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Abstract: A mechanics based linear analysis of the problem of dynamic instabil-
ities in slender space launch vehicles is undertaken. The flexible body dynamics of
the moving vehicle is studied in an inertial frame of reference, including velocity in-
duced curvature effects, which have not been considered so far in the published lit-
erature. Coupling among the rigid-body modes, the longitudinal vibrational modes
and the transverse vibrational modes due to asymmetric lifting-body cross-section
are considered. The model also incorporates the effects of aerodynamic forces and
the propulsive thrust of the vehicle. The effects of the coupling between the com-
bustion process (mass variation, developed thrust etc.) and the variables involved in
the flexible body dynamics (displacements and velocities) are clearly brought out.
The model is one-dimensional, and it can be employed to idealised slender vehicles
with complex shapes. Computer simulations are carried out using a standard eigen-
value problem within h-p finite element modelling framework. Stability regimes for
a vehicle subjected to propulsive thrust are validated by comparing the results from
published literature. Numerical simulations are carried out for a representative ve-
hicle to determine the instability regimes with vehicle speed and propulsive thrust
as the parameters. The phenomena of static instability (divergence) and dynamic
instability (flutter) are observed. The results at low Mach number match closely
with the results obtained from previous models published in the literature.

Keywords: launch vehicle, stability, flexible body, follower force, aerodynamic
forces, propulsive thrust.

1 Introduction

Stability is an important issue in the design and performance analysis of space
launch vehicles. This issue is becoming increasingly important as various ways
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and options in space flight (including hypersonic flight) are taking shape. There
are various sources of instabilities in this context (Himelblau, Manning, Piersol &
Rubin 2001). Instability in space vehicles may arise due to static and/or dynamic
compressive loads resulting in structural buckling. Among other major factors af-
fecting the stability is the varying flight regimes from transonic to supersonic and
to hypersonic, due to which instability may occur at certain Mach numbers (NASA
SP-8003, 1964). This may pose a severe problem for the structural integrity. In-
stabilities in space vehicles due to combustion process in solid rocket motors have
been observed (Fabignon et al. 2003). Instabilities due to Pogo oscillations in
liquid fueled rockets is another concern (Oppenheim & Rubin 1993). Any me-
chanical system subjected to impulsive loading, such as shock, may undergo in-
stability (Ivanov 2001). In the context of perception of a hazard to the structural
integrity, the effect of the impulsive nature of the structural change has a special
significance. One of the tragic example of this is the failure of the space shuttle
Challenger, where the failure was attributed to ‘aerodynamic and inertia forces’ or
‘deflagration’. These were analysed in details by Jones & Wierzbicki (1987). Also,
determining the role of damping on instability is critical for a non-conservative sys-
tem (Bolotin, Grishko & Panov 2002). All of these aspects must be considered with
great care, in the future space launch vehicle technology development.

Space launch vehicles can be treated under a broader perspective of axially moving
structures. This is a classical problem. An extensive literature review of axially
moving structures was carried out by Wickert & Mote Jr. (1988). The class of axi-
ally moving continua encompasses diverse mechanical systems, such as high speed
magnetic and paper tapes, high speed band saw, paper webs, films, wide moving
bands and belts etc. Wickert & Mote Jr. (1990) studied the classical vibration
analysis of axially moving continua using a canonical state space form. Lin (1997)
investigated the stability and vibration characteristics of axially moving plates. The
transition from stable to unstable regime may occur in two different ways - diver-
gence (static instability) and flutter (dynamic instability).

In aeronautical engineering applications, the terms divergence and flutter originated
specifically during the investigation of sudden airplane blow-ups during 1910-1930
(Hodges & Pierce 2002). Hence, divergence and flutter are normally used in the
context of problems of aeroelasticity observed in aircrafts, missiles and launch ve-
hicles. Also, aeroelastic divergence of unguided launch vehicles, leading to struc-
tural failure has been reported by Young (1968). The observed phenomenon of
flutter oscillations is in reality a nonlinear one (Dugundji 1992). But a linear the-
ory often suffices in the prediction of the onset of flutter instabilities. However, if
one is interested in the magnitude of flutter oscillations, nonlinear theory must be
applied. Nonlinearities in aeroelasticity can arise from the structure or from the
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aerodynamics (Dugundji 1992). The nonlinearities due to structure can be either
geometrical or material. Geometrical nonlinearity can be due to large amplitude
deflections of beams and panels and due to nonlinear behavior of joints and con-
trol systems. Material nonlinearity, due to nonlinear material behavior, results in
nonlinear stiffness and damping characteristics. From the aerodynamics point of
view, the nonlinearities can arise due to high angle of attack, resulting in flow sep-
aration. Nonlinearities can also arise from the transonic speed regime, where the
flow equations are inherently nonlinear.

A number of researchers have studied the dynamic characteristics and stability of
slender space launch vehicles. Meirovitch & Wesley (1967) studied the dynamic
characteristics of a variable mass slender elastic body under high accelerations.
They used a variational principle to obtain the coupled differential equations for
rigid body and elastic motions. Beal (1965) studied the dynamic stability of a
flexible missile under constant and pulsating thrusts and showed that the critical
thrust magnitude, in the absence of control system, is associated with coalescence
of the lowest two bending frequencies. Wu (1975, 1976) examined the stability of
a free-free beam under axial thrust, subjected to directional control, using a finite
element approach. Wu had stated that for a uniform free-free beam under a constant
thrust, without directional control, there is only one zero eigenvalue corresponding
to a rigid body translation. For a non-zero thrust, the eigenvalue corresponding to
rigid body rotation, takes a positive real value and the unstable mode of disturbance
is a bending mode. Sundararamaiah and Johns (1976) commented on Wu’s papers
that his results regarding the eigenvalue corresponding to rigid body rotation, taking
a positive real value, are not correct due to error in one of the matrix terms. Park
and Mote Jr. (1985) studied the problem of maximizing the controlled follower
force on a free-free beam carrying a concentrated mass.

Bisplinghoff and Ashley (1962) studied the aeroelastic stability of one-dimensional
slender vehicle configurations. Ericsson (1967) studied the problem of aeroelastic
instability caused by slender payloads. Two flow states may exist on a launch ve-
hicle payload fairing during transonic flight. The flow at the cone cylinder junction
may be separated or attached. Ericsson and Reding (1986) investigated the flow
separation phenomenon for launch vehicles with associated unsteady fluid mechan-
ics. Humbad (1978) carried out static aeroelastic analysis of guided slender launch
vehicles. Elyada (1989) developed a closed form approach to determine aeroelas-
tic divergence in rocket vehicles. Dotson et al. (1998) studied the self sustained
oscillation of a launch vehicle, from aeroelastic coupling. A dynamic aeroelastic
analysis was performed by Ericsson and Pavish (2000) to calculate modal damp-
ing for proposed launch vehicles. Murphy & Mermagen (2003) employed aerody-
namic and elastic symmetries to take advantage of the complex variable approach
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to describe the flight motion of a continuously elastic finned missile. A linearized
aeroelastic analysis for a launch vehicle in transonic flow conditions was carried
out by Capri et al. (2006) considering unsteady flow. Problems of instability are
observed in other diverse applications also. The phenomenon of divergence insta-
bility in the blade of a horizontal-axis wind power turbine was studied by Lin, Lee
and Lin (2008). Flutter analysis of thermally buckled composite sandwich plates
under aerodynamic pressure was carried out by Shiau and Kuo (2007). Stability
analysis of beams rotating on an elastic ring with application to turbo machinery
rotor-stator contacts was carried out by Lesaffre, Sinou and Thouverez (2007).

Propulsive thrust of a launch vehicle/ missile acts as a follower force. An extensive
literature review of follower forces was carried out by Elishakoff (2005). Follower
force comes under the category of non-conservative forces. Applied forces are said
to be non-conservative if the work done by them is path dependent. Some non-
conservative problems of elastic stability, especially those due to follower forces
and aerodynamic forces, have been studied extensively by Bolotin (1963). In the
published literature, flexible body dynamics of vehicles have been studied with
respect to a body-fixed coordinate system, and the total derivatives of displacements
in inertial axis have been neglected.

Various approaches can be utilized for modeling a space launch vehicle. Different
computer modeling approaches in engineering can be found in reference (Atluri
2005). Two of the approaches that can be employed for modeling are the time
Fourier Spectral Finite Element method and the h-p Finite Element method. The
main task is to discretize the structure into finite elements for both the methods. The
time-frequency Fourier spectral FEM (SFEM) developed by Doyle (1997), is ide-
ally suited for analysing systems subjected to impact and shock loads which have
very high frequency content. A matrix methodology was used for spectral analysis
of wave propagation in multiple connected Timoshenko beams by Gopalakrishnan,
Martin & Doyle (1992). A spectral finite element was formulated for a rotating
beam subjected to small duration impact by Vinod, Gopalakrishnan and Ganguli
(2006). Wave propagation analysis in isotropic plates was carried out by Mitra
& Gopalakrishnan (2006) using wavelet based 2-D spectral finite element. In the
present work, a space launch vehicle is modelled using beam finite elements within
h-p finite element modeling framework. Finite element models with beam elements
have been used previously for preliminary design of launch vehicles (Rainey 2004).
These models are found to be quite adequate in assessing the dynamic characteris-
tics of the vehicle.

A space launch vehicle undergoes large rigid body displacements, but a small strain
assumption is appropriate for most of the flight conditions, except structural fail-
ure scenarios. If the instabilities occur, the elastic deformations grow with time
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and hence non-linearities due to large deformation need to be considered. Sev-
eral researchers have studied the dynamics of flexible structures undergoing large
displacements and rotations. Kane and Levinson (1981) carried out simulation of
large motions of spacecraft in orbit, modeled as a non-uniform unrestrained beam.
Simo and Vu-Quoc (1988) developed a geometrically exact approach for dynamics
of finite-strain rods undergoing large motions. Hodges (1990) developed a mixed
variational formulation based on exact intrinsic equations for dynamics of moving
beams. Robotic manipulators and mechanisms are examples of flexible multibody
systems undergoing large displacements and rotations. Quadrelli and Atluri (1996,
1998) analysed flexible multibody systems with spatial beams using primal and
mixed variational principles. Rochinha and Sampaio (2000) proposed an approach
for numerical modelling of large overall motions of multibody systems. A consis-
tent theory of finite stretches and finite rotations, in space-curved beams of arbitrary
cross-section was given by Atluri, Iura & Vasudevan (2001). Okamoto & Omura
(2003) performed a dynamic analysis for a flexible structure undergoing large trans-
lational and rotational displacements when moving along a nonlinear trajectory at
variable velocity. Large displacement analysis of a space frame was carried out by
Ijima, Obiya, Iguchi and Goto (2003). A nonlinear formulation of the Meshless
Local Petrov-Galerkin (MLPG) finite-volume mixed method was developed for the
large deformation analysis of static and dynamic problems by Han, Rajendran and
Atluri (2005). A dynamic analysis of a thin shell undergoing large displacements
and rotations was carried out by Majorana and Salomoni (2008). Meshless Lo-
cal Petrov-Galerkin (MLPG) approach can be applied to solve problems with large
deformations and rotations (Han, Liu, Rajendran and Atluri 2006, Atluri, Liu and
Han 2006a, 2006b). A geometrically nonlinear analysis of Reissner-Mindlin plate
by meshless computation was performed by Wen and Hon (2007). A smoothed
finite element method was presented by Cui et al. (2008) to analyze linear and ge-
ometrically nonlinear problems of plates and shells using bilinear quadrilateral ele-
ments. Geometrically nonlinear solid shell elements were used by Lee, Wu, Clarke
and Lee (2008) for modeling of a lightweight composite space reflector. Wong and
Shie (2008) proposed a Galerkin-based smoothed particle hydrodynamics (SPH)
formulation for large deformation analysis.

Dynamics of a flexible beam undergoing finite rotations has been formulated by
several approaches (Iura and Atluri 1995): an inertial approach, a floating ap-
proach, a co-rotational approach and a convected coordinate approach. When the
inertial frame approach is used, a highly non-linear beam theory is necessary to
simulate the motion of beams undergoing finite rotations (see e.g. Bathe, Ramm
and Wilson 1975, Geradin and Cardona 1989, Iura and Atluri 1988a, 1988b, 1989,
Simo and Vu-Quoc 1986). In floating frame approach (see e.g. Simo and Vu-Quoc
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1986), strains of the system are measured relative to a floating frame assuming
small strains of the body undergoing finite rigid displacements. A linear beam the-
ory is employed to obtain the strain energy function, but the kinetic energy has a
complicated expression and the equations of motion are highly coupled in the iner-
tia terms. In co-rotational approach (see e.g. Argyris 1982, Hsiao and Jang 1991),
a rotating frame is introduced to describe the elastic motion of the body and also to
derive the kinetic energy function. A transformation of the displacement compo-
nents between global and local coordinates is used to define the equations of motion
in terms of a fixed global coordinate system. The co-rotational approach is differ-
ent from the floating frame approach in the sense that the constraint equations do
not appear explicitly in the co-rotational approach. Alternate stress and conjugate
strain measures involving rigid rotations of finitely deformed plates and shells were
given by Atluri (1984). A survey of variational principles, which form the basis for
computational methods in both continuum mechanics and multi-rigid body dynam-
ics and explicit use of the finite rotation tensor was presented by Atluri and Cazzani
(1994). Iura and Atluri (2003) gave a review of advances made in the approaches
used to describe finite rotations in structural mechanics. An accuracy of finite el-
ement solutions for 3-D Timoshenko’s beams, obtained using a co-rotational for-
mulation, was discussed by Iura, Suetake and Atluri (2003). Liu (2006) carried out
computations of large rotation through an index two Nilpotent equation. Kulikov
and Plotnikova (2008) developed a finite rotation geometrically exact four-node
solid-shell element. Parameterisation of large rotations in co-rotational beam and
shell elements was studied by Battini (2008). In convected coordinate approach,
the inertial and external forces are evaluated in the fixed global coordinates, while
the internal forces are calculated from the stress components measured in the con-
vected coordinates (see e.g. Belytschko and Hseih 1973). In the present work, both
an inertial frame and a floating (moving) frame are employed to study the vehicle
dynamics. The kinetic energy of the system is obtained with respect to an iner-
tial frame in terms of displacements and rotation of the floating frame and elastic
displacements relative to the floating frame. The strain energy of the system is
obtained with respect to the floating frame, assuming small strains.

In the present work, a detailed linear analysis of the problem of dynamic instabili-
ties in slender space launch vehicles is undertaken. This model includes important
effects of flexible body dynamics, such as velocity induced curvature effects, which
have not been considered so far in the published literature. The new aspect in the
proposed analysis approach is the use of total derivatives of displacements in a La-
grangian framework. The present model incorporates the effect of aerodynamic
forces and the thrust of the vehicle, accounting for variable mass of the system.
The present model was used to investigate the onset of the aeroelastic instability of
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a slender launch vehicle by Trikha, Mahapatra, Gopalakrishnan & Pandiyan (2008).
Also, the effect of combustion coupled follower force and mass sensitivity on the
stability of a launch vehicle was studied by Trikha, Gopalakrishnan, Mahapatra
& Pandiyan (2008). The vehicle is idealised as a free-free beam with assembled
segments and their respective effective stiffness and mass approximations. In sec-
tion 2, a mathematical model of a space launch vehicle is developed. In section
3, forces acting on a space launch vehicle during its flight are discussed. Next, a
h-p finite element model is developed for numerical simulations in section 4. In
section 5, numerical simulations are carried out for a representative vehicle to de-
termine the instability regimes with respect to vehicle speed (Mach number) and
propulsive thrust as parameters. The phenomena of static instability (divergence)
and dynamic instability (flutter) are observed for certain parameters. The results at
low Mach number match closely with the results obtained from previous models
published in the literature.
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Figure 1: Schematic configuration of a vehicle and the coordinate system.
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2 Mathematical Model

A one-dimensional approximation of a slender space launch vehicle is considered
here. As shown in figure 1, the model of the vehicle is composed of a long cylin-
drical segment in the middle and a nose region in the front. The long cylindrical
segment may consist of a single rocket motor (single stage vehicle) or multiple
rocket motors (multi-stage vehicle). A vehicle stage may be a solid propellant
rocket motor, a liquid propellant rocket motor or a hybrid rocket motor with a noz-
zle at the end. Let us first consider a vehicle having length l and cross sectional
area A. When the launch vehicle has asymmetry about the vehicle axis, then the
three-dimensional deformations and forces need to be considered. As an approxi-
mation, the vehicle motion is studied in a two-dimensional plane. The motion of
the vehicle is studied in inertial axes X-Z. The motion of the vehicle is assumed to
be in the XZ plane involving translation in longitudinal and transverse directions
and pitching motion in the XZ plane. The coordinates of the center of mass (c.m.)
of the vehicle in the inertial axes are given by (X0(t),Z0(t)). The elastic displace-
ments of the vehicle are described in the body-fixed axes or the local axes x-z. The
origin of the body-fixed axes is attached at (X0,Z0) (see figure 1). Vehicle axis is
assumed to be along the body fixed x-axis. Let θ be the angle between the vehicle
axis (x-axis of the body fixed frame) and X-axis of the inertial frame. The coor-
dinates of a material point in the vehicle with respect to the body-fixed frame are
given by (x,z). The coordinates of the same material point in the inertial frame at
time t are given by

X(t) = X0 +(xcosθ − zsinθ) = X0 + x′ ,

Z(t) = Z0 +(xsinθ + zcosθ) = Z0 + z′ , (1)

where x′ = (xcosθ − zsinθ) and z′ = (xsinθ + zcosθ). Let U and W be the com-
ponents of total displacement of a material point in the vehicle at time t with respect
to the inertial frame of reference. Let u(x,z, t) and w(x, t) be the axial displacement
and the transverse displacement, respectively, with respect to the body-fixed coor-
dinate system. Taking components of u(x,z, t) and w(x, t) in the inertial frame, we
can write

u′ = ucosθ −wsinθ ,

w′ = usinθ +wcosθ , (2)

where u′(X ,Z, t) and w′(X ,Z, t) are the displacement components in the inertial
frame (X,Z) respectively. Total displacement with respect to the inertial frame is
given by

U = U0 +u′ , W = W0 +w′ , (3)
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where U0 and W0 are the displacements of the center of mass coordinates (X0,Z0)
at time t with respect to the inertial frame of reference. The velocity of the center
of mass coordinates in the inertial frame is denoted by c, where the components of
c in the inertial frame are given by

DX0

Dt
=

DU0

Dt
= ccos(α +θ) ,

DZ0

Dt
=

DW0

Dt
= csin(α +θ) , (4)

where α is the angle of attack. When the total derivatives of displacements are
introduced, the velocity components in the inertial frame are given by

DU
Dt

=
DU0

Dt
+

Du′

Dt
,

DW
Dt

=
DW0

Dt
+

Dw′

Dt
, (5)

where

Du′

Dt
(X ,Z, t) =

∂u′

∂ t
+

∂u′

∂X
dX
dt

+
∂u′

∂Z
dZ
dt

,

Dw′

Dt
(X ,Z, t) =

∂w′

∂ t
+

∂w′

∂X
dX
dt

+
∂w′

∂Z
dZ
dt

. (6)

Differentiating equation (1) with respect to time and denoting c′x = dX0/dt and
c′z = dZ0/dt, we obtain

dX
dt

=
dX0

dt
−Ω(xsinθ + zcosθ) = c′x−Ωz′ ,

dZ
dt

=
dZ0

dt
+Ω(xcosθ − zsinθ) = c′z +Ωx′ , (7)

where Ω = dθ/dt denotes the angular velocity of the vehicle about the center of
mass. We can write

∂u′

∂X
=

∂u′

∂x
∂x
∂X

=
∂u′

∂x
cosθ ,

∂u′

∂Z
=

∂u′

∂ z
∂ z
∂Z

=
∂u′

∂ z
cosθ ,

∂w′

∂X
=

∂w′

∂x
cosθ ,

∂w′

∂Z
=

∂w′

∂ z
cosθ . (8)

Equation (6) is re-written using the terms obtained in equations (7) and (8), as

Du′

Dt
=

∂u′

∂ t
+

∂u′

∂x
cosθ(c′x−Ωz′)+

∂u′

∂ z
cosθ(c′z +Ωx′) ,

Dw′

Dt
=

∂w′

∂ t
+

∂w′

∂x
cosθ(c′x−Ωz′)+

∂w′

∂ z
cosθ(c′z +Ωx′) . (9)
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Note that in the works by several authors (e.g., Meirovitch & Wesley 1967; Murphy
& Mermagen 2003; Beal 1965; Wu 1975, 1976), the terms [(∂u′/∂X)(dX/dt)+
(∂u′/∂Z)(dZ/dt)] and [(∂w′/∂X)(dX/dt)+(∂w′/∂Z)(dZ/dt)] are neglected. Ne-
glecting the effects due to these terms, which we call as ‘velocity induced curvature
effects’, leads to the equations for a stationary beam. It results in decoupling of the
rigid body modes and the flexible modes because of mode orthogonality for a sta-
tionary beam.

Our first objective is to construct the governing equations of motion for a general
flexible lifting body segment by including the idealised effects of the aerodynam-
ics, thrust and gravitational force. The vehicle segment is idealised as a slender
beam with equivalent mass per unit length and equivalent cross-sectional area. The
kinetic energy of the vehicle can be expressed as

T =
1
2

∫
l

∫
A

ρ

[{
DU
Dt

}2

+
{

DW
Dt

}2
]

dAdx

Using equations (4), (5) and (9) and after simplification we obtain

T =
1
2

∫
l

∫
A

ρ

[
c2 + u̇2 + ẇ2 +2cxu̇+2czẇ+Ω

2(u2 +w2)+2Ω(ucz−wcx)

+2Ω(uẇ−wu̇)+(c′x−Ωz′)2 cos2
θ

{(
∂u
∂x

)2

+
(

∂w
∂x

)2
}

+(c′z +Ωx′)2 cos2
θ

{(
∂u
∂ z

)2

+
(

∂w
∂ z

)2
}

+2(c′x−Ωz′)cosθ

{
cx

∂u
∂x

+ cz
∂w
∂x

+ u̇
∂u
∂x

+ ẇ
∂w
∂x

+Ω

(
u

∂w
∂x
−w

∂u
∂x

)}
+2(c′z +Ωx′)cosθ

{
cx

∂u
∂ z

+ cz
∂w
∂ z

+ u̇
∂u
∂ z

+ ẇ
∂w
∂ z

+Ω

(
u

∂w
∂ z
−w

∂u
∂ z

)}
+2(c′x−Ωz′)(c′z +Ωx′)cos2

θ

{
∂u
∂x

∂u
∂ z

+
∂w
∂x

∂w
∂ z

}]
dAdx , (10)

where cx = ccosα is the component of velocity of the center of mass coordinates
along the vehicle axis and cz = csinα is the component of velocity perpendicular
to the vehicle axis (see figure 1). Considering the elementary beam theory (Euler-
Bernoulli beam theory), the axial displacement field within the vehicle segment can
be expressed as

u(x,z, t) = u◦(x, t)− z
∂

∂x
w(x, t) , (11)
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where u(x,z, t) is the longitudinal displacement of a point on the vehicle cross-
section, u◦(x, t) is the longitudinal displacement along the vehicle axis and w(x, t) is
the transverse displacement of the vehicle cross-section. The positive z-coordinate
of the upper half surface of the vehicle segment is denoted by h+ and the negative
z-coordinate of the lower half surface of the vehicle segment is denoted by h−. The
axial strain is given by

εxx =
∂u
∂x

. (12)

The strain energy stored due to mechanical deformation, can be expressed as

U =
1
2

∫
l

∫
A

σxxεxxdAdx , (13)

where σxx = Eεxx and E is the equivalent elastic modulus of the vehicle segment
cross-section.

Work done on the system can be divided into two parts: one is the work done by the
conservative forces and the other is the work done by the non-conservative forces.
Work done by the conservative axial force P(x) is given by

Wc =
1
2

∫
l
P(x)

(
∂w
∂x

)2

dx . (14)

The work done on the system by the aerodynamic forces can be expressed as

Wa =
∫

l

[
p+

x (u◦−h+ ∂w
∂x

)+ p−x (u◦−h−
∂w
∂x

)+(p+
z + p−z )w

]
dx , (15)

where p±x are the resultant aerodynamic shear forces per unit length on the center-
line of the upper half and the lower half surfaces of a vehicle segment and p±z are
the resultant aerodynamic pressure per unit length on the centerline of the upper
half and the lower half surfaces. The aerodynamic forces are non-conservative in
nature. Distribution of the aerodynamic forces along the length of the vehicle can
be determined from wind/shock tunnel tests or actual flight data.

The work done on the system due to the non-conservative follower forces can be
expressed as

W f = fsus− fsws

[
∂w
∂x

]
x=xs

+ ftut − ftwt

[
∂w
∂x

]
x=xt

, (16)

where ft is the thrust acting on the vehicle, fs is the drag force acting on the nose of
the vehicle, ft and fs are the follower forces. Presence of both types of forces ft and
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fs represent a general case. Depending on the special boundaries; that is the nose
region or the nozzle, ft and fs are to be approximated. For intermediate segments,
either fs = 0, ft = 0, or these may have other form of physical representation (e.g.,
active control surfaces, auxiliary thruster etc.).

Work done by the gravitational force can be expressed as

Wg =
∫

l

∫
A

ρ (−ag cosθgu−ag sinθgw)dAdx , (17)

where ag is the acceleration due to the gravitational force and θg is the angle of
the gravitational force vector relative to the vehicle axis. By using the Extended
Hamilton’s principle, one has

δ

∫ t2

t1
L dt +

∫ t2

t1
δWncdt = 0 , (18)

where the Lagrangian L = T −U +Wc +Wg and Wnc = W f +Wa, we arrive at
the following two governing equations in (u◦,w); that is,

−ρAċx−ρAü◦+ρI1ẅ,x−ρ cos2
θ{a2A+b2I2−2abI1}u◦,xx

−2ρ cosθ{aA−bI1}u̇◦,x−ρ{(ȧA− ḃI1)cosθ − (aA−bI1)Ωsinθ}u◦,x
+ρ cosθ{gA−hI1}ẇ,x +ρ{(ġA− ḣI1)cosθ − (gA−hI1)Ωsinθ}w,x

+ρ{(agA− (bg+ah)I1 +bhI2)cos2
θ}w,xx

+ρΩcos2
θ{(aA−bI1)cosθ − (gA−hI1)sinθ}w,x

+ρ cos2
θ{a2I1 +b2I3−2abI2}w,xxx

+2ρ cosθ{aI1−bI2}ẇ,xx +2ρΩcosθ{aA−bI1}w,x

+ρ cosθ{(ȧI1− ḃI2)cosθ − (aI1−bI2)Ωsinθ}w,xx +ρΩ
2(Au◦− I1w,x )+ρΩczA

+ρΩAẇ+A
d
dt

(ρΩw)+EAu◦,xx−EI1w,xxx

= ρAag cosθg− [p+
x + p−x ]−P(x) ,

(19)
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for axial motion, and

−ρA(ċz +Ωcx)+ρAΩcx cos2
θ +ρI2ẅ,xx−ρI1ü◦,x

+ρ cos2
θ{a2I2 +b2I4−2abI3}w,xxxx

+ρ{(ȧI2− ḃI3)cosθ − (aI2−bI3)Ωsinθ}w,xxx

−ρAẅ−ρ[2{(gA−hI1)Ωcos2
θ}w,x +{(g2A+h2I2−2ghI1)cos2

θ}w,xx ]

+ρ[{(gA−hI1)cosθ}u̇◦,x +{Ωcos2
θ}u̇◦]−ρ cos2

θ{a2A+b2I2−2abI1}w,xx

+2ρ cosθ{aI2−bI3}ẇ,xxx +ρ{(agA− (bg+ah)I1 +bhI2)cos2
θ}u◦,xx

+ρΩcos2
θ{(aA−bI1)cosθ − (gA−hI1)sinθ}u◦,x

+ρΩcos2
θ{(aI1−bI2)cosθ − (gI1−hI2)sinθ}w,xx−2ρ cosθ{aA−bI1}ẇ,x

−EI2w,xxxx−ρ{(ȧA− ḃI1)cosθ − (aA−bI1)Ωsinθ}w,x

−ρ cos2
θ{a2I1 +b2I3−2abI2}u◦,xxx−2ρ cosθ{aI1−bI2}u̇◦,xx

+ρ
d
dt

[{(gI1−hI2)cosθ}w,xx +I1{Ωcos2
θ}w,x ]−ρΩ

2I1{sin2θ cos2
θ}w,x

− (P(x)w,x ),x +EI1u◦,xxx

+ρΩ
2I1u◦,x−ρΩ

2I2w,xx−2ρΩAu̇◦−2ρΩcosθ{aA−bI1}u◦,x +3ρΩI1ẇ,x

+4ρΩcosθ{aI1−bI2}w,xx +I1
d
dt

(ρΩw,x )+h+(p+
x ),x +h−(p−x ),x

= ρAag sinθg− [p+
z + p−z ] ,

(20)

for transverse motion. Here a = (c′x−Ωxsinθ), b = Ωcosθ , g = (c′z + Ωxcosθ),
h = Ωsinθ and [I1, I2, I3, I4] =

∫
A[z,z2,z3,z4]dA represents the effective area mo-

ments of the vehicle segment. (.),x denotes partial derivative of displacements with
respect to x.

Boundary conditions for the vehicle segment are given by

ρ cos2
θ{a2A+b2I2−2abI1}u◦,x−EAu◦,x +ρ cosθ{aA−bI1}u̇◦

−ρ{(agA− (bg+ah)I1 +bhI2)cos2
θ}w,x +EI1w,xx

−ρ cos2
θ{a2I1 +b2I3−2abI2}w,xx−ρ cosθ{aI1−bI2}ẇ,x +ρcx cosθ{aA−bI1}

−ρΩcosθ{aA−bI1}w+ fs + ft
= 0

(21)
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for axial force balance,

−ρI2ẅ,x +ρI1ü◦+EI2w,xxx−ρ cos2
θ{a2I2 +b2I4−2abI3}w,xxx

+ρ{(g2A+h2I2−2ghI1)cos2
θ}w,x−2ρ cosθ{aI2−bI3}ẇ,xx

−ρ{(gA−hI1)cosθ}u̇◦−ρ{(ȧI2− ḃI3)cosθ − (aI2−bI3)Ωsinθ}w,xx

−ρ{(agA− (bg+ah)I1 +bhI2)cos2
θ}u◦,x +ρ cos2

θ{a2A+b2I2−2abI1}w,x

+ρ cosθ{aA−bI1}ẇ+ρ cos2
θ{a2I1 +b2I3−2abI2}u◦,xx−EI1u◦,xx

−ρΩcos2
θ{(aI1−bI2)cosθ − (gI1−hI2)sinθ}w,x

+2ρ cosθ{aI1−bI2}u̇◦,x−ρ
d
dt
{(gI1−hI2)cosθ}w,x−3ρΩcosθ{aI1−bI2}w,x

−ρcx{(gA−hI1)cosθ}+ρcz cosθ{aA−bI1}−ρΩ
2I1u◦+ρΩ

2I2w,x−ρΩczI1

+ρΩcosθ{aA−bI1}u◦−ρΩI1ẇ− I1
d
dt

(ρΩw)+ρΩ{(gA−hI1)cosθ}w

= h+p+
x +h−p−x + fs[w,x ]s + ft [w,x ]t

(22)

for transverse force balance, and

[ρ cos2
θ{a2I2 +b2I4−2abI3}−EI2]w,xx +ρ cosθ{aI2−bI3}ẇ,x

+[EI1−ρ cos2
θ{a2I1 +b2I3−2abI2}]u◦,x−ρ cosθ{aI1−bI2}u̇◦

−ρcx cosθ{aI1−bI2}+ρ{(agI1− (bg+ah)I2 +bhI3)cos2
θ}w,x

+ρΩcosθ{aI1−bI2}w
= fsws + ftwt

(23)

for angular moment balance.

Considering a special case of θ = 0, we obtain a = cx, b = Ω, g = (cz +Ωx), h = 0
and substituting in the governing equations (19)-(20) we obtain

−ρAċx−ρAü◦+ρI1ẅ,x−ρ{c2
xA+Ω

2I2−2cxΩI1}u◦,xx

−2ρ{cxA−ΩI1}u̇◦,x−ρ(ċxA− Ω̇I1)u◦,x
+ρA(cz +Ωx)ẇ,x +ρA(ċz + Ω̇x)w,x

+ρ(cz +Ωx){cxA−ΩI1}w,xx +ρΩ{cxA−ΩI1}w,x +ρΩ
2(Au◦− I1w,x )

+ρ{c2
xI1 +Ω

2I3−2cxΩI2}w,xxx +2ρ{cxI1−ΩI2}ẇ,xx

+2ρΩ{cxA−ΩI1}w,x +ρ{ċxI1− Ω̇I2}w,xx

+ρΩczA+ρΩAẇ+A
d
dt

(ρΩw)+EAu◦,xx−EI1w,xxx

= ρAag cosθg− [p+
x + p−x ]−P(x) ,

(24)
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for axial motion, and

−ρAċz +ρI2ẅ,xx−ρI1ü◦,x +ρ{c2
xI2 +Ω

2I4−2cxΩI3}w,xxxx +ρ{ċxI2− Ω̇I3}w,xxx

−ρAẅ−ρ[2(cz +Ωx)AΩw,x +(cz +Ωx)2Aw,xx ]+ρ[(cz +Ωx)Au̇◦,x +Ωu̇◦]

−ρ{c2
xA+Ω

2I2−2cxΩI1}w,xx +2ρ{cxI2−ΩI3}ẇ,xxx

+ρ{cxA(cz +Ωx)−ΩI1(cz +Ωx)}u◦,xx +ρΩ{cxA−ΩI1}u◦,x
+ρΩ{cxI1−ΩI2}w,xx−2ρ{cxA−ΩI1}ẇ,x−ρ{ċxA− Ω̇I1}w,x

−ρ{c2
xI1 +Ω

2I3−2cxΩI2}u◦,xxx−2ρ{cxI1−ΩI2}u̇◦,xx−EI2w,xxxx

+ρ
d
dt

[(cz +Ωx)I1w,xx +I1Ωw,x ]− (P(x)w,x ),x +EI1u◦,xxx

+ρΩ
2I1u◦,x−ρΩ

2I2w,xx−2ρΩAu̇◦−2ρΩ{cxA−ΩI1}u◦,x +3ρΩI1ẇ,x

+4ρΩ{cxI1−ΩI2}w,xx +I1
d
dt

(ρΩw,x )+h+(p+
x ),x +h−(p−x ),x

= ρAag sinθg− [p+
z + p−z ],

(25)

for transverse motion.

Further in this paper, we consider the special case of θ = 0. There are inherent
inhomogeneities involved if angular velocity (Ω) is considered, that is, when the
terms involving Ωx is considered. For numerical simplicity, we neglect the terms
involving Ω. The effect of inhomogeneous terms due to Ωx will be considered in
a future work. The governing equations contain several time varying coefficients.
For simplicity, in this paper, only a quasi-linearised form of the governing equations
is considered; that is, the analysis is carried out for assumed state of translational
velocities. Neglecting the terms involving Ω in the equations (24)-(25), we obtain

−ρAċx−ρAü◦+ρI1ẅ,x−ρAc2
xu◦,xx−2ρAcxu̇◦,x−ρAċxu◦,x +ρAczẇ,x +ρAċzw,x

+ρAcxczw,xx +ρI1c2
xw,xxx +2ρI1cxẇ,xx +ρI1ċxw,xx +EAu◦,xx−EI1w,xxx

= ρAag cosθg− [p+
x + p−x ]−P(x) ,

(26)

for axial motion, and

−ρAċz +ρI2ẅ,xx−ρI1ü◦,x +ρI2c2
xw,xxxx +ρI2ċxw,xxx−ρAẅ−ρAc2

z w,xx

+ρAczu̇
◦,x +2ρI2cxẇ,xxx +ρAcxczu

◦,xx−2ρAcxẇ,x−ρAċxw,x

−ρI1c2
xu◦,xxx−ρAc2

xw,xx−2ρI1cxu̇◦,xx +ρI1ċzw,xx−EI2w,xxxx−(P(x)w,x ),x
+EI1u◦,xxx +h+(p+

x ),x +h−(p−x ),x
= ρAag sinθg− [p+

z + p−z ] ,

(27)
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for transverse motion. Corresponding rigid body equation of motion along the
vehicle axis direction is given by

−ρAċx = ρAag cosθg− [p+
x + p−x ]−P(x) . (28)

Corresponding rigid body equation of motion perpendicular to the vehicle axis di-
rection is given by

−ρAċz = ρAag sinθg− [p+
z + p−z ] . (29)

By comparing equations (26)-(28) and (27)-(29), we obtain the condition under
which a flexible body with internal stress waves behaves like a perfect rigid body.
This condition is given by the following equations:

−ρAü◦+ρI1ẅ,x−ρAc2
xu◦,xx−2ρAcxu̇◦,x−ρAċxu◦,x +ρAczẇ,x +ρAċzw,x

+ρAcxczw,xx +ρI1c2
xw,xxx +2ρI1cxẇ,xx +ρI1ċxw,xx +EAu◦,xx−EI1w,xxx

= 0 ,

(30)

for axial vibrations, and

ρI2ẅ,xx−ρI1ü◦,x +ρI2c2
xw,xxxx +ρI2ċxw,xxx−ρAẅ−ρAc2

z w,xx

−ρAc2
xw,xx +ρAczu̇

◦,x +2ρI2cxẇ,xxx +ρAcxczu
◦,xx−2ρAcxẇ,x

−ρAċxw,x−ρI1c2
xu◦,xxx−2ρI1cxu̇◦,xx

+ρI1ċzw,xx−EI2w,xxxx−(P(x)w,x ),x +EI1u◦,xxx +h+(p+
x ),x +h−(p−x ),x

= 0 ,

(31)

for transverse vibrations. In the next section, we consider the detailed nature of the
forces acting on a launch vehicle.

3 Forces on a Launch Vehicle

A launch vehicle is subjected to aerodynamic forces, acoustic loads, thrust, forces
due to combustion process, staging loads and the inertia forces during its flight.
Here, we discuss the aerodynamic forces, the propulsive thrust, the axial forces and
their approximation within the proposed modelling approach.

3.1 Aerodynamic Forces

A launch vehicle’s motion in the atmosphere leads to aerodynamic forces and mo-
ments on the vehicle. A launch vehicle is designed to withstand these aerodynamic
loads. The aerodynamic forces are also important factor for accurate prediction of
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the vehicle’s trajectory and performance. The aerodynamic forces are function of
dynamic pressure q, angle of attack α and vehicle geometry. The dynamic pressure
depends on the velocity of the vehicle c and the local atmospheric density ρa and it
is given by q = 1

2 ρac2. The local atmospheric density is a function of altitude. The
aerodynamic force is resolved into lift L and drag D. They are normal and parallel
to the velocity vector, respectively, as shown in figure 2. It can also be resolved into
a normal force N and a tangential force T , normal and parallel to the vehicle’s ref-
erence axis. The resultant aerodynamic forces act at the centre of pressure (c.p.) of
the vehicle. Classically, the aerodynamic forces are expressed in terms of dimen-
sionless coefficients, so that lift and drag are expressed as L = CLqS, D = CDqS,
where CL and CD are lift and drag coefficients respectively and S is the reference
cross section area. The aerodynamic coefficients can also be written for the forces
resolved in the vehicle axis system. The normal force coefficient is denoted as CN

and the axial force coefficient as CA.

L

D

c.m. c.p.d
α

x

z
c

Figure 2: Schematic diagram showing drag force D and lift force L on a vehicle. c
is the velocity of the vehicle.

The aerodynamic coefficients are function of Mach number (M∞), angle of attack
and Reynolds number. The Mach number is defined as M∞ = c/co, where co is the
speed of sound at standard atmospheric conditions. The aerodynamic coefficients
can be obtained either experimentally or by Computational Fluid Dynamics (CFD)
analysis. The aerodynamic coefficients are determined experimentally from wind
tunnel tests or flight tests. A procedure for computing the aerodynamic coefficients
for different vehicle configurations for a wide range of angles of attack and Mach
numbers is given by Jorgensen (1973). The procedure is valid for subsonic to su-
personic Mach numbers. In this procedure, the normal force coefficient derived
by Allen and Perkins (1951) based on the slender body theory and the cross flow
theory are given by

CN =
1
S

sin2α cos
α

2

∫ l

0

dS
dx

dx+ηCdn
sin2

α

S

∫ l

0
d(x)dx . (32)
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For small angles of attack, CN can be written as

CN =
2α

S

∫ l

0

dS
dx

dx+ηCdn
α2

S

∫ l

0
d(x)dx . (33)

Here Cdn is the crossflow drag coefficient, η is the crossflow drag proportionality
factor (Jorgensen 1973) and d(x) is the diameter of the cross-section at distance x.
The first term in this expression is due to the slender body theory and second term
is contributed by the cross flow theory. According to the slender body theory, a
normal force is produced at the conical nose region for non-zero angle of attack.
On the cylindrical segments of the vehicle, the normal force is negligible since it
is not a lifting body. The cross flow theory includes the normal force due to fluid
viscosity.

In order to investigate the stability characteristics of the launch vehicles, it is im-
portant to know the variation in the aerodynamic forces with small changes in the
system parameters. As shown by Cornelisse, Schoyer and Wakker (1979), the aero-
dynamic forces can be expanded in a Taylor series, and by neglecting higher order
terms, one can write

F = F0 +
∂F
∂α

α +
∂F
∂ α̇

α̇ +
∂F
∂Ω

Ω , (34)

where F0 is a constant and it is zero for a symmetric vehicle, α̇ is the rate of change
of angle of attack. The normal force is calculated based on the effective angle of
attack α(x, t) as given by Platus (1992). The effective angle of attack is expressed
as

α(x, t) = α−w,x +
1
cx

ẇ . (35)

The last two terms in equation (34) due to the angular velocity of the vehicle and the
rate of change of angle of attack, represent unsteady aerodynamics. The effects due
to unsteady aerodynamics have been neglected in the present paper for simplicity,
as this would involve coupled unsteady flow computations. This aspect will be
considered in a future work. By neglecting the last two terms in equation (34), the
aerodynamic pressure per unit length is expressed as

pz(x, t) =
∂ pz

∂α
(x)α(x, t) , (36)

where pz = CNqS. Substituting the form of α(x, t) from equation (35) in equa-
tion (36), one gets

pz(x, t) =
∂ pz

∂α
(x)
[

α−w,x +
1
cx

ẇ

]
. (37)
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The aerodynamic drag can be split into the following main components: wave drag
from the nose region due to the presence of shock waves which occurs at supersonic
and hypersonic speeds. Second one is the viscous drag due to the skin friction
which is the main drag component at subsonic speeds. The other main component
is the base drag due to the wake behind the vehicle and it is strongly affected by
the shape of the vehicle. The axial force per unit length is given as px = CAqS. The
axial force coefficients for a nose-cone configuration can be determined empirically
as given by Jorgensen (1973) and Cornelisse, Schoyer and Wakker (1979). The
drag force at the nose region is given by fs = CAqS, where CA is the axial force
coefficient at the nose region given by

CA =
(

0.083+
0.096
M2

∞

)
(5.73∗θ)1.69 , M∞ > 1 (38)

and θ is the half cone angle in radians. The axial force per unit length due to the
viscous drag is given by px = CABqS/l, where S is the wetted (circumferential)
surface area of the vehicle and CAB is the axial force coefficient due to the viscous
drag given by

CAB = CD f cos2
α , CD f =

0.427
(log10 Re−0.407)2.64 , Re =

ρacl
µ

, (39)

where CD f is the viscous drag coefficient for turbulent flow, Re is the Reynolds
number and µ is the dynamic viscosity of air. For most of the large launch vehicles,
the boundary layer may be assumed as turbulent. The transition from laminar to
turbulent flow takes place around Re = 106 based on the vehicle length. Next, we
consider the propulsive thrust and the combustion process in a rocket motor.

3.2 Propulsive thrust, combustion process and mass variation

All rocket motors of a launch vehicle are based on the combustion of propellants in
a combustion chamber, production of hot combustion gases and expansion of these
hot gases through a nozzle. The expulsion of combustion gases at high speed from
the nozzle results in the reaction force (thrust) according to Newton’s third law. The
equations of motion of a rigid rocket were first given by Tsiolkovsky. The equation
of motion in free space is given by (Cornelisse, Schoyer and Wakker 1979)

M(t)
dc
dt

= ṁVe , Ve =
2γ

γ−1
RTc

[
1−
(

pe

pc

)(γ−1)/γ
]

, (40)

where M(t) is the mass of the rocket at time t and is given as M(t) = M0−
∫ t

0 ṁdt,
M0 is the initial vehicle mass at lift off and ṁ is the mass flow rate (due to com-
bustion). For a constant thrust, the propellant consumption rate (ṁ) is constant and
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M(t) = M0− ṁt. The velocity of the rocket with respect to the inertial frame of
reference is given as c. The exhaust velocity of the combustion gases with respect
to the vehicle nozzle is given as Ve. Tc and pc are the chamber temperature and
pressure, respectively, pe is the exhaust pressure at the nozzle exit, γ = cp/cv de-
fines the ratio of the specific heats, R = R0/M defines the gas constant, R0 is the
universal gas constant and M is the molecular weight of the gas. The combus-
tion chamber conditions are assumed to be uniform throughout and the combustion
gases are assumed to behave as ideal gases. The mass flow rate is obtained as

ṁ = ρeAeVe, ρe = ρc

(
pe

pc

)1/γ

, (41)

where ρe is the gas density at the nozzle exit and Ae is the cross-sectional area at
the nozzle exit. The thrust generated by the vehicle is given as

ft = ṁVe +(pe− pa)Ae , (42)

where ft is the vehicle thrust and pa is the atmospheric pressure. The launch vehicle
being flexible in reality, the thrust follows the deformation of the vehicle at the point
of application and hence known as the follower force.

We will consider a solid propellant rocket motor in a little more detail. The solid
rocket motor is essentially a pressure vessel, with a nozzle at one end, partially filled
with one or more blocks of solid propellant, called the grain, plus an ignition device
as shown in figure 3. The combustion chamber itself stores the solid propellant and
the propellant burns at its inner surface. The grain is fabricated to a configuration
that produces a specific thrust which is time varying. Next, we consider the axial
force distribution along the length of the vehicle.
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Figure 3: Cross section of a solid propellant rocket motor

3.3 Axial force on the vehicle

Stability is strongly influenced by the axial force distribution on the vehicle. For the
purpose of representing the axial force distribution, a body fixed coordinate frame
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is introduced with its origin at the nose tip of the vehicle. The distance of a material
point on the vehicle axis, from the nose tip is denoted by x. The total axial force
P(x) is calculated by summing the aerodynamic and the inertia forces, that is,

P(x) = fs + fx +( ft − fs− pxl)
x
l

, 0 < x < l1 ,

= fs + fx +( ft − fs− pxl)
x
l
− pcAc , l1 < x < l , (43)

where px is the aerodynamic shear force per unit length of the vehicle, fx =
∫ x

0 pxdx
is the summation of the aerodynamic shear forces till distance x from the nose,
( ft − fs− pxl) x

l is the summation of the inertia forces till x, Ac is the combustion
chamber cross sectional area and l1 is the distance from the nose to the front end of
the solid propellant rocket motor as shown in figure 4.

1st stage 2nd stage payload

l1

0.04l 0.06  l

0.06 l

 = 0.55 l

l

Figure 4: A two-stage vehicle configuration. The vehicle structure is discretized
into 56 finite elements.

4 Finite Element Discretization

In this section, we turn our attention to the details regarding modelling and com-
putation. To this end, the approach utilised is based on h-p finite element method.
A vehicle segment of length l is discretized into m number of finite elements, each
of length L as shown in figure 5. The transverse displacement w(x, t) within a fi-
nite element of length L is interpolated using polynomial of order p≥ 3 in x. This
can be expressed as w(x, t) = N(x)d(t), where d(t) = {w1 θ1 w2 θ2}T is the nodal
displacement vector. N(x) is the shape function matrix, which is given by

N(x) =
[
{1−3ξ 2 +2ξ 3} {ξ (ξ −1)2L} {3ξ 2−2ξ 3} {ξ (ξ 2−ξ )L}

]
,

(44)
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12i
fsf

t

L

l

Figure 5: Vehicle segments discretized by finite elements. Finite element nodes are
shown along the vehicle axis.

where ξ = x/L∈ [0,1]. The derivative of N(x) with respect to x is denoted by N′(x).
The finite element matrices are derived using Lagrange’s equation

∂U

∂q
+

d
dt

(
∂T

∂ q̇

)
− ∂T

∂q
− ∂Wc

∂q
= F , (45)

where q is the generalised coordinate and F includes the non-conservative forces.
In this work, d(t) is considered as the generalised coordinate. An approach similar
to that given by Rao (1996) is adopted to obtain the finite element matrices. The
detailed derivations and expressions of all the finite element matrices are given in
electronic supplementary material. In order to highlight the method for obtaining
the finite element matrices, few finite element matrices are derived here.

4.1 Finite Element Stiffness Matrices

In order to obtain the finite element stiffness matrix, equation (13) is re-written with
the help of w(x, t) = N(x)d(t) as

U =
1
2

∫
l

∫
A

σxxεxxdAdx =
1
2

∫
l
EI2

(
∂ 2w
∂x2

)2

dx =
m

∑
i=1

1
2

EI2

∫ L

0

(
dTN′′TN′′d

)
dx ,

and then in equation (45), one has

∂U

∂d
=

m

∑
i=1

[
EI2

∫ L

0
N′′TN′′dx

]
d =

m

∑
i=1

KEd , (46)

where KE is the finite element stiffness matrix. KE is the conventional stiffness
matrix corresponding to a stationary elastic beam (vehicle). Finite element stiffness
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matrix due to axial velocity is determined from the kinetic energy term as follows:

T =
1
2

∫
l

∫
A

ρc2
xz2w,2xxdAdx =

m

∑
i=1

1
2

ρc2
xI2

∫ L

0

(
dTN′′TN′′d

)
dx ,

and in equation (45), one has

d
dt

(
∂T

∂ ḋ

)
− ∂T

∂d
=−

m

∑
i=1

[
ρc2

xI2

∫ L

0
N′′TN′′dx

]
d =−

m

∑
i=1

KId , (47)

where KI(cx) is the finite element stiffness matrix due to axial velocity. In a sim-
ilar way, a second finite element stiffness matrix due to axial velocity denoted as
KA(cx) is also obtained. KI(cx) and KA(cx) are contributions due to the elasticity
(curvature effects) of a moving vehicle. It is observed that the axial velocity con-
tributes in reducing the overall bending stiffness of the vehicle and this effect is
similar to that produced by a compressive axial load acting on the vehicle.

4.2 Finite Element Mass Matrices

The finite element translational mass matrix MT and the finite element mass matrix
due to rotary inertia MR are obtained as

MT = ρA
∫ L

0
NTNdx , MR = ρI2

∫ L

0
N′TN′dx . (48)

4.3 Finite Element Damping Matrices

The finite element damping matrix is obtained from the kinetic energy term as

T =
1
2

∫
l

∫
A

2ρcxẇw,x dAdx = ρcx

∫
l

∫
A

(
ḋTNTN′d

)
dAdx ,

and in equation (45), one has

d
dt

(
∂T

∂ ḋ

)
− ∂T

∂d
=

m

∑
i=1

[
ρAcx

∫ L

0
(NTN′−N′TN)dx

]
ḋ =

m

∑
i=1

C1ḋ , (49)

where C1(cx) is the finite element damping matrix due to axial velocity. Similarly,
a second finite element damping matrix due to axial velocity denoted as C2(cx) is
obtained as

C2 = ρI2cx

∫ L

0
(N′TN′′−N′′TN′)dx . (50)
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It is observed that the axial velocity introduces equivalent damping in the system.
The flow-induced damping has been observed previously in basic axial flow sys-
tems. The effect of this equivalent damping is similar to gyroscopic effects in a
rotating system. The damping matrices are skew-symmetric matrices. It is this
damping that causes the dynamic instability as the vehicle velocity is varied as a
parameter. The details of the remaining finite element matrices are given in elec-
tronic supplementary material.

4.4 Finite Element System Assembly

The global mass matrix MG, the global stiffness matrix KG and the global damp-
ing matrix CG are obtained by assembling the respective element matrices over the
entire vehicle structure. The global matrices are obtained as given below. The func-
tional dependence of the finite element matrices on the parameters (cx, ċx,α, ft , fs, px)
is also shown.

MG =
⋃
m

[MT +MR] , (51)

KG =
⋃
m

[KE−KI(cx)−KA(cx)+KAR(cx,α)−Kw1( ft , fs, px)

−Kw2( ft , fs, px)+Ka1(cx, ċx)+Ka2(cx, ċx)]+Knc1( ft)+Knc2( fs) , (52)

CG =
⋃
m

[
C1(cx)+C2(cx)−CAR(cx,α)+Cρ1 +Cρ2

]
. (53)

where m is the total number of finite elements. The matrices Kw1 and Kw2 are
contributions to the stiffness due to the axial force and these reduce the bend-
ing stiffness of the system. The matrix Knc1 is the stiffness matrix due to the
non-conservative follower force ft and Knc2 is the stiffness matrix due to the non-
conservative drag force fs at the nose region. The matrices KAR(cx,α) and CAR(cx,α)
are due to the contribution of aerodynamic forces. The matrices Ka1 and Ka2 are
the stiffness matrices due to rate of change of momentum of the vehicle. The ma-
trices Cρ1 and Cρ2 are the finite element damping matrices due to variable mass of
the vehicle. The finite element matrices KI(cx), KA(cx), Ka1(cx, ċx), Ka2(cx, ċx),
C1(cx) and C2(cx) are due to the contribution of velocity induced curvature effects.
The velocity of the vehicle contributes to two effects namely velocity induced cur-
vature effects and the aerodynamic effects (which are function of the velocity).
The velocity induced curvature effects can be neglected at low speeds, but at higher
speeds, these have significant effect on the dynamic characteristics of the vehicle.
The system equations can now be written in a compact form as

MGd̈+CGḋ+KGd = 0 . (54)
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4.5 Eigenvalue Problem

Equation (54) is transformed to first order state space form as follows:

X =
{

d
ḋ

}
, Ẋ =

{
ḋ
d̈

}
= AX , (55)

where

A =
[

0 I
−MG

−1KG −MG
−1CG

]
. (56)

The eigenvalues λ for the system can be found by transforming the system to a
standard eigenvalue problem

AX = λX , (57)

where λ is generally complex, λ = σ + iω with σ and ω being real numbers. The
notion of stability is defined such that

(1) the system is stable if σ ≤ 0

(2) the system undergoes dynamic instability (flutter) if σ > 0 , ω 6= 0

(3) the system undergoes static instability (divergence) if σ > 0 , ω = 0

Alternatively, the eigenvalues and the eigenvectors of the system can be found by
transforming equation (54) to a polynomial eigenvalue problem (PEP) as[
KG +λCG +λ

2MG
]

Ψ = 0 . (58)

PEP is solved using standard MATLABr routines, which gives the vector of eigen-
values λ j and the corresponding eigenvector Ψ j. The mode shape associated with
a stable/ unstable mode is analysed by plotting Ψ j over the span of the vehicle.

5 Numerical Simulations

Numerical simulations are carried out to determine the unstable regimes for a slen-
der launch vehicle. Stability is determined in a quasi-static manner, that is, the
eigenvalues of the system are determined at a specific instant of time, for a given
vehicle thrust and speed. This analysis tells us, how the system behaviour will
evolve for certain trajectory parameters and it gives information about the regimes
in which the vehicle is likely to experience instability. Such information is impor-
tant for mission planning and design of trajectory. Knowledge of vehicle unstable
regimes is also an important input for control system design.



122 Copyright © 2009 Tech Science Press CMES, vol.45, no.2, pp.97-139, 2009

In this section, first, the present model is validated with those reported in published
literature (Sundararamaiah & Johns 1976) for a special case of end thrust as a pa-
rameter. Next, the stability of a representative vehicle is investigated under the
action of end thrust as a parameter, at a given velocity. Subsequently, the stability
of a two-stage vehicle is determined for velocity as a parameter at constant max-
imum thrust, considering the mass variation of the vehicle. To study the velocity
induced curvature effects, an order of magnitude analysis of finite element matrix
terms is carried out. Next, the effect of combustion chamber pressure on the sta-
bility of the vehicle is considered. In the end, there is a discussion on the rigid
body modes and the flexible modes of a vehicle. For the simulations, the vehicle
is assumed to be moving at zero angle of attack (α = 0) and zero angular velocity
(Ω = 0). Most of the launch vehicle structures are axially symmetric. Hence, it
is reasonable to assume the vehicle mass to be symmetrical about the vehicle axis;
that is, I1=0. The propellant consumption leads to a decrease in the vehicle mass
and a corresponding increase in the vehicle acceleration. The velocity at time t is
calculated from

cx(t) =
∫ t

0
ċxdt , ċx(t) =

( ft − fs− pxl)
M(t)

. (59)

The stability is analysed based on the characteristics of eigenvalues and eigenvec-
tors. It is convenient to deal with non-dimensional quantities. For this purpose, the
thrust and the eigenvalues are non-dimensionalised by introducing the following
parameters:

Q = π
2 ft/Pcr , Pcr = π

2EI2/l2 , λ ← λ

(
ρAl4

EI2

)1/2

. (60)

Here Pcr is the Euler buckling load for a hinged-hinged beam-column of same
length as the vehicle.

5.1 Numerical Validation of the Finite Element Simulation Results

From the published literature (e.g., Wu 1975, 1976), it was found that the finite
element model of a flexible vehicle had been developed, including the effects of
propulsive thrust. However, the velocity induced curvature effects were not in-
cluded in these published research. Hence, our new results regarding velocity
induced effects can not be validated with the published results. However, from
the literature, results due to the propulsive end thrust are available. Hence, our
computational results based on the developed finite element model is validated for
end thrust as a parameter, by comparing the results reported by Sundararamaiah &
Johns (1976). For the purpose of comparison, the velocity induced curvature effects
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and the effect of aerodynamic forces are neglected. As an example, a representative
vehicle data is taken. The length (l) of the vehicle is 40 m, flexural rigidity (EI2)
is 1.36× 1010 N-m2, mass per unit length (ρA) is 546 kg/m and maximum thrust
developed ( ft) is 5000 kN. The h-p finite element model and standard eigenvalue
routines are used for numerical simulations. The vehicle is discretized into 50 finite
elements. The comparisons are shown in table 1. Here Q is the non-dimensional
thrust. The results are in good agreement. The eigenvalues λ3 and λ4 are in fact
the first two bending natural frequencies of the vehicle and these are obtained from
the present model as imaginary numbers as shown in the table 1, indicating their
oscillatory contribution in the time response of the vehicle. It is observed that nat-
ural frequencies decrease with the increase in the end thrust (same observation was
reported by Sundararamaiah & Johns). At a critical thrust value (Q/π2 = 11.11)
that corresponds to ft = 9.37×105 kN, the two bending modes merge to a coupled
mode. The eigenvalue corresponding to the coupled mode has a positive real part
and a non-zero imaginary part indicating dynamic instability (flutter). This type of
flutter is known as coupled mode flutter. For the representative vehicle, the critical
thrust value is very high compared to its maximum thrust ( ft = 5×103 kN).

The system under the action of propulsive thrust behaves in a similar manner to
a vertical cantilevered beam-column subjected to a sub-tangential force. In the
study by Sugiyama, Katayama, Kiriyama & Ryu (2000), a solid rocket motor was
mounted to a vertical cantilevered column at its tip end. Rocket thrust of the motor
produces a tangential/ non-conservative force, while the self-weight of the motor a
vertical/ conservative force. Thus, the combined action of the rocket thrust and the
self-weight of the rocket motor produces a sub-tangential force. It is observed that
the natural frequencies of the first two bending modes decreases to zero, with the
increase in the compressive force, when only the conservative vertical force (self-
weight) is applied. Hence the system loses its stability by divergence (buckling) and
the corresponding load is known as buckling (divergence) load. When the rocket
thrust (follower force) and the self-weight of the rocket motor are acting together,
the system loses its stability by flutter. The flutter occurs when the two bending
modes merge to a coupled mode. This happens at a higher compressive load as
compared to the first buckling (divergence) load. So, in effect the follower force
has a stabilising effect on the system.

5.2 Effect of propulsive thrust on the stability

Stability of the vehicle is investigated under the action of end thrust as a parameter,
at a given velocity. The vehicle mass is assumed to be constant and the effect of
aerodynamic forces is neglected. The stability property is investigated at c = 500
m/s (M∞=1.47) with the velocity induced curvature effects included. The first four
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Table 1: Four smallest eigenvalues for constant thrust neglecting the velocity in-
duced curvature effects. Q is the non-dimensional thrust and i =

√
(−1)

Q/π2 λ1 λ2 λ3 λ4 Remarks
0.00 0.0 0.0 22.373 i 61.673 i Present work

0.0 0.0 22.3744 61.6958 (Sundararamaiah & Johns 1976)
0.0 0.0 22.3733 61.6728 Exact

1.00 0.0 0.0 20.992 i 59.791 i Present work
0.0 0.0 20.99 59.82 (Sundararamaiah & Johns 1976)

2.00 0.0 0.0 19.565 i 57.826 i Present work
0.0 0.0 19.57 57.85 (Sundararamaiah & Johns 1976)

5.00 0.0 0.0 15.114 i 51.261 i Present work
0.0 0.0 15.13 51.30 (Sundararamaiah & Johns 1976)

11.126 0.0 0.0 1.48+23.078 i -1.48+23.078 i Present work
0.0 0.0 23.10 23.10 (Sundararamaiah & Johns 1976)

non-zero eigenvalues with thrust as the parameter are shown in figure 6. As the
non-dimensional thrust (Q/π2) increases, an eigenvalue with a positive real part
and a non-zero imaginary part is observed indicating dynamic instability (flutter).
The divergence mode is observed from Q/π2 = 4.0 to the range of thrust values
considered (upto Q/π2 = 12). It is observed that at Q/π2 = 5, the divergence and
the flutter modes crossover. For comparison, the bending modes neglecting the
velocity induced effects are also shown in the figure. The finite element matrices
KI, KA, Ka1, Ka2, C1, C2, KAR, Knc2 and CAR are zero when velocity induced ef-
fects are neglected (cx, ċx = 0). When the velocity effects are included, the bending
modes do not merge to a coupled mode for the range of thrust values considered
(upto Q/π2 = 12). This is unlike the bending modes which merge to a coupled
mode (flutter mode) at Q/π2 = 11.11 when velocity effects are neglected. The
plots of bending modes neglecting the velocity induced curvature effects are in fact
the plots of eigenvalues (λ3 and λ4 corresponding to present work) presented in
table 1. When the velocity induced curvature effects are included, the instabilities
are observed at lower thrust values. It is to be noted that the maximum thrust of the
vehicle is ft = 5000 kN that corresponds to a very low value of non-dimensional
thrust (Q/π2 = 0.06).

Next, we compare the results at low Mach number with the results from previous
models (Wu 1975, 1976). The results from previous models are obtained by ne-
glecting the velocity induced curvature effects (M∞=0). A plot of eigenvalues for
thrust as a parameter at a lower Mach number (M∞=0.25) are shown in figure 7. For
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Figure 6: Eigenvalues for thrust as a parameter showing the velocity induced curva-
ture effects, ∗ flutter mode c=500 m/s (M∞=1.47), � 1st bending mode c=500 m/s,
� 2nd bending mode c=500 m/s,4 divergence mode c=500 m/s, ∇ flutter mode ne-
glecting velocity induced effects, ? 1st bending mode neglecting velocity induced
effects, ◦ 2nd bending mode neglecting velocity induced effects. ċx = ft/M, where
M is the lift-off mass of the vehicle.

comparison, the first four modes neglecting the velocity induced effects (M∞=0) are
also shown in the figure. It is observed that eigenvalue for mode 1 has a small pos-
itive real part at M∞=0.25. The real part of the eigenvalues for all the four modes
are zero, when the velocity induced effects are neglected. Eigenvalues for mode 3
and mode 4 (which are the first two bending modes) match closely for M∞=0.25
and M∞=0. Hence, the results at low Mach number match closely with the results
obtained from earlier models.
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Figure 7: Eigenvalues for thrust ( ft) as a parameter at M∞=0.25. ċx = ft/M, where
M is the lift-off mass of the vehicle.

5.3 Effect of velocity on the stability

Stability of the vehicle is analysed for velocity (free stream Mach number) as a pa-
rameter, at maximum propulsive thrust. Stability of the vehicle is dependent on the
main trajectory parameters such as velocity and acceleration (thrust) profile, max-
imum dynamic pressure and angle of attack during flight. The information about
stable regimes is useful for designing trajectories, that is, those trajectories can be
selected on which the vehicle is stable for most of the operating regime. Numerical
simulations are carried out for a two-stage vehicle configuration shown in figure 4.
The data for the vehicle is given in table 2. The vehicle comprises of a conical
nose region and two stages. The first stage is a solid propellant rocket motor with a
nozzle at the end. The nose region consists of a uniform cross-section segment and
a conical segment. The uniform cross-section segment accomodates the payload.
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The conical segment is represented by four equivalent uniform cross-section seg-
ments. The number of finite elements used for each stage (segment) are also given
in the table. For the numerical simulations, energy dissipated by the system due to
material damping and due to friction in the joints is assumed to be 5% of the total
strain energy. The first six non-zero eigenvalues with free stream Mach number
(M∞ = cx/co) as a parameter upto M∞=1.5 are shown in figure 8. ċx obtained from
equation (59) is used for obtaining Ka1 and Ka2 matrices. With the increase in the
Mach number, branching (splitting) and merging of the modes is observed. At low
Mach numbers, dynamic instability (flutter) occurs in mode 2. At M∞=0.62, the
flutter mode splits into two divergence modes (mode 2a and 2b in the figure). The
real part of the eigenvalue corresponding to one of the divergence modes (mode 2b)
decreases and becomes zero at M∞=0.87. The eigenvalue corresponding to mode 3
is close to zero at low Mach numbers. At M∞=0.91, mode 2b and mode 3 merge
to a coupled mode (denoted as mode 4 in the figure). As the Mach number in-
creases, flutter occurs in mode 5 from M∞=1.03 to M∞=1.65. The imaginary part
of the eigenvalues corresponding to modes 4 and 5 are very close from M∞=1.03
to M∞=1.5. As the Mach number increases, the imaginary part of the eigenvalues
(natural frequencies) corresponding to modes 5 and 6 decreases. For the stationary
free-free vehicle (M∞=0), modes 5 and 6 are the first two bending modes of the
vehicle.

The first six non-zero eigenvalues with free stream Mach number as a parameter
from M∞=1.5 to M∞=3.0 are shown in figure 9. As the Mach number increases
from M∞=1.5, divergence and flutter are observed in different modes simultane-
ously. Divergence occurs in mode 2a from M∞=1.50 to M∞=2.40. Dynamic insta-
bility (flutter) occurs in mode 4 from M∞=1.70 to M∞=2.37. Since the real part of
eigenvalue for mode 4 changes from negative to positive at M∞=1.70, this flutter
is known as a single mode flutter (Hopf bifurcation). At M∞=1.70, mode 5 splits
into two modes (denoted as mode 5a and 5b in the figure) having negative real
part and zero imaginary part. At M∞=2.31, mode 5a and 5b merge to a coupled
mode (denoted as mode 5c in the figure). From M∞=2.36 to M∞=3.0, mode 5c is
a flutter mode (single mode flutter). Flutter (single mode flutter) occurs in mode 6
from M∞=2.60 to M∞=3.0. The real part of the eigenvalues for the divergence and
flutter modes has higher magnitude at higher Mach numbers. This implies that the
response (deformation) grows at a faster rate and leads to instability.

Prediction of unstable modes at high supersonic speeds using linear analysis is not
fully reliable and non-linear analysis is required to predict the instabilities accu-
rately. Large amplitude vibration and unsteady aerodynamics contribute to non-
linearities in the system. After the onset of instability (divergence or flutter), higher
amplitude of vibration start. As the amplitude increases, the linear theory does not
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Figure 8: Eigenvalues (λ ) for Mach Number (M∞) as a parameter upto M∞=1.5 at
constant maximum thrust ft=5140 kN and ċx obtained from equation (59).

hold good. Due to the non-linearities, the system may develop limit cycle oscil-
lations and may not become unstable. The non-linearities in the system will be
considered in a future work.

5.4 Order of magnitude analysis

To study the velocity induced curvature effects, an order of magnitude analysis of
finite element matrix terms is carried out. The terms of the finite element matrices
are compared for a specific Mach number (M∞=3.0) in non-dimensionalised form

K(m,n)← K(m,n)
ρAc2

o/l
, C(m,n)← C(m,n)

ρAco
. (61)

A comparison of the first non-zero element of finite element matrices is shown
in table 3. The finite element matrices are computed for a finite element consid-
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Figure 9: Eigenvalues (λ ) for Mach Number (M∞) as a parameter from M∞=1.5
to M∞=3.0 at constant maximum thrust ft=5140 kN and ċx obtained from equa-
tion (59).

ered in the first stage of the vehicle. The finite element matrices KI(cx), KA(cx),
Ka1(cx, ċx), Ka2(cx, ċx), C1(cx) and C2(cx) are due to the contribution of velocity
induced curvature effects. The terms of finite element matrices KI(cx) and KA(cx)
are function of square of the velocity (cx). The terms of KI(cx) and KA(cx) are one
order of magnitude and two order of magnitude less, respectively, than the conven-
tional finite element stiffness matrix KE terms. The terms of all other finite element
stiffness matrices are significantly lower. The terms of finite element matrices due
to aerodynamic forces are zero due to zero angle of attack. Also, the finite element
is considered in the cylinderical segment of the vehicle where the aerodynamic lift
force is zero. The terms of finite element damping matrices due to velocity C1(cx)
and C2(cx) are significantly lower than the KE term, but this damping can desta-



130 Copyright © 2009 Tech Science Press CMES, vol.45, no.2, pp.97-139, 2009

Table 2: Data for a two-stage vehicle

Stage (Segment) Segment Length/l No. of elements E/ρ (m2s−2) I2/A (m2)
1 0.45 25 2.564e7 0.9744
2 0.45 25 2.564e7 0.9744

Nose region 0.04 2 2.5e7 1.3039
Nose region 0.02 1 2.5e7 0.8008
Nose region 0.02 1 2.5e7 0.4202
Nose region 0.01 1 2.5e7 0.1875
Nose region 0.01 1 2.5e7 0.0625

bilise the system.

Table 3: Order of magnitude analysis of finite element matrix terms for M∞=3.0

KE(1,1) KI(1,1) KA(1,1) Kw1(1,1) Kw2(1,1) Knc1(4,3)
2.27e5 9514.9 2908.5 0.048 2.93 3.65

Ka1(1,2) Ka2(1,1) KAR(1,1) C1(1,2) C2(1,2) CAR(1,1)
0.03 0.01 0.0 0.05 0.808 0.0

5.5 Effect of combustion chamber pressure on the stability

The change in combustion chamber pressure changes the exhaust velocity and the
mass flow rate. Consequently, the propulsive thrust also gets changed since it is a
function of the mass flow rate and the exhaust velocity. The chamber pressure also
affects the axial force distribution on the vehicle. Three of the first six eigenval-
ues with Mach number as a parameter at constant chamber pressure (po= 7 MPa)
and for varying chamber pressure are shown in figure 10. The chamber pressure
varies with time and since Mach number also varies with time, the variation of the
chamber pressure with the Mach number is shown in the inset of the figure 10. It is
observed that the real part of the eigenvalue for the divergence and the flutter modes
is higher for varying chamber pressure when the chamber pressure is 1.5po. Also
the imaginary part of the eigenvalue (frequency) for mode 5 is higher for varying
chamber pressure.
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Figure 10: Eigenvalues (λ ) for Mach Number (M∞) as a parameter at constant
chamber pressure (po= 7 MPa) and for varying chamber pressure. The branches
shown by arrow are for varying pressure (profile of pc Vs. M∞ is shown in the inset)
and the other branches are for constant pressure. ċx is obtained from equation (59).

5.6 Discussion on Rigid Body Modes and Flexible Modes

There are two types of rigid body modes (λ = 0) for a free-free beam, which corre-
spond to rigid body translations and rigid body rotations. Moving flexible vehicles
are free-free unconstrained structures. In the context of moving flexible vehicles
under the propulsive thrust (follower force) and aerodynamic forces, zero eigen-
values may not be obtained. The flexible modes of a moving flexible vehicle are
not identical to the flexible modes of a stationary vehicle. The rigid body motion
influences the flexible modes of the system. With the increase in velocity of the
center of mass of the vehicle, the total kinetic energy of the system increases and
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the energy of the vibrational modes also increases due to coupling between the rigid
body motion and the flexible modes. Due to the higher energy of the vibrational
modes, the system may not be able to store or dissipate the energy and the unstable
modes are more likely to occur.

There are two external forces acting on the system: vehicle thrust and the aero-
dynamic forces. The vehicle is also subjected to forces which arise due to the
curvature of the moving vehicle. All the above forces along with the elastic and in-
ertia forces determine the behaviour of the system. The point to be noted is that the
present analysis is carried out for unguided launch vehicles neglecting the control
forces. The present day launch vehicles have sophisticated control and guidance
systems which are responsible for accurate vehicle trajectory and reliable perfor-
mance.

The present analysis shows that as the vehicle speed increases, the vehicle modes
are distinctly different from that of a stationary vehicle. This implies change in
the stress and the bending moment on the vehicle structure with the change in the
vehicle speed, which needs to be taken care of in the design of a vehicle. There
are certain important implications from design and flight control points of view.
Any control system design should account for such a change in the eigenvalues and
mode shapes. The placement of sensors and actuators in the vehicle also assumes
significance in view of the changing mode shapes. Similar concern arises while
considering large distributed payload and its placements.

6 Conclusions

A modelling approach toward the dynamic instability of slender space launch ve-
hicles subjected to propulsive thrust and aerodynamic forces is presented. The new
aspect of this work is the inclusion of velocity induced curvature effects that in-
cludes the Coriolis and centrifugal forces due to curvature of a moving flexible
vehicle. The flexible body dynamics of the moving vehicle is studied in an inertial
frame of reference within the variational framework. A one-dimensional model of
the vehicle is developed by considering the coupling of the rigid body modes and
the flexible modes. The model incorporates the aerodynamic forces and the thrust
of the vehicle. A h-p finite element model is developed to solve the eigenvalue
problem. Predictions regarding stability regimes for a vehicle subjected to the end
thrust are validated. Stability of the vehicle is investigated under the action of end
thrust as a parameter, at a given velocity. The results at low Mach number match
closely with the results obtained from previous models published in the literature.
Numerical simulations are carried out for a representative vehicle to determine the
regions of instability with vehicle speed as a parameter upto M∞=3.0. With the
increase in the Mach number, branching (splitting) and merging of the modes is



Launch Vehicle Dynamic Stability 133

observed. At higher Mach numbers, divergence and flutter are observed in differ-
ent modes simultaneously.

The eigenvalues and eigenvectors are in general complex for a given vehicle thrust
and velocity. For moving flexible vehicles under the propulsive thrust and aerody-
namic forces, zero eigenvalues may not be obtained, unlike a stationary free-free
vehicle (beam) for which two types of rigid body modes exist (λ=0).

Literature review shows that for space launch vehicles, flexible body dynamics has
been studied in body coordinate system due to which the influence of the rigid
body motion on the flexible modes of the vehicle is neglected. As the numerical
simulations show, the coupling of these two types of modes can change the dynamic
characteristics of the vehicle completely. Understanding of related phenomena for
future space missions is important.

Detailed analysis of the vehicle can be carried out by considering a more detailed
model in terms of accurate mass and stiffness distributions. Understanding the
effect of time-varying coefficients, angle of attack and the angular velocity in the
model is an open area of research. Also non-linearities due to large amplitude
vibration and unsteady aerodynamics can be considered in future. In the present
work, empirical relations are used to obtain the aerodynamic coefficients. This
research can be extended by considering a more detailed aerodynamics model. At
present, the effect of combustion process is incorporated through the propulsive
thrust and the variation of axial force in the vehicle. A more detailed combustion
coupled model is under development to study the combustion induced instabilities
in the vehicle.
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