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A Computational Approach for Pre-Shaping Voltage
Commands of Torsional Micromirrors

T. Starling1, M. F. Daqaq1 and G. Li1,2

Abstract: Input-shaping is an open-loop control technique for dynamic control
of electrostatic MEMS. In MEMS applications, open-loop control is attractive as
it computes a priori the required system input to achieve desired dynamic behav-
ior without using feedback. In this work, a 3-D computational electromechanical
analysis is performed to preshape the voltage commands applied to electrostati-
cally actuate a torsional micromirror to a desired tilt angle with minimal residual
oscillations. The effect of higher vibration modes on the controlled response is also
investigated. It is shown that, for some structural design parameters, the first bend-
ing mode of the micromirror can have a significant effect on the dynamic response.
If not accounted for in the control algorithm, these bending vibrations could have
an adverse effect on the controlled response of the mirror. To resolve this issue, a
numerical optimization procedure is employed to shape the input voltage from the
real time dynamic response of the mirror structure. The optimization scheme yields
a periodic nonlinear input voltage design that can effectively suppress the bending
mode.
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1 Introduction

Within the large family of Microelectromechanical systems (MEMS) [Judy (2001)],
electrostatically actuated micromirrors have been developed for many applications
such as optical RF switches, microscanners and video projectors [Wen, Hoa, and
Kirk (2004)]. As the potential applications of mircomirrors are very broad and
promising, there is a pressing need for effective control algorithms to improve
their dynamic behavior. Of special importance, is enhancing the transient response
characteristics (e.g., rise time, settling time, overshoot) y using step voltage com-
mands [Borovic, Liu, Popa, Cai, and Lewis (2005); Daqaq, Reddy, and Nayfeh
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(2008)]. From a control perspective, there are two approaches for MEMS con-
trol: the closed- and open-loop techniques. On one hand, closed-loop control
utilizes real-time feedback signals to monitor one or more of the system states,
which makes it more robust and resistant to fabrication uncertainties, design imper-
fections, and external disturbances. However, the implementation of closed-loop
algorithms for MEMS applications is very cumbersome [Borovic, Liu, Popa, Cai,
and Lewis (2005)]. Unlike macro mechanical systems, the implementation of the
feedback mechanism is difficult due to the small size of the system, the high speed,
and high frequency operations. In addition, the closed-loop control system needs
to be integrated with the MEMS system. The added control system and circuits
can significantly increase the complexity and reduce the reliability of the microde-
vice. On the other hand, open-loop algorithms compute the required system input
to achieve a desired behavior without using feedback, thereby eliminating the po-
tential problems associated with the closed-loop control. For this reason, open-loop
control of MEMS has attracted significant research interest in the past decade.

One widely used open-loop control technique is input shaping [Singer and Seering
(1990)]. This technique uses a sequence of impulses to generate the desired input.
When these impulses are convolved with the original input to the system, they result
in zero residual vibrations. Recently input-shaping has also been used in input volt-
age design to control MEMS devices such as electrostatic comb drives [Borovic,
Hong, Liu, Xie, and Lewis (2005)], thermal bimorph MEMS [Popa, Byoung, Wen,
Stephanou, Skidmore, and Geisberger (2003)] and electrostatically actuated mi-
crobeams [Yang, Chen, Lee, and Yin (2006); Lin (2009)]. The performance of
closed-loop and open-loop control approaches have been compared in [Borovic,
Liu, Popa, Cai, and Lewis (2005)]. For electrostatic micromirrors, an input-shaping
control algorithm based on analytical lumped models has also been proposed re-
cently in [Daqaq, Reddy, and Nayfeh (2008)].

While input-shaping control is attractive due to its simplicity, its effectiveness de-
pends on the accuracy of the model used to compute the input signal. All of the
above mentioned input shaping controllers are based on simplified analytical and
semi-analytical models. As most MEMS devices experience large deformations
and are actuated using a nonlinear energy field, it is not clear to what extent these
models are accurate. In addition, as the analytical input-shaping approaches aim to
suppress the first vibration mode of microsturctures, it is not clear what the effects
of higher vibration modes are and whether it is possible to improve input-shaping
to account for these effects.

To address these issues, accurate modeling of MEMS dynamics is required. Based
on the level of abstraction, MEMS modeling approaches can be categorized into
three groups: analytical/semi-analytical approach [Daqaq, Reddy, and Nayfeh (2008);
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Mukherjee (2000)], reduced-order approach [Rewienski and White (2003); Bettini,
Brusa, Munteanu, Specogna, and Trevisan (2008)], and full numerical approach [Li
and Aluru (2003); Chen, Lai, and Liu (2009)]. Compared to the first two types of
approaches, the full numerical approach solves the governing partial differential
equations directly. With the trade-off of computational cost, the full numerical ap-
proach is general and more accurate. In this work, to achieve the required accuracy,
we adopt the full numerical approach to investigate the input-shaping control of
electrostatic micromirrors. The numerical analysis of MEMS involves a mechani-
cal analysis and an electrostatic analysis. Towards that end, we develop a full 3-D
electromechanical solver for dynamic analysis of electrostatically-actuated MEMS
where the mechanical analysis is performed by using the finite element method
(FEM) and the electrostatic analysis is performed by using the boundary element
method (BEM). On top of the electromechanical solver, we implement an input-
shaping open-loop control algorithm. The effect of higher vibration modes on the
input-shaping control of electrostatic micromirrors is investigated. We show that,
depending on the design parameters, the bending mode of the micromirror structure
can have significant effect on the dynamic behavior of the system, which is difficult
to suppress by implementing traditional step-voltage open-loop algorithms. To re-
solve this issue, we employ a numerical optimization procedure to shape the input
voltage from the real time dynamic response of the mirror structure. The optimiza-
tion procedure results in a periodic input voltage design that can effectively reduce
the effect of the bending mode.

The rest of the paper is organized as follows. In Section 2, we present the mi-
cromirrors which we investigate in this work. Computational models for coupled
electromechanical dynamic analysis of MEMS are presented in Section 3. The ef-
fect of higher vibrational modes on the input-shaping control of the micromirros
are shown in Section 4. Section 5 describes an input-shaping optimization proce-
dure and presents the optimized input-shaping results. Conclusions are given in
Section 6.

2 Micromirros

We consider a micromirror device shown in Fig. 1. The mirror consists of two
identical microbeams of length l, width w, and thickness h. The beams are fixed on
one side and connected to a rigid rectangular plate (the mirror) on the other side.
The mirror has a length Lm, width a and thickness h. Beneath the micromirror are
two electrodes, each of length Lm and width (a2− a1)/2. The gap between the
undeformed position of the mirror and the electrodes is denoted as d. The whole
microstucture is etched out of a silicon substrate that has a density ρ , a Young’s
Modulus E, and a Poisson’s ratio, ν . The mirror is activated to rotate in either
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direction by supplying a voltage V (t) to the corresponding electrode. The voltage
generates electric charges on the surface of the mirror and the electrode, and hence
produces an attractive electrostatic force between the mirror plate and the electrode.
When the mirror deforms due to the electrostatic force, the electric field between
the mirror plate and the electrode changes and the electric charge redistributes,
causing a change in electrostatic force. The mirror plate reaches equilibrium when
the electrostatic and the mechanical forces are balanced.

We investigate the dynamic response of three different designs of the micromirror
device as shown in Fig. 2. In all three design, the size of the mirror plate and the
electrodes are the same. In the first design (Mirror A), the suspension beams are
relatively short and the electrodes are positioned aligning with the outer edges of the
mirror plate. The second design (Mirror B) has the same design parameters as those
of Mirror A except that the electrodes are placed more towards the center. In the
third design, Mirror C, the suspension beam length is increased and the electrodes
are placed at the same positions as those in Mirror B. The material properties and
dimensions of the mirrors are listed in Table 1.
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Figure 1: Schematic diagram of the torsional
micromirror.

Mirror A Mirror B Mirror C

Figure 2: Dimension and
electrode positions of the mi-
cromirrors.

3 Computational Modeling

The numerical analysis of electrostatic micromirrors involves coupled mechanical
and electrostatic models. In the mechanical analysis, we employ the finite element
method to solve the Euler-Lagrange equation of motion for the mirror structure.
In the FEM, the mirror structure is discretized into elements. The displacement,
velocity, and acceleration are approximated in each element by using shape func-
tions. Since the rotation and deflection of the micromirror are in different planes
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Table 1: Material properties and dimensions of the torsional micromirrors.

Properties
Modulus of elasticity, E (GPa) 170
Poisson’s ratio 0.3
Density, ρ (kg/m3) 2330
Dielectric constant of air, ε0 (F/m) 8.85×10−12

Dimensions Mirror A Mirror B Mirror C
Mirror width, a (µm) 100 100 100
Mirror length, Lm (µm) 100 100 100
Beam length, l (µm) 45 45 65
Beam width, w (µm) 1.55 1.55 2
Beam thickness, h (µm) 1.50 1.50 1.50
Electrode length, b (µm) 100 100 100
Electrode parameter, α = a1

a 0.3 0.08 0.08
Electrode parameter, β = a2

a 1.0 0.78 0.78
Gap height, d (µm) 2.75 2.75 2.75

as shown in Fig. 1, a 3-D computational model is necessary. The gap between the
mirror plate and the electrodes is small as shown in Table 1. Due to the pull-in ef-
fect, the actual rotation of the mirror is even smaller compared to the dimension of
the mirror structure. Typically the rotation angle is less than 1o. In this case, a lin-
ear elasticity theory can be used for the mechanical analysis [Li and Aluru (2001)].
The discretized equation of motion can be written as

Md̈+Cḋ+Kd = P. (1)

where d, ḋ and d̈ are the displacement, velocity and acceleration vectors, respec-
tively, and M, C, K are the global mass, damping, and stiffness matrices, respec-
tively, and P is the force vector. The Newmark method [Cook, Malkus, Plesha,
and Witt (2001)] is used to solve Eq. (1) for the elastodynamic analysis. In the
Newmark method, for a time step n + 1, the global equation of motion Eq. (1) are
combined with kinematic equations of motion to compute the nodal displacement,
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velocity and acceleration, i.e.,(
M+ γC∆t +β∆t2K

)
d̈n+1 =

Pn+1− (C+∆tK) ḋn−
(

∆t(1− γ)C+
∆t2

2
(1−2β )K

)
d̈n−Kdn (2)

dn+1 = dn +∆tḋn +
∆t2

2
(1−2β )d̈n +

∆t2

2
(2β )d̈n+1 (3)

ḋn+1 = ḋn +∆t(1− γ)d̈n +∆tγ ¨dn+1 (4)

where γ and β are the time integration parameters. In this work, an implicit scheme
with numerical smoothing (β = 0.3025 and γ = 0.6) is adopted [Cook, Malkus,
Plesha, and Witt (2001)].

To determine the electrostatic force acting on the mirror structure, the classical
potential problem defined by the Laplace equation needs to be solved in the domain
exterior to the mirror structure and the electrodes. Boundary integral methods can
be employed to efficiently solve Laplace-type [Li and Aluru (2002)] and Poisson-
type [He, Lim, and Lim (2008)] electrostatic problems. The boundary integral
equation for the Laplace-type electrostatic problem is given by [Shi, Ramesh, and
Mukherjee (1995)],

φ(p) =
∫

γ

G(p,q)σ(q)dγ (5)

where σ is the unknown surface charge density, p is the source point, q is the field
point, G(p,q) is the Green’s function and γ is the boundary of the mirror structure
and the electrodes. In three-dimensions, G(p,q) = 1/(4πεr(p,q)), where ε is the
permittivity of free space, and r(p,q) = |p−q| is the distance between the source
point p and the field point q. Note that Eq. (5) is defined for the deformed positions
of the conductors.

In this work, the quadrilateral faces of the hexahedral finite element elements on
the surface of the mirror are used as boundary elements in the electrostatic analysis.
The FE and BE nodes coincide and no interpolation between them is needed. The
surface charge density is assumed to be constant on each boundary element. The
centroid of each element is taken as the collocation point. Equation (5) can be
rewritten in a matrix form as

Hσσσ = φφφ (6)

where, for a total number of K boundary elements, H is a K×K coefficient matrix,
φφφ and σσσ are the K× 1 prescribed potential and unknown charge density vectors,
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respectively. The entries in the coefficient matrix and the vectors are given by

H(i, j) =
∫

γ j

1
4πεr(pi,q j)

dγ i, j = 1, . . . ,K (7)

φφφ =
{

φ1 φ2 · · · φK
}T

σσσ =
{

σ1 σ2 · · · σK
}T

(8)

where γ j is the area of the j-th boundary element, pi is the collocation point (source
point) on the i-th element and q j is the field point on the j-th element. The unknown
vector of surface charge density in Eq. (8) can be computed by solving the matrix
problem in Eq. (6).

Numerical integration is required in computing the matrix H as shown in Eq. (7).
When the source and field points p and q are in the same boundary element, i.e.,
i = j, the integral H(i, j) becomes singular. For the 1/r type singular kernel, sev-
eral regularization techniques are available [Aliabadi and S.Hall (1989, 1985)]. In
this work, a regularising transformation integration method [Aliabadi and S.Hall
(1989)] is employed for the evaluation of the singular integral. The transforma-
tion technique divides the element into triangular sub-elements then transforms the
triangular element to a square plane element. The singular integral is regularized
through the Jacobian generated by the transformation (see [Aliabadi and S.Hall
(1989)] for more details). For i 6= j, regular Gaussian quadrature is used. Once the
surface charge density is computed, the electrostatic surface force is obtained by
h = 2(σ2/ε)n where n is the surface outward normal vector.

In the static coupled electromechanical analysis, the equation of motion, Eq. (1),
reduces to the equation of equilibrium, Kd = P. A self-consistent analysis is per-
formed via a relaxation iteration between the mechanical equation of equilibrium
and the electrostatic equation given in Eq. (6). In the dynamic coupled electrome-
chanical analysis, within each time step, the mechanical analysis (Eqs. (2-4)) and
electrostatic analysis (Eq. (6)) are performed self-consistently. Note that, in this
work, we investigate input-shaping control of micromirrors with negligible damp-
ing, i.e., C is set to zero.

The pull-in curves for the three micromirrors shown in Fig. 2 are computed from
the static coupled analysis. Figure 3 shows the static pull-in of Mirror A. The pull-
in voltage is 18.74 V. This result compares favorably with the pull-in voltage of
18.4 V obtained in [Daqaq, Reddy, and Nayfeh (2008)] where the same mirror was
investigated. The static pull-in voltage of Mirror B and C are 27.4 V and 23.5 V,
respectively (figures not shown). Figure 4 shows the distribution of the surface
charge density on the bottom and top surfaces of the deformed mirror plate and an
electrode, respectively.

Figures 5-10 show the first 6 vibrational modes of Mirror A (or Mirror B) obtained
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Figure 3: Static pull-in of Mirror A. Figure 4: Surface charge density distri-
bution on the mirror plate and the elec-
trode(not to scale).

from the full numerical model. The frequencies of these modes at zero DC voltage
are listed in Table 2. It is shown that the second vibrational mode is the bending
mode with a frequency about 2.65 times the frequency of the first rotational mode.
It can be observed from the figure that the third mode and above are not likely to
get excited by the electrostatic force due to the structural configuration. However,
since the electrostatic surface force acts normal to the mirror plate, the bending
mode will be excited by the electrostatic force. Therefore, when a DC voltage is
applied to the activating electrode, both of the rotational and bending modes are in
action. Indeed, while uncoupled when the DC voltage is zero, the first two modes
of mirror vibration are linearly and nonlinearly coupled through the electrostatic
field [Daqaq, Reddy, and Nayfeh (2008)]. Therefore, one cannot excite one of
these modes without exciting the other.

Figure 5: The 1st mode of Mirror A/B. Figure 6: The 2nd mode of Mirror A/B.
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Figure 7: The 3rd mode of Mirror A/B. Figure 8: The 4th mode of Mirror A/B.

Figure 9: The 5th mode of Mirror A/B. Figure 10: The 6th mode of Mirror A/B.

Table 2: Natural frequencies and periods of Mirror A/B.

Mode 1 2 3 4 5 6
Frequency (MHz) 0.047 0.126 0.137 0.246 0.317 1.473

Period (µs) 21.10 7.94 7.30 4.07 3.15 0.68

Figure 11 shows the dynamic response of Mirror C with an applied DC voltage of
20 V. When the mirror deforms, the nonlinear electrostatic force becomes larger
and slows down the motion of the mirror. Hence, the time that the mirror spends
close to the activating electrode is larger than that spent away from it. When the
applied voltage is increased further, the mirror stays at the bottom position for a
longer period of time until finally the voltage reaches a critical point at which the
increase in the electrostatic force becomes faster than the increase in the mechanical
restoring and inertial forces. At that point, the mirror gets pulled down to the sub-
strate dynamically, as shown in Figure 12. The dynamic pull-in voltage of Mirror
C is found to be 21.76 V which is lower than the static pull-in.
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Figure 11: Dynamic response of Mirror
C (20 V).
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Figure 12: Dynamic pull-in of Mirror
C.

4 Bending Mode Effect on Input Shaping

Torsional micromirrors are designed to accurately reflect and switch light beams
from a source to a given surface. This process can be achieved by applying a DC
voltage of a certain magnitude to rotate the mirror to a desired predefined tilt angle.
Two important performance criteria are accurate positioning and the ability of the
mirror to settle fast at the desired tilt angle. One of the major issues with applying
a single step DC voltage, V1, is the long settling time of the mirror oscillations
around the desired angle especially because the damping effects are usually small.
This has the adverse effect of slowing down the mirror operation significantly. To
resolve this issue, one can resort to pre-shaping the voltage commands. The idea of
voltage-shaping is to introduce a second step voltage V2 right at the point where the
mirror plate reaches its peak rotation angle (maximum overshoot). At that point, the
angular velocity of the mirror plate is zero. If the magnitude of the second voltage
step is chosen such that the static equilibrium rotation angle associated with V2 is
exactly equal to the maximum overshoot resulting from V1, the residual vibrations
go to zero after the application of V2.

This voltage shaping algorithm assumes the presence of only one modal frequency
in the response. If other modal frequencies with significant energy components are
present in the response, the second voltage step V2 will not be able to completely
eliminate the residual oscillations. Convolving additional voltage impulses (more
steps) to eliminate the higher vibration modes as described in the multimode input-
shaping of macrosystems [Hyde (1991)] is not effective in this case due to the linear
coupling between the first two modes of the mirror as described previously. This
coupling appear through the input, and therefore, an additional voltage step that is
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designed to eliminate the second bending mode can excite the first mode and vise
versa. We address the effect of the bending mode on the response in this section
and propose a technique to eliminate it in the next section.

Using the numerical model, we compute the shaped voltage input for the three
micromirrors shown in Fig. 2. First, a set of dynamic simulations are performed to
find the magnitude of the first voltage step V1 which produces the desired peak tilt
angle. Afterwards, a set of static analyses are performed to find the second impulse
V2 which produces the desired static tilt angle. Figure 13 shows the step voltage
and the dynamic response of Mirror A. The response matches the desired behavior
in the sense that the oscillation of the mirror structure after it reaches the desired
angle is minimal as predicted by the semi-analytical model [Daqaq, Reddy, and
Nayfeh (2008)]. However, for Mirror B, the shaped voltage input does not produce
the desired dynamic behavior as shown in Fig. 14. Oscillations after the second
step voltage are observed. More significantly, as shown in Fig. 14(c), the period
of oscillation is measured to be about 8.3 µs which is close to the period of the
bending mode of the micromirror (7.94 µs) listed in Table 2. Note that the bending
mode frequency drops as the applied DC voltage increases due to the electrostatic
softening effects [Daqaq, Reddy, and Nayfeh (2008)]. Therefore, it is evident that
residual vibration of the micromirror is due to the bending mode. Figure 15 shows
the response of Mirror C. The residual vibration is very large in this case. The
period of oscillation is measured at about 13.8 µs. The period of the bending mode
of undeformed Mirror C obtained from the numerical calculation is 13.0 µs. Again,
this result demonstrates that the residual vibration is due to the bending mode of
the micromirror structure.
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Figure 13: Step-shaped input voltage control for Mirror A. Left: step-voltage input.
Right: dynamic response of the micromirror.
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Figure 14: Step-shaped input voltage control for Mirror B. Left: step-voltage input.
Right: dynamic response of the micromirror. Bottom: residual vibration of the
mirror.
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Figure 15: Step-shaped input voltage control for Mirror C. Left: step-voltage input.
Right: dynamic response of the micromirror.
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These results prompt further discussion on why the energy component of the bend-
ing mode is higher for Mirror B and significantly higher for Mirror C, thereby
producing large residual oscillations. First, by comparing Mirror A and B, it can
be noted that the electrodes in Mirror B are placed closer to the center of the mirror
plate, see Table 3. Therefore, the torque/pulling force ratio is larger in Mirror A,
thus the bending mode is barely excited in Mirror A and the resultant residual bend-
ing vibrations are negligible. In that case, the traditional double-step input voltage
is sufficient to control the dominant torsional mode. However, for Mirror B, due
to the position of the electrodes, more electrostatic energy contributes to the beam
bending. Therefore, the bending mode becomes significant yielding larger bending
oscillations that are not suppressed by the step actuation voltage, as shown in Fig.
14(c).

Table 3: Comparison of the torsional micromirror designs.

Mirror A Mirror B Mirror C
Distance of electrodes to the center (µm) 32.5 21.5 21.5

Bending Stiffness (N/m) 19.52 19.52 8.36
Torsional Stiffness (Nm) 2.22e-9 2.22e-9 2.47e-9

Second, by comparing Mirror C and B, it is noted that the geometry of the sus-
pension beams changes while all the other design parameters are kept constant.
The change in the geometry of the suspension beams changes the ratio of their
torsional/bending stiffness. Specifically, the bending stiffness of the beams can be
determined by [Daqaq, Reddy, and Nayfeh (2008)]

KB =
24EIy

(2l)3 (9)

where E is the Young’s modulus, Iy = wh3/12 is the moment of inertia of the sus-
pension beam cross section about the y-axis, and l is the length of the beam. The
effective torsional stiffness of the beams is given by

KT =
2GJ

l
(10)

where G is shear modulus that can be obtained as G = E/2(1 + ν) and J is the
polar moment of inertia of the beam cross section expressed as [Wen, Hoa, and
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Kirk (2004)]

J =


hw3

[
1
3 −0.21 w

h

(
1− w4

12h4

)]
f or w≤ h

hw3
[

1
3 −0.21 h

w

(
1− h4

12w4

)]
f or w≥ h

(11)

The bending stiffness and torsional stiffness of the three mirrors calculated from
the above equations are summarized in Table 3. It is shown that Mirror C has a
significantly lower bending stiffness and a higher torsional stiffness compared to
Mirror B. Therefore, Mirror C, has a much larger bending deformation that gets
reflected in the magnitude of residual bending oscillations.

5 Computational Input Shaping Optimization

As discussed in Section 4, for mirror designs that have a low bending/torsional
stiffness ratio and/or low torque/pulling force ratio, the residual oscillations due
to the bending mode can be large with the step-shaped input voltage. To resolve
this issue, we employ an optimization technique along with the numerical model.
In order to find the correct shape of the input voltage, we seek to minimize the
magnitude of the angular acceleration according to the real time dynamic response
of the mirror. In this optimization problem, the objective function is simply the
magnitude of the angular acceleration of the mirror plate. The angular acceleration
of the mirror plate is represented by using a line connecting two nodal points p and
q, one on the edge and the other at the center of the mirror plate. The nodal points
are chosen such that the line connecting them is perpendicular to the longitudinal
axis of the suspension beams. For the small rotation angle of the mirror plate, θ

can be written as

θ =
wp−wq

a/2
(12)

where wp and wq are the vertical displacements of nodal points p and q, respec-
tively, and a is the width of the mirror plate. The optimization problem is then

min
∣∣θ̈n+1(V, t)

∣∣= min
∣∣ẅp

n+1(V, t)− ẅq
n+1(V, t)

∣∣ subject to Eqs. (2-4,6) (13)

where the voltage V is the single input to the system to be computed for time step
n + 1 and Eqs. (2-4,6) are the coupled nonlinear system equations. Numerical
methods such as the Newton methods or more recently developed fictitious time
integration methods [Liu and Atluri (2008); Ku, Yeih, Liu, and Chi (2009)] are
available to find an input voltage V that minimizes |ẅp

n+1(V, t)− ẅq
n+1(V, t)|. In
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this work, for the sake of simplicity, we employ the standard bisection method
described in [Heath (1997)].

Figures 16-18 show the optimized shape of input voltage for the three mirrors. For
Mirror A, the optimized shape is nearly identical to the step-shaped input voltage.
The optimization process automatically reproduces the step-shaped input voltage
when the residual vibration is small. The optimization process results in a periodic
input voltage design for both Mirror B and Mirror C. The period of the resulting
voltage is equal to the period of the residual oscillations due to the bending mode
suggesting that the computed variation of the input voltage is for compensating
the bending vibration of the mirror. From a control point of view, one can think of
input-shaping as zero pole cancellation method. When a single-mode is considered,
a double-step voltage of the correct magnitude essentially produces a zero to cancel
that pole. When two linearly-coupled modes are present as in our case, adding more
steps that produce new zero to eliminate the second mode is not effective. The
reason is that the new steps will affect the location of the original zero and hence
will activate the first mode again. Inherently, the optimization scheme took that into
account and found that the best way to eliminate this new pole is by introducing a
sinusoidal signal of the same frequency of the second mode pole, thereby producing
a zero which cancels this pole. As such, as shown in Figs. 17 and 18, the bending
mode effect is effectively suppressed by the new optimized input voltage for both
Mirrors B and C.
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Figure 16: Input voltage optimization for Mirror A. Left: optimized input voltage.
Right: dynamic response of the micromirror.
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Figure 17: Input voltage optimization for Mirror B. Left: optimized input voltage.
Right: dynamic response of the micromirror.

0 5 10 15 20 25 30 35 40 45
10

12

14

16

18

20

22

24

26

A
pp

lie
d 

vo
lta

ge
 (

V
)

Time (µ s)
0 5 10 15 20 25 30 35 40 45

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Time (µ s)

R
ot

at
io

n 
an

gl
e 

(d
eg

re
e)

Figure 18: Input voltage optimization for Mirror C. Left: optimized input voltage.
Right: dynamic response of the micromirror.

6 Conclusion

In this work, we perform computational analysis of input-shaping open-loop con-
trol of electrostatic micromirrors. We show that the higher vibrational modes may
have a significant effect on the residual vibrations of the system depending on the
design parameters. The significance of the bending mode effect depends on the
bending/torsional stiffness ratio and the torque/bending force ratio. We employ
a numerical optimization procedure to shape the input voltage from the real time
dynamic response of the mirror structures. The optimization procedure results in
a periodic nonlinear input voltage that can effectively suppress the bending mode
effect. Our results suggest that the periodic variation of the input voltage is for
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compensating the bending vibration of the mirror.
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