the natural and essential boundaries, respectively. n is the outward normal of Γt . q
and the dependent scalar field variable u are related as: q = k∇u with ∇ being the
gradient operator. k is a second order symmetric tensor, for isotropic case one has
ki j = kδi j. On the material interface Γs, the field variable u and the directional flux
n ·q are required to be continuous:

[[u(x)]] = u(2)(x)−u(1)(x) = 0, x ∈ Γ
s (11)
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n(1)(x) ·q(1)(x)−n(2)(x) ·q(2)(x) = 0, x ∈ Γ
s (12)

where u(1) and u(2), n(1) and n(2), q(1) and q(2) represent the values of dependent
field variable u, interface outward normal n, and flux q taken from the neighboring
patches Ω(1) and Ω(2) as shown in Fig. 1, respectively. Define an averaged interface
flux 〈q(x)〉 as:

〈q(x)〉= 1
2

[
q(1)(x)+q(2)(x)

]
, x ∈ Γ

s (13)

Thus since n(1) =−n(2), the interface flux balance of Eq. (12) is equivalent to say
that:

n(1)(x)·< q(x) >= 0, x ∈ Γ
s (14)

Based on the discontinuous Galerkin formulation, the continuity constraints of Eq.
(11) and (14) are imposed in a weak sense through the following augmented varia-
tional form of Eq. (10):∫

Ω

∇δu ·k∇udΩ−
∫

Ω

δusdΩ−
∫

Γh
δutdΓ+

∫
Γs

n(1) · 〈δq〉[[u]]dΓ

+
∫

Γs
[[δu]]n(1) · 〈q〉dΓ = 0 (15)

For convenience of development, Eq. (9) is rewritten in a vector form as:

uh(1)(x) = ΨΨΨ
(1)(x)d, uh(2)(x) = ΨΨΨ

(2)(x)d (16)

where

ΨΨΨ
(1) =

{
Ψ

(1)
1 Ψ

(1)
2 . . . Ψ

(1)
NP1

01×(NP2−NPS)

}
1×NP

(17)

ΨΨΨ
(2) =

{
01×(NP1−NS) Ψ

(2)
1 Ψ

(2)
2 . . . Ψ

(2)
NP2

}
1×NP

(18)

d =
{

d1 d2 . . . dNP
}T

1×NP
(19)

Introducing Eq. (16) into Eq. (15) gives the following discretized equilibrium
equations:

Kd = f, K =
3

∑
e=1

K(e), f =
2

∑
e=1

f(e) (20)
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where

K(e) =
∫

Ω(e)
B(e)T

k(e)B(e)dΩ, e = 1,2 (21)

f(e) =
∫

Ω(e)
ΨΨΨ

(e)T
sdΩ+

∫
Γh∩Γ(e)

ΨΨΨ
(e)T

tdΓ, e = 1,2 (22)

K(3) = sym

[∫
Γs

(
2

∑
e=1

B(e)T
k(e))n(1)(ΨΨΨ(2)−ΨΨΨ

(1))dΓ

]
(23)

B(e) =

{
ΨΨΨ

(e)
,x

ΨΨΨ
(e)
,y

}
, e = 1,2 (24)

with sym[·] being the symmetric operator given by sym[A] = (A+AT )/2. K(e) and
f(e), e = 1,2, are the stiffness and force contributions from the two patches. K(3) is
the material interface stiffness contribution from the last two terms in Eq. (15).

3.2 Elasticity Problem

In case of elasticity problem where the dependent variable is a vector field of dis-
placement u, the governing equation becomes:

divσσσ + s = 0 in Ω

n ·σσσ = t on Γh

u = g on Γg
(25)

where σσσ is the tress tensor, s denotes the body force, t and g are the prescribed
traction and displacement on the natural and essential boundaries Γh and Γg, re-
spectively. The stress-strain relationship is given by the Hooke’s law:

σσσ = C : εεε, εεε =
1
2

[
∇u+(∇u)T ] (26)

The elastic material properties are C(1) and C(2) within Ω(1) and Ω(2), respectively.

Similar to the preceding formulation of potential problem, by invoking the discon-
tinuous Galerkin formulation for the treatment of the interface incompatibility, the
variational statement of the problem of (25) becomes∫

Ω

δεεε : C : εεεdΩ−
∫

Ω

δu · sdΩ−
∫

Γh
δu · tdΓ+

∫
Γs

n(1) · 〈δσσσ〉 [[u]]dΓ

+
∫

Γs
[[δu]] · 〈σσσ〉n(1)dΓ = 0 (27)
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where again the last two terms in Eq. (27) imply a weak enforcement of the dis-
placement and traction continuity constraints given by:

[[u(x)]] = u(2)(x)−u(1)(x) = 0, x ∈ Γ
s (28)

σσσ
(1)n(1)−σσσ

(2)n(2) = 0, x ∈ Γ
s (29)

The 2D MLS/RK approximation for the elasticity problem is given by:

uh(1)(x) = ΨΨΨ
(1)(x)d, uh(2)(x) = ΨΨΨ

(2)(x)d (30)

where

ΨΨΨ
(1) =

[
Ψ

(1)
1 0 Ψ

(1)
2 0 ... ... Ψ

(1)
NP1

0 01×2(NP2−NS)

0 Ψ
(1)
1 0 Ψ

(1)
2 ... ... 0 Ψ

(1)
NP1

01×2(NP2−NS)

]
2×2NP

(31)

ΨΨΨ
(2) =

[
01×2(NP1−NS) Ψ

(2)
1 0 Ψ

(2)
2 0 ... ... Ψ

(2)
NP2

0

01×2(NP1−NS) 0 Ψ
(2)
1 0 Ψ

(2)
2 ... ... 0 Ψ

(2)
NP2

]
2×2NP

(32)

d =
{

d11 d12 d21 . . . dNP1 dNP2
}T

2×NP
(33)

Subsequently substituting Eq. (30) into Eq. (27) leads to the discrete matrix equa-
tions that take the same form of Eq. (20), whereas the stiffness and force contribu-
tions now become::

K(e) =
∫

Ω(e)
B(e)T

C(e)B(e)dΩ, e = 1,2 (34)

f(e) =
∫

Ω(e)
ΨΨΨ

(e)T
sdΩ+

∫
Γh∩Γ(e)

ΨΨΨ
(e)T

tdΓ, e = 1,2 (35)

K(3) = sym

[∫
Γs

(
2

∑
e=1

B(e)T
C(e))N(1)T

(ΨΨΨ(2)−ΨΨΨ
(1))dΓ

]
(36)

where

B(e) = ∇̂ΨΨΨ
(e), ∇̂ =

[
∂

∂x 0 ∂

∂y

0 ∂

∂y
∂

∂x

]T

, e = 1,2 (37)

N(1) =

[
n(1)

x 0 n(1)
y

0 n(1)
y n(1)

x

]T

, e = 1,2 (38)
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4 Numerical Results

Four typical numerical examples are presented in this section to examine the effi-
cacy of the proposed method. The domain integration is carried out by the 5 by 5
Gauss quadrature for all test examples. To convergence study is performed accord-
ing to the following standard L2 and H1 error norms of the dependent field variable
u:

L2err(u) =
∫

Ω

(uiui)dΩ, 1≤ i≤ nu (39)

H1err(u) =
∫

Ω

(uiui +ui, jui, j)dΩ, 1≤ i≤ nu, 1≤ j ≤ nsd (40)

where nu is the dimension of u and nsd denotes the dimension of the problem do-
main Ω, i.e., u : Ω→ Rnu , Ω⊂ Rnsd .

4.1 1D Bar Problem

The 1D composite bar problem [Codes and Moran (1996)] is shown in Fig. 4. The
geometry and material properties of the two materials are: length L = 10, cross
section area A = 1, elastic moduli: E1 = 10, E2 = 1 for Ω(1) and Ω(2), respectively.
The bar is subjected to a body force: s(x) = a0 + a1x− a2x2 + a3x3. In this test,
we consider a0 = 0,a1 = 25,a2 = −7.5,a3 = 0.5. The governing equation of this
problem is:

d
dx

(
E(x)du

dx

)
+ s(x) = 0, x ∈ (0,L)

u(0) = 0, u(L) = ū = 1
(41)

 

Figure 4: 1D composite bar

The corresponding exact solution is given by:

u(x) =

{
1

E1
[E2Bx+C(x)], x ∈ [0, xs]

1+B(x−L)+ C(x)−C(L)
E2

, x ∈ (xs, L]
(42)
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with

B = E1E2−C(xs)(E2−E1)−C(L)E1
E2[(E2−E1)xs+10E1]

C(x) =−
(

a0
x2

2 +a1
x3

6 +a2
x4

12 +a3
x5

20

) (43)

where xs denotes the material interface, here xs = 5.

 

Figure 5: Comparison of u(x) for 1D
composite bar problem

 

Figure 6: Comparison of u,x(x) for 1D
composite bar problem

This problem is solved by the conventional meshfree method (MF) and the present
discontinuous Galerkin meshfree method (DGMF). A normalized support size of
2.0 is employed in the solution process. The results of both displacement and strain
using 21 particles are plotted in Figs. 5 and 6. It can be seen that DGMF can model
the material interface with excellent accuracy whereas the solutions with MF show
obvious gradient oscillation near the material interface. The convergence study as
shown in Figs. 7 and 8 further demonstrates that DGMF produces much smaller
solution errors with higher rates of convergence compared to those obtained using
MF.

4.2 Rectangular Plate with Inclined Straight Material Interface

Consider a rectangular plate with unit thickness as shown in Fig. 9. The plate
is under plane stress condition and the two materials are separated by an inclined
straight material interface. The geometry and material properties are: a = 1, b = 2,
E1 = 2, E2 = 10, the Poisson ratio is the same for both materials, i.e., ν = 0.3. The
plate is subjected to the following displacement boundary conditions: ux(0,y) = 0,
uy(0,0) = 0, ux(2,y) = 0.02.

The meshfree discretizations for this problem are shown in Fig. 10. A normalized
support size of 2.0 is employed for the meshfree approximation. Since no analytical
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Figure 7: Comparison of L2 error for
1D composite bar problem

 

Figure 8: Comparison of H1 error for
1D composite bar problem

 

Figure 9: A rectangular plate with inclined straight material interface

 
Figure 10: Meshfree Discretizations for rectangular plate problem
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solution is available for this problem, a finite element solution obtained by 5000
bi-linear quadrilateral elements is taken as the reference or “exact” solution. The
x-direction displacement and strain solutions at the line of y = 0.5 based different
methods with 231 particles are shown in Figs. 11 and 12, where better solutions
are observed for DGMF approach. The convergence results as shown Figs. 13 and
14 also favor DGMF with lower errors and superior convergence rates for both H1
and L2 error measures.

 

Figure 11: Comparison of ux for rectan-
gular plate problem

 

Figure 12: Comparison of εx for rectan-
gular plate problem

 

Figure 13: Comparison of L2 error for
rectangular plate problem

 

Figure 14: Comparison of H1 error for
rectangular plate problem

4.3 Hollow Cylinder Potential Problem

Another problem we consider here is a scalar potential problem for the two-phase
composite as shown in Fig. 15. The geometry and material properties are: ri = 1,
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Figure 15: Hollow cylinder problem

ro = 4, rs = 2, k1 = 10, k2 = 1. The problem are subjected to the essential boundary
conditions at the inner and outer boundaries: as: u(ri) = 10, u(ro) = 40. The
governing equation of this axisymmetric problem is given by

d
dr (kr du

dr ) = 0
u(ri) = ui = 10
u(ro) = uo = 40

(44)

The exact solution of this problem can be obtained as:

u(r) =


uo−ui

lnrs−lnri−ln(rs
k1
k2

)+ln(ro
k1
k2

)
(lnr− lnri)+ui r ∈ [ri,rs]

(uo−ui)k1

[lnrs−lnri−ln(rs
k1
k2

)+ln(ro
k1
k2

)]k2
(lnr− lnro)+uo r ∈ (rs,ro]

(45)

Due to the two-fold symmetry only a quarter model is used for the meshfree solu-
tion. Fig.16 lists the meshfree discretizations employed in the computation. The
normalized support size for this example is 2.0 for the meshfree approximation.
Figs. 17-18 shows that the solutions obtained by DGMF and MF along the sym-
metric line of the meshfree model with 289 particles. Clearly the solutions by
DGMF match very well the analytical solutions and this is not the case for the so-
lutions solved by MF. To see the performance of the present method in a more clear
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and straightforward way, Figs. 19 and 20 show the distributions of temperature and
its radial gradient from both three dimensional and plane views. The convergence
rates are compared in Figs. 21-22. They again demonstrate the DGMF can model
the interface problem with much better solution accuracy than MF.

 
Figure 16: Meshfree discretizations for hollow cylinder problem

 

Figure 17: Comparison of u for hollow
cylinder potential problem

 

Figure 18: Comparison of u,r for hollow
cylinder potential problem

4.4 Hollow Cylinder Elasticity Problem

The hollow cylinder problem as shown in Fig. 15 is re-considered here for the
elasticity case under plane strain condition. The geometric parameters are the same
as those of the previous example and the elastic material properties are given by:
E1 = 2, E2 = 10, and Poisson ratio ν = 0.3 for both materials. The corresponding
Lame’s constants are: λ1 = 1.15,λ2 = 5.77 and µ1 = 0.77,µ2 = 3.85. The inner
and outer boundary conditions are: ur(ri) = 0, uθ (ri) = 0; ur(ro) = ro, uθ (ro) = 0.
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Figure 19: Comparison of u for hollow cylinder potential problem via three dimen-
sional and plane views

The equilibrium equation of this elasticity problem is:

d
dr [

1
r

d
dr (rur)] = 0

ur(ri) = 0; uθ (ri) = 0
ur(ro) = ro; uθ (ro) = 0

(46)

The exact solution of this problem is

ur(r) =

{
αr−αr2

i
1
r

αr2
i +r2

o−αr2
s

r2
o−r2

s
r + (α−1)r2

s r2
o−αr2

i r2
o

r2
o−r2

s

1
r

(47)

εrr =

{
α +αr2

i
1
r2

αr2
i +r2
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s

r2
o−r2

s
− (α−1)r2

s r2
o−αr2

i r2
o

r2
o−r2

s

1
r2

(48)

εθθ =

{
α−αr2
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(49)
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Figure 20: Comparison of u,r for hollow cylinder potential problem via three di-
mensional and plane views

 

Figure 21: Comparison of L2 error for
hollow cylinder potential problem

 

Figure 22: Comparison of H1 error for
hollow cylinder potential problem
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Figure 23: Comparison of ur for hollow cylinder elasticity problem

 

Figure 24: Comparison of εrr for hol-
low cylinder elasticity problem

 

Figure 25: Comparison of εθθ for hol-
low cylinder elasticity problem

where

α =
−2µ2r2

o−λ2r2
o

µ1(r2
o− r2

s − r2
i + r2

i r2
o

r2
s

)+λ1(r2
o− r2

s )+ µ2(r2
s + r2

o− r2
i −

r2
i r2

o
r2

s
)+λ2(r2

s − r2
i )

(50)

The meshfree discretizations for this example are also shown in Fig. 16. A nor-
malized support size of 2.0 is adopted for the meshfree approximation. The radial
displacement ur, radial strain εrr, and hoop strain εθθ along the symmetric line of
the meshfree model with 289 nodes are compared with the corresponding exact so-
lutions in Figs. 23-25. The results evince that the solutions of DGMF are much
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more accurate than those of MF. It is noticed that the radial strain jump is well
captured in Fig. 24 by DGMF and at the same time the continuous hoop strain εθθ

is simulated accurately in Fig. 25. The excellent solution accuracy of DGMF is
also observed in Figs. 26-28 which are the three dimensional and plane views of
the distributions of ur, εrr and εθθ . In the comparisons of the L2 and H1 conver-
gence rates as shown in Figs. 29 and 30, all results proves that DGMF performs
superiorly compared to MF.

Exact Solution DGMF Solution

3D View

Plane View
 

Figure 26: Comparison of ur for hollow cylinder elasticity problem via three di-
mensional and plane views

5 Conclusions

A discontinuous Galerkin meshfree formulation (DGMF) was presented for the
accurate modeling and analysis of potential and elasticity interface problems of
composite material. In DGMF the problem domain is separated into different
patches with the same material properties. The meshfree discretizations and ap-
proximations within every patch follow the standard MLS/RK meshfree formula-
tions and thus they can be built up independently using the particles in each patch.
The incompatibility across the material interface associated with the patch-based
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Figure 27: Comparison of εrr for hollow cylinder elasticity problem via three di-
mensional and plane views

Exact Solution DGMF Solution

3D View

Plane View
 

Figure 28: Comparison of εθθ for hollow cylinder elasticity problem via three di-
mensional and plane views
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Figure 29: Comparison of L2 error for
hollow cylinder elasticity problem

 

Figure 30: Comparison of H1 error for
hollow cylinder elasticity problem

MLS/RK approximation was illustrated via two numerical examples. Consequently
the discontinuous Galerkin formulation was employed to remedy the interface in-
compatibility. In this method an averaged interface flux or traction is constructed
based on its counterparts from the neighboring patches and it is subsequently used
to weakly enforce the continuity constraints of the dependent field variable and the
related flux or traction across the material interface in the variational form. The
formulations of potential and elasticity problems with the present methodology
were given in details. No additional variables as well as special interface enrich-
ment functions are required in the proposed approach. The efficacy of DGMF was
demonstrated through various benchmark numerical examples of both potential and
elasticity problems. Numerical examples showed that the proposed DGMF is sta-
ble and can capture the interface gradient jump very accurately, and therefore yields
superior solution accuracy and convergence rates for interface problems compared
to the conventional Galerkin meshfree approach.
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