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On the Solution of a Coefficient Inverse Problem for the
Non-stationary Kinetic Equation
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Abstract: The solvability conditions of an inverse problem for the non-stationary
kinetic equation is formulated and a new numerical method is developed to obtain
the approximate solution of the problem. A comparison between the approximate
solution and the exact solution of the problem is presented.
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1 Introduction

Inverse problems appear in many important applications of physics, geophysics,
technology and medicine. One of the characteristic features of these problems for
differential equations is their being ill-posed in the sense of Hadamard. The general
theory of ill-posed problems and their applications is developed by A. N. Tikhonov,
V. K. Ivanov, M. M. Lavrent’ev and their students [Ivanov et al (1978), Lavrent’ev
(1967), Lavrent’ev et al (1980), Tikhonov and Arsenin (1979), Tikhonov et al
(1987)]. Inverse problems for kinetic equations are important both from theoret-
ical and practical points of view. Interesting results in this field are presented
by Amirov [Amirov (1985), Amirov (1987), Amirov (2001)], Anikonov, Kov-
tanyuk and Prokhorov [Anikonov et al (2002)], Anikonov and Amirov [Anikonov
and Amirov (1983)], Anikonov [Anikonov (2001)], Hamaker, Smith, Solmon and
Wagner [Hamaker et al (1980)]. Some recent works devoted to numerical so-
lution of inverse problems can be found in [Ling and Atluri (2006); Huang and
Shih (2007); Ling and Takeuchi (2008); Liu (2008); Marin (2008); Beilina and
Klibanov (2008); Amirov et al (2009)].

In this paper, the existence and uniqueness of the solution of a non-linear inverse
problem for the non-stationary kinetic equation is proven in the case where the
values of the solution are known on the boundary of a domain. A new numerical
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method based on the Galerkin method is developed to obtain the approximate so-
lution of the problem. A comparison between the computed approximate solution
and the exact solution of the problem is presented.

The main difficulty in studying the solvability of considered problem is overdeter-
minacy. In the paper, using some extension of the class of unknown functions, the
overdetermined inverse problem is replaced by a related determined one, which is
a new and interesting technique of investigating the solvability of overdetermined
problems. The proposed approximation method for the non-linear inverse problem
for the non-stationary kinetic equation is also new and important which is based on
this technique.

For a bounded domain G, Cm (G) is the Banach space of functions that are m times
continuously differentiable in G; C∞ (G) is the set of functions that belong to Cm (G)
for all m≥ 0; C∞

0 (G) is the set of finite functions in G that belong to C∞ (G); L2 (G)
is the space of measurable functions that are square integrable in G, Hk (G) is the

Sobolev space and
◦

Hk (G) is the closure of C∞
0 (G) with respect to the norm of

Hk (G). These standard spaces are described in detail, for example, in Lions and
Magenes [Lions and Magenes (1972)] and Mikhailov [Mikhailov (1978)].

2 Statement of the Problem

In this work, the kinetic equation

∂u
∂ t

+
n

∑
i=1

(
vi

∂u
∂xi

+ fi
∂u
∂vi

)
−a(x,v, t)u = 0 (1)

is considered in the domain

Ω = {(x,v, t) : x ∈ D⊂ Rn, v ∈ G⊂ Rn, n≥ 1, t ∈ (0,T )} ,

where the boundaries ∂D, ∂G ∈C3, a(x,v, t) is an unknown function and satisfies
the equation〈

a, L̂η

〉
= 0, L̂ =

n

∑
i=1

∂ 2

∂xi∂vi
(2)

for any η ∈C∞
0 (Ω), 〈., .〉 is a scalar product in L2 (Ω).

We select a subset {w1,w2, ...} of C̃3
0 =

{
ϕ : ϕ ∈C3 (Ω) , ϕ = 0 on ∂Ω

}
which

is orthonormal in L2 (Ω) and the linear span of this set is everywhere dense in
◦
H1,2 (Ω), where

◦
H1,2 (Ω) is the set of all real-valued functions u(x,v, t) ∈ L2 (Ω)

that have generalized derivatives uxi , uvi , uxiv j , uviv j (i, j = 1,2, ...,n), which belong
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to L2 (Ω) and whose trace on ∂Ω is zero. Let Pn be the orthogonal projector of
L2 (Ω) onto Mn, where Mn is the linear span of {w1,w2, ...,wn} .
Eq. 1 is extensively used in plasma physics and astrophysics. In applications,
u(x,v, t) represents the number (or the mass) of particles in the unit volume ele-
ment of the phase space in the neighbourhood of a point (x,v) at the moment t,
a(x,v, t) is the absorption term and f = ( f1, ..., fn) is the force acting on a particle.

Problem 1 Determine the functions u(x,v, t) and a(x,v, t) defined in Ω from equa-
tion (1), provided that u(x,v, t) > 0, the function a(x,v, t) satisfies (2) and the trace
of u(x,v, t) is known on the boundary, i.e.,u|

∂Ω
= u0.

Remark 1 It is easy to see that Problem 1 is non-linear because Eq. 1 contains a
production of unknown functions u(x,v, t) and a(x,v, t).

Remark 2 In practise, the function a(x,v, t) depends only on the argument x and
t, i.e. the problem is overdetermined. In [Amirov (2001)], a genereal scheme is
presented to overcome this difficulty: It’s assumed that the unknown coefficient in
the problem depends not only on the variables x and t but also on the direction v in
a specific way, that is, L̂a = 0.

Remark 3 By introducing a new unknown function lnu = y, Problem 1 can be
reduced to the following problem:

Problem 2 Find a pair of functions (y,a) defined in Ω satisfying the equation

Ly≡ ∂y
∂ t

+
n

∑
i=1

(
vi

∂y
∂xi

+ fi
∂y
∂vi

)
= a(x,v, t) , (3)

provided that a(x,v, t) satisfies (2) and y is known on ∂Ω: y|
∂Ω

= lnu0 = y0.

To formulate the solvability theorem for Problem 2, we need the following notation:

Γ(A) denotes the set of functions y with the following properties

i) For y ∈ Γ(A), Ay ∈ L2 (Ω) in the generalized sense, where Ay = L̂Ly;

ii) There exists a sequence {yk} ⊂ C̃3
0 such that yk→ y in L2 (Ω) and 〈Ayk,yk〉 →

〈Ay,y〉 as k→ ∞.

The condition Ay ∈ L2 (Ω) in the generalized sense means that there exists a func-
tion F ∈ L2 (Ω) such that for all ϕ ∈C∞

0 (Ω), 〈y,A∗ϕ〉= 〈F ,ϕ〉 and Ay = F where
A∗ is the differential operator conjugate to A in the sense of Lagrange.
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3 Solvability of the Problem

Theorem 1 Let f ∈C1 (Ω) and assume that the following inequality holds for all
ξ ∈ Rn :

n

∑
i, j=1

∂ fi

∂x j
ξ

i
ξ

j ≥ α1 |ξ |2 , (4)

where α1 is a positive number. Then Problem 2 has at most one solution (y,a) such
that y ∈ Γ(A) and a ∈ L2 (Ω) .

Proof. The method used here for proving the uniqueness of the solution is similar
to that of given in the proof of Theorem 2.2.1 on p. 60 in [Amirov (2001)] which
is proved for the stationary kinetic equation. Let (y,a) be a solution to Problem
2 such that y = 0 on ∂Ω and y ∈ Γ(A). Eq. 3 and condition (2) imply Ay = 0.
Since y ∈ Γ(A), there exists a sequence {yk} ⊂ C̃3

0 such that yk → y in L2 (Ω) and
〈Ayk,yk〉 → 0 as k→ ∞. Observing that yk = 0 on ∂Ω, we get

−2〈Ayk,yk〉= 2
n

∑
i=1

〈
∂

∂vi
(Lyk) ,ykxi

〉
. (5)

We have the following identity for the right-hand side of the last equality:

n

∑
i=1

2
∂yk

∂xi

∂

∂vi
(Lyk)

=
n

∑
i=1

(
∂yk

∂xi

)2

+
n

∑
i, j=1

∂ fi

∂x j

∂yk

∂vi

∂yk

∂v j

+
n

∑
i=1

∂

∂vi

[
∂yk

∂ t
∂yk

∂xi

]
+

n

∑
i=1

∂

∂ t

[
∂yk

∂vi

∂yk

∂xi

]
−

n

∑
i=1

∂

∂xi

[
∂yk

∂ t
∂yk

∂vi

]
+

n

∑
i, j=1

∂

∂v j

(
vi

∂yk

∂xi

∂yk

∂x j

)
+

n

∑
i, j=1

∂

∂xi

(
vi

∂yk

∂v j

∂yk

∂x j

)
−

n

∑
i, j=1

∂

∂x j

(
vi

∂yk

∂xi

∂yk

∂v j

)

+
n

∑
i=1

∂

∂vi

[
vi

(
∂yk

∂xi

)2
]

+
n

∑
i, j=1

∂

∂v j

(
fi

∂yk

∂vi

∂yk

∂x j

)
+

n

∑
i, j=1

∂

∂vi

(
fi

∂yk

∂v j

∂yk

∂x j

)
−

n

∑
i, j=1

∂

∂x j

(
fi

∂yk

∂vi

∂yk

∂v j

)
. (6)

From (6), using the condition yk = 0 on ∂Ω and the geometry of the domain Ω, we
get

−〈Ayk,yk〉= J (yk) , (7)
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where

J (yk)≡
1
2

n

∑
i=1

∫
Ω

((
∂yk

∂xi

)2

+
n

∑
j=1

∂ fi

∂x j

∂yk

∂vi

∂yk

∂v j

)
dΩ. (8)

Since Ω is bounded and yk = 0 on ∂Ω, from (4) it follows that

J (yk) >
1
2

∫
Ω

|∇xyk|2 dΩ≥ c
∫
Ω

|yk|2 dΩ, c > 0, (9)

where ∇xyk =
(

ykx1
, ...,ykxn

)
. Using definition of Γ(A) , we have c

∫
Ω

y2dΩ ≤ 0.

Then (3) implies a(x,v, t) = 0. Hence uniqueness of the solution of the problem is
proven.

Problem 3 Given the equation

Ly = a+F (10)

where the function a satisfies (2) and F is a known function in H2 (Ω) , find the pair
of functions (y,a) under the condition that y|

∂Ω
= 0.

Problem 2 can be reduced to Problem 3, a similar reduction is presented in [Amirov
(2001)] page 65 for an another kinetic equation. For this, consider a new unknown
function y = y−ψ , where ψ is a known function such that ψ ∈C3 (Ω) and ψ|

∂Ω
=

y0. Since y0 ∈ C3 (∂Ω) and ∂D ∈ C3, ∂G ∈ C3 the existence of the function ψ

follows from Theorem 2, Sec. 4.2., Chapter III in [Mikhailov (1978)]. If we again
denote y by y, then we obtain Eq. 10 and the condition y|

∂Ω
= 0, where F =−Lψ .

Here, the function y depends on F and so, on ψ . From the uniqueness of the
solution to Problem 2, a function y = y + ψ does not depend on the choice of ψ

(also on F) and it depends only on y0.

Theorem 2 Under the assumptions of Theorem 1, suppose that F ∈ H2 (Ω) . Then
there exists a solution (y,a) of Problem 3 such that y ∈ Γ(A), y ∈ H1 (Ω) , a ∈
L2 (Ω) .

Proof. We consider the following auxiliary problem

Ay = F , (11)

y|
∂Ω

= 0, (12)
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where F = L̂F. For problem (11)-(12), an approximate solution

yN =
N

∑
i=1

αNiwi; αN = (αN1 ,αN2 , ...,αNN ) ∈ RN (13)

is defined as a solution to the following problem:

Find the vector αN from the system of linear algebraic equations (SLAE)

〈AyN−F ,wi〉= 0, i = 1,2, ...,N. (14)

We will prove that under the hypotheses of Theorem 2, system (14) has a unique so-
lution αN for any function F ∈H2 (Ω). For this purpose, ith equation of the homo-
geneous system (F = 0) is multiplied by −2αNi and sum from 1 to N with respect
to i. Hence −2〈AyN ,yN〉 = 0 is obtained. From the equality −〈AyN ,yN〉 = J (yN)
and the condition (4), we obtain ∇yN = 0, where ∇yN =(yNx1 , ...,yNxn ,yNv1 , ...,yNvn).
So, yN = 0 in Ω as a result of the conditions yN = 0 on ∂Ω and yN ∈ C̃3

0 (Ω). Since
the system {wi} is linearly independent, we get αNi = 0, i = 1,2, ...,N. Thus the
homogeneous version of the system of linear algebraic equations (14) has only a
trivial solution and therefore the original inhomogeneous system (14) has a unique
solution αN = (αNi), i = 1, ...,N for any function F ∈ H2 (Ω) .
Now we estimate the solution yN of system (14) in terms of F . We multiply the
ith equation of the system by −2αNi and sum from 1 to N with respect to i. Since
F = L̂F , we obtain

−2〈AyN ,yN〉=−2
〈

L̂F,yN

〉
. (15)

Observing that yN = 0 on ∂Ω, the right-hand side of (15) is estimated as follows:

−2
〈

L̂F,yN

〉
= 2

∫
Ω

n

∑
i=1

∂F
∂vi

∂yN

∂xi
dΩ

≤ β

∫
Ω

|∇vF |2 dΩ+β
−1
∫
Ω

|∇xyN |2 dΩ, (16)

for a sufficiently large β > 0 and ∇vF = (Fv1 , ...,Fvn). Since left hand-side of (15)
is equal to 2J (yN), from the assumption of the theorem we have∫
Ω

|∇xyN |2 dΩ+α1

∫
Ω

|∇vyN |2 dΩ≤ β

∫
Ω

|∇vF |2 dΩ+β
−1
∫
Ω

|∇xyN |2 dΩ. (17)

Since Ω is bounded and yN = 0 on ∂Ω, from (17)

‖yN‖ ◦
H1(Ω)

≤C‖|OvF |‖L2(Ω) , (18)
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is obtained, where the constant C > 0 does not depend on N.

Thus, the set of functions yN , N = 1,2,3, ... is bounded in
◦

H1 (Ω). Since
◦

H1 (Ω) is
a Hilbert space, there exists a subsequence in this set that is denoted again by {yN}

converging weakly in
◦

H1 (Ω) to a certain function y ∈
◦

H1 (Ω). From inequality

(18) and weak convergence of {yN} to y in
◦

H1 (Ω), it follows that

‖y‖ ◦
H1(Ω)

≤ lim
N→∞

‖yN‖ ◦
H1(Ω)

≤C‖|OvF |‖L2(Ω) . (19)

From estimate (18), it is easy to prove that there exists a subsequence of {yN} and〈
LyN−F, L̂wi

〉
= 0. (20)

Since the linear span of the functions wi, i = 1,2,3, ... is everywhere dense in
◦
H1,2 (Ω) passing to the limit as N→ ∞ in (20), we obtain〈

Ly−F, L̂η

〉
= 0, (21)

for any η ∈
◦
H1,2 (Ω). If we set a = Ly−F , from (21) we see that the function a

satisfies the condition (2) and the following estimate is valid:

‖a‖L2(Ω) ≤C‖y‖ ◦
H1(Ω)

+‖F‖L2(Ω) . (22)

Consequently, using the inequality

‖y‖ ◦
H1(Ω)

≤C‖|OvF |‖L2(Ω) ,

we obtain

‖a‖L2(Ω) ≤C‖5vF‖L2(Ω) +‖F‖L2(Ω) , (23)

where C stands for different constants that depend only on the given functions and
the size of the domain Ω.

Thus we have found a solution (y,a) to Problem 3, where y ∈
◦

H1 (Ω) and a ∈
L2 (Ω). Now we will show that y ∈ Γ(A). Since y ∈ L2 (Ω) and F ∈ H2 (Ω), it
follows that F = Ay ∈ L2 (Ω) in the generalized sense. For any η ∈ C∞

0 (Ω), the
following equalities hold.

〈y,A∗η〉=
〈

y,L∗L̂η

〉
=
〈

Ly, L̂η

〉
=
〈

F, L̂η

〉
= 〈F ,η〉 . (24)
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Now, we have to show that

〈AyN ,yN〉 → 〈Ay,y〉 as N→ ∞. (25)

We have PNAyN = PNF from (14) and PNF strongly converges to F in L2 (Ω)
as N→∞, since PN is an orthogonal projector onto Mn. In other words, PNAyN→
F = Ay strongly in L2 (Ω) as N → ∞. Then we have 〈PNAyN ,yN〉 → 〈Ay,y〉 as
N → ∞ because {yN} weakly converges to y and {PNAyN} strongly converges to
Ay in L2 (Ω) as N→ ∞. Since the operator PN is self adjoint in L2,

〈AyN ,yN〉= 〈AyN ,PNyN〉= 〈PNAyN ,yN〉 . (26)

Consequently, we obtain the convergence 〈AyN ,yN〉 → 〈Ay,y〉 as N→ ∞.

Theorem 3 Under the hypotheses of Theorem 1, assume that u0 ∈ H2 (∂Ω) and
u0 ≥ α0, where α0 is a positive number. Then there exists a solution (u,a) of
Problem 1 such that u ∈ H2 (Ω), a ∈ L2 (Ω).

4 Algorithm of Solving the Inverse Problem

An approximate solution to Problem 3 will be sought in the following form

yN =
N−1

∑
i=0

αNiwi. (27)

We give the solution algorithm, for the domains

D = {x ∈ Rn : |x|< 1} , G = {v ∈ Rn : |v|< 1}

and consider the complete systems{
xi1

1 , ...,xin
n

}∞

i1,...,in=0
,
{

v j1
1 ...v jn

n

}∞

j1,..., jn=0
,
{

1, t, t2, ...
}

in L2 (D), L2 (G) and L2 (0,T ) respectively. The approximate solution can be writ-
ten in the following form:

yN =
N−1

∑
i1,...,in, j1,..., jn,k=0

αNi1,...,in , j1,..., jn ,k
wi1,...,in , j1,..., jn ,k η (x)µ (v)ζ (t) (28)

where

wi1,...,in , j1,..., jn ,k =
{

xi1
1 ...xin

n v j1
1 ...v jn

n tk
}∞

i1,...,in , j1,..., jn,k=0
,
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η (x) =
{

1−|x|2 , |x|< 1
0, |x| ≥ 1

,

µ (v) =
{

1−|v|2 , |v|< 1
0, |v| ≥ 1

,

ζ (t) =
{

1− t2, |t|< 1
0, |t| ≥ 1

.

In expression (28), unknown coefficients αNi1 ,...,in , j1 ,..., jn ,k
, i1, ..., in, j1, ..., jn, k =

0,1, ...,N− 1 are determined from the following system of linear algebraic equa-
tions (SLAE):

N−1

∑
i1 ,...,in , j1 ,..., jn ,k=0

(
A
(

αNi1 ,...,in , j1 ,..., jn ,k wi1,...,in, j1,..., jn,k

)
ηµζ ,wi′1,...,i

′
n, j′1,..., j′n,k′

)
L2(Ω)

=
(
F ,w

i′1 ,...,i′n , j′1 ,..., j′n ,k′

)
L2(Ω)

, i′1, ..., i
′
n, j′1, ..., j′n, k′ = 0,1, ...,N−1. (29)

Left side of each equation in (29) is constructed.

Algorithm 1 (Le f tSLAE)

INPUT: N, i′1, ..., i′n, j′1,..., j′n, k′, wi′1,...,i′n, j′1,..., j′n,k′

OUTPUT: Left hand side of each equation in (29): LeftSum

Set LeftSum=0;

For i1 = 0,...,N−1 do ... For in = 0,...,N−1 do

For j1 = 0,...,N−1 do ... For jn = 0,...,N−1 do For k = 0,...,N−1 do

Le f tSum = Le f tSum+
(

A
(

αNi1 ,...,in , j1 ,..., jn ,k wi1 ,...,in , j1 ,..., jn ,k

)
ηµζ ,wi′1,...,i

′
n, j′1,..., j′n,k′

)
L2(Ω)

end k end jn ...end j1 end in ...end i1

STOP (The procedure is complete.)
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Algorithm 2

INPUT: N, F (x,v, t), f (x,v, t)

OUTPUT: Approximate solution uN and the coefficient a

SLAE = {}, yN = 0,

For i′1 = 0,...,N−1 do ... For i′n = 0,...,N−1 do

For j′1 = 0,...,N−1 do For j′n = 0,...,N−1 do For k′ = 0,...,N−1 do

SLAE = SLAE ∪
{

Le f tSLAE
(

i′1,...,i′n, j′1,..., j′n,k
′,N,η ,µ,ζ ,wi′1,..,i′n, j′1,..., j′n,k′

)}
=
(
F ,w

i′1,..,i′n , j′1,..., j′n ,k′

)
L2(Ω)

end k′ end j′n ...end j′1 end i′n ...end i′1

Solve
(

SLAE,
{

αN
i1,...,in , j1 ,..., jn ,k

})
Principle Part

For i1 = 0,...,N−1 do ... For in = 0,...,N−1 do

For j1 = 0,...,N−1 do ... For jn = 0,...,N−1 do For k = 0,...,N−1 do

yN = yN +
(

αNi1 ,...,in , j1 ,..., jn ,k
wi1 ,...,in , j1 ,..., jn ,k

)
η (x)µ (v)ζ (t)

end k end jn ...end j1 end in ...end i1

uN (x,v, t) = eyN , a(x,v, t) = L(yN)−F (x,v, t)

End of the Algorithm 2.

This algorithm computes the approximate solution using Algorithm 1.

The algorithms have been implemented in the computer algebra system Maple and
tested for several inverse problems. Two examples are presented below where UN

shows the computed solution at N and N is the order of sum in (28).

Example 1 Let us consider Problem 3 on

Ω = {(x,v, t)| x ∈ (−1,1) , v ∈ (−1,1) , t ∈ (−1,1)} ,

with the given functions

F (x,v, t) =−2txv+2txv3 +2tx3v−2tx3v3−3v2x2 +3v2x2t2 +3x2v4−3x2v4t2
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and f1 (x,v, t) = 0. Then, at N = 2 the method gives the result:

U2 =e(1−x2)(1−v2)(1−t2)xv,

a2 =−2vx(1− x2)(1− v2)t + v(1− v2)(1− t2)(v(1− x2)−2vx2)+2txv−2txv3

−2tx3v+2tx3v3 +3v2x2−3v2x2t2−3x2v4 +3x2v4t2

and this is the exact solution.

Example 2 Consider Problem 3 on

Ω = {(x,v, t)| x ∈ (−1,1) , v ∈ (1,2) , t ∈ (−1,1)} ,

then we take µ (v) as

µ (v) =
{

(1− v)(2− v) , v ∈ (1,2)
0, v /∈ (1,2)

,

so according to the given functions

F (x,v) =x2(−4t +2t(v−2)2)/v+(2tx4)/v

+ x(v−2)2(−2+2t2−3tx+3v−3vt2 + txv− v2 + v2t2)

+ x3v(6−6t2)+ vx(−6+6t2)−2tx2v+ tx4v−2x3v2 +2x3t2v2

+2v2x−2v2xt2

and f1 (x,v, t) = 0, approximate solution of the problem at N = 1 is

U1 = e−
1
2 (1−x2)(2−3v+v2)(1−t2),

where the exact solution is

u(x,v) = e
1
2v(x2+(2−v)2−1)(1−x2)(2−3v+v2)(1−t2).

A comparison between the approximate and the exact solution u(x,v, t) of the prob-
lem is presented on Figure 1. a1 and a4 can be obtained from equation Ly = a+F
easily.

In example 1, computed solution at N = 2 coincides with the exact solution of the
problem and in example 2, as it can be seen from Figure 1b, approximate solution
at N = 4 is very closed to the exact solution. Consequently, the computational
experiments show that the proposed algorithm gives efficient and reliable results.



152 Copyright © 2009 Tech Science Press CMES, vol.45, no.2, pp.141-154, 2009

Figure 1: Approximate and exact solution of the problem (a) N = 1, (b) N = 4, (c)
Exact.
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