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Boundary Layer Effect in BEM with High Order
Geometry Elements Using Transformation

Y.M. Zhang1, Y. Gu1 and J.T. Chen2

Abstract: The accurate evaluation of nearly singular integrals is one of the major
concerned problems in the boundary element method (BEM). Although the current
methods have achieved great progress, it is often possible only for problems de-
fined in the simplest geometrical domains when the nearly singular integrals need
to be calculated. However, engineering processes occur mostly in complex geo-
metrical domains, and always, involve nonlinearities of the unknown variables and
its derivatives. Therefore, effective methods of dealing with nearly singular inte-
grals for such practical problems are necessary and need to be further investigated.
In this paper, a general strategy based on a nonlinear transformation is introduced
and applied to evaluate the nearly singular integrals in two dimensional (2D) elas-
ticity problems. The proposed nonlinear transformation method can figure out the
rapid variations of nearly singular kernels and extremely high accuracy of numer-
ical results can be achieved without increasing other computational efforts. The
accuracy and efficiency of the method are demonstrated through three examples
that are commonly encountered in the applications of the BEM.

Keywords: BEM, nearly singular integrals, transformation, high-order elements,
elasticity problem.

1 Introduction

Accurate and efficient evaluation of singular and nearly singular integrals is an
important issue in boundary element analysis. These integrands are singular func-
tions when the collocation point belongs to the integration elements, and many
effective methods [Atluri (2004), (2005); Atluri, Liu and Han (2006); Brebbia et
al. (1984); Chen (2002, 2000); Davies et al. (2007);Li, Wu and Yu (2009); Sanz
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et al. (2007);Sun (1999); Tanaka, Sladek (1994); Guiggiani (1992); Gray et al.
(2006); Young et al. (2007); Zhang and Wen (2004)] have been developed to deal
with them. If the collocation point is close to but not on the integration elements,
the ensuring integrals are termed nearly weak singular, nearly strong singular and
nearly hyper-singular integrals, which are not singular in the sense of mathemat-
ics. However, from the point of view of numerical integrations, these integrals can
not be calculated accurately by using the standard Gaussian quadrature. This is
so-called boundary layer effect in BEM.

The accurate evaluation of nearly singular integrals plays an important role in many
engineering problems. In general, these include evaluating the solution near the
boundary in potential problems and calculating displacements and stresses near
the boundary in elasticity problems, for example, contact problems, displacement
around crack tips, sensitivity problems and thin-body problems [Chen and Liu
(2001); Albuquerque and Aliabadi (2008); Guz et al. (2007); Karlis et al. (2008)].

Owing to the importance of the nearly singular integrals, a great amount of at-
tention has been attracted and many numerical methods and techniques have been
developed in recent years. The proposed methods include, but are not limited to,
virtual boundary element method [Sun (1999); Zhang and Sun (2000)], rigid-body
displacement method or the simple solution method [Chen et al. (1998); Cruse
(1974); Lachat and Watson (1976); Liu et al. (2008); Wang et al. (1994); Mukerjee
(2000); Sladek and Tanaka (1993); Granados and Gallego (2001)], interval subdi-
vision method [Jun (1985); Tanaka (1991); Gao (2008)], special Gaussian quadra-
ture method [Earlin (1992); Lifeng (2004)], analytical or semi-analytical methods
[Yoon and Heister (2000); Zhang and Sun (2001); Friedrich (2002); Fratantonio
and Rencis (2000); Zhang and Zhang (2004); Cruse and Aithal (1993); Schulz
(1998); Liu (1998); Zhou et al. (2008); Niu (2007)]. In a recent study, the above
methods have been reviewed in detail by Zhang et al. [Zhang and Sun (2008)].

At present, the most common methods for calculating nearly singular integrals are
various nonlinear transformations, for example, the cubic polynomial transforma-
tion [Telles (1987)], the bi-cubic transformation [Cerrolaza and Alarcon (1989)],
the sigmoidal transformation [Johnston (1999)], the semi-sigmoidal transforma-
tion [Johnston (2000)], the coordinate optimization transformation [Sladek, Sladek
and Tanaka (2000)], the attenuation mapping method [Earlin (1993); Luo et al.
(1998)], the rational transformation [Huang and Cruse (1993)], and the distance
transformation [Ma and Kamiya (2002)]. The basic ideas of the above transforma-
tions can be generalized into two categories: one is removing the nearly zero factor
by using another zero factor which usually generated by Jacobian; the other one is
converting the nearly zero factor in the denominator to be part of the numerator,
which profits from the idea of the reciprocal transformation for the regularization
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of weakly singular integrals. Numerical tests show that the transformations based
on the former idea are effective for the calculation of weakly singular integrals but
not satisfactory for strong singular or hypersingular integrals. The latter transfor-
mations, based on the idea of reciprocal transformation, can convert nearly singular
kernels into regular kernels, but the original regular parts behave nearly singular af-
ter the transformations, so they are suitable only for a case when the regular part of
the integrand is constant.

For most of current numerical methods, the geometry of the boundary element is
often depicted by using linear shape functions when nearly singular integrals need
to be calculated. However, most engineering processes occur mostly in complex
geometrical domains, and obviously, higher order geometry elements are expected
to be more accurate [Atluri (2005)]. To improve the calculation accuracy and ef-
ficiency of the nearly singular integrals, efficient approaches for estimating nearly
singular integrals over high-order geometry elements are necessary and need to be
further investigated.

When the geometry of the boundary element is approximated by using high order
elements—usually of second order, the Jacobian J(ξ ) is not a constant but a non-
rational function which can be expressed as

√
a+bξ + cξ 2, where a,b and c are

constants, ξ is the dimensionless coordinate; The distance r between the field points
and the source point is a non-rational function of the type

√
p4(ξ ), where p4(ξ )

is the fourth order polynomial. Thus, the forms of the integrands in boundary
integrals become more complex, and it is, generally, more difficult to implement
when nearly singular integrals need to be calculated.

This paper aims to develop a general strategy suitable for calculating the nearly
singular integrals occurring on high order geometry elements. A general nonlinear
transformation technique [Zhang and Sun (2008)] is adopted to remove the near
singularities of kernels’ integration by smoothing out the rapid variations of the
integrand of nearly singular integrals. The strategy proposed in this paper adopted
isoparametric quadratic elements to describe the integral kernel functions and the
Jacobean. Owing to the employment of the parabolic arc, only a small number of
elements need to be divided along the boundary, and high accuracy can be achieved
without increasing more computational efforts. In addition, the non-singular BIEs
of indirect variables [Zhang and Wen (2004)] were employed to estimate the singu-
lar integrals occurring on curved boundaries. Three numerical examples of elastic
problems are given, with results, showing the high efficiency and the stability of
the suggested approach, even when the internal point is very close to the boundary.



230 Copyright © 2009 Tech Science Press CMES, vol.45, no.3, pp.227-247, 2009

2 Non-singular boundary integral equations (BIEs)

It is well known that the domain variables can be computed by integral equations
only after all the boundary quantities have been obtained, and the accuracy of
boundary quantities directly affects the validity of the interior quantities. How-
ever, when calculating the boundary quantities, we have to deal with the singular
boundary integrals, and a good choice is using the regularized BIEs. Therefore, for
avoiding the “boundary layer effect”, two aspects are necessary. One is the accurate
computation of the boundary functions, which is generally carried out by adopting
the regularized BIEs; the other is an efficient algorithm of calculating the nearly
singular integrals.

In this paper, we always assume that Ω is a bounded domain in R2, Ωc is its open
complement, and Γ denotes the boundary. t(x) and n(x) (or t and n) are the unit
tangent and outward normal vectors of Γ to the domain Ω at the point x, respec-
tively. For 2D elastic problems, the non-singular BIEs with indirect variables are
given in [Zhang and Wen (2004)]. Without regard to the rigid body displacement
and the body forces, the non-singular BIEs on Ωc can be expressed as

ui(y) =
∫

Γ
ϕk(x)u∗ik(y,x)dΓ,y ∈ Γ (1)

∇ui(y) =
∫

Γ
[ϕk(x)−ϕk(y)]∇u∗ik(y,x)dΓ−ϕk(y)

{∫
Γ
[t(x)− t(y)]

∂u∗ik(y,x)
∂ t

dΓ

+
∫

Γ
[n(x)−n(y)]

∂u∗ik(y,x)
∂n

dΓ+
k0

G
n(y)

(∫
Γ
[nk(x)−nk(y)]

∂ lnr
∂xi

dΓ

+nk(y)
∫

Γ
[ti(x)− ti(y)]

∂ lnr
∂ t

dΓ+nk(y)
∫

Γ
[ni(x)−ni(y)]

∂ lnr
∂n

dΓ
)}

,

y ∈ Γ
(2)

For the domain Ω, the nonsingular BIEs are given as

ui(y) =
∫

Γ
ϕk(x)u∗ik(x,y)dΓ,y ∈ Γ (3)
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∇ui(y) =ϕk(y)n(y)
1
G

[δik−
nk(y)ni(y)
2(1− v)

]+
∫

Γ
[ϕk(x)−ϕk(y)]∇u∗ik(y,x)dΓ

−ϕk(y)
{∫

Γ
[t(x)− t(y)]

∂u∗ik(y,x)
∂ t

dΓ +
∫

Γ
[n(x)−n(y)]

∂u∗ik(y,x)
∂n

dΓ

+
k0

G
n(y)

(∫
Γ
[nk(x)−nk(y)]

∂ lnr
∂xi

dΓ +nk(y)
∫

Γ
[ti(x)− ti(y)]

∂ lnr
∂ t

dΓ

+nk(y)
∫

Γ
[ni(x)−ni(y)]

∂ lnr
∂n

dΓ
)}

,

y ∈ Γ
(4)

For the internal point y, the integral equations can be written as

ui(y) =
∫

Γ
ϕk(x)u∗ik(y,x)dΓ , y ∈ Ω̂ (5)

∇ui(y) =
∫

Γ
φk(x)∇u∗ik(y,x)dΓ , y ∈ Ω̂ (6)

In Eqs. (1)–(6), i,k = 1,2; k0 = 1/4π(1− v); G is the shear modulus; φk(x) is
the density function to be determined; u∗ik(y,x) denotes the Kelvin fundamental
solution. In Eqs. (5) and (6) Ω̂ = Ω or Ωc.

When the field point y is far from the boundary element, a straightforward appli-
cation of Gaussian quadrature suffices to evaluate such integrals. However, when
the field point y is very close to the integral element Γe, the distance r between the
field point y and the source point x tends to zero. Thus, there exist nearly singular
integrals in Eqs. (5) and (6). These nearly singular integrals can be expressed as{

I1 =
∫

Γe
ψ(x) lnr2dΓ

I2 =
∫

Γe
ψ(x) 1

r2α dΓ
(7)

where α > 0, ψ(x) denotes a well-behaved function.

3 Nearly singular integrals under curvilinear elements

The quintessence of the BEM is to discretize the boundary into a finite number
of segments, not necessarily equal, which are called boundary elements. Two ap-
proximations are made over each of these elements. One is about the geometry of
the boundary, while the other has to do with the variation of the unknown bound-
ary quantity over the element. The linear element is not an ideal one as it can not
approximate with sufficient accuracy for the geometry of curvilinear boundaries.
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For this reason, it is recommended to use higher order elements, namely, elements
that approximate geometry and boundary quantities by higher order interpolation
polynomials—usually of second order. In this paper, the geometry segment is mod-
eled by a continuous parabolic element, which has three knots, two of which are
placed at the extreme ends and the third somewhere in-between, usually at the mid-
point. Therefore the boundary geometry is approximated by a continuous piece-
wise parabolic curve. On the other hand, the distribution of the boundary quantity
on each of these elements is depicted by a discontinuous quadratic element, three
nodes of which are located away from the endpoints.

Assume x1 = (x1
1,x

1
2) and x2 = (x2

1,x
2
2) are the two extreme points of the segment

Γ j, and x3 = (x3
1,x

3
2) is in-between one. Then the element Γ j can be expressed as

follows

xk(ξ ) = N1(ξ )x1
k +N2(ξ )x2

k +N3(ξ )x3
k ,k = 1,2

where N1(ξ ) = ξ (ξ − 1)/2, N2(ξ ) = ξ (ξ + 1)/2, N3(ξ ) = (1− ξ )(1 + ξ ), −1 ≤
ξ ≤ 1. As shown in Fig. 1, the minimum distance d from the field point y = (y1,y2)

 

 

 
The revised figure: 
 

 

t2 ( 1)ξ =x

1( 1)ξ = −x  

Mx

Γ

Ω

n

y
d

r

( )p ξ η=x

( )ξx

3 ( 0)ξ =x

Figure 1: The minimum distance d from the field point y to the boundary element

to the boundary element Γ j is defined as the length of yxp, which is perpendicular
to the tangential line t and through the projection point xp. Letting η ∈ (−1,1) is
the local coordinate of the projection pointxp, i.e. xp = (x1(η),x2(η)). Then η is
the real root of the following equation

x′k(η)(xk(η)− yk) = 0 (8)
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If the field point y sufficiently approaches the boundary, then Eq. (8) has a unique
real root. In fact, setting

F(η) = x′k(η)(xk(η)− yk)

there is

F ′(η) = x′k(η)x′k(η)+ x′′k(η)(xk(η)− yk) = J2(η)+ x′′k(η)(xk(η)− yk)

where J(η) is the Jacobian of the transformation from parabolic element to the
line interval [−1, 1]. Therefore, when the field point y is sufficiently close to the
element, we explicitly have F ′(η) > 0.

The unique real root of Eq. (8) can be evaluated numerically by using the Newton’s
method or computed exactly by adopting the algebraic root formulas of 3-th alge-
braic equations. In this paper, two ways are all tested, and practical applications
show that both ways can be used to obtain desired results. Furthermore, the New-
ton’s method is more simple and effective, especially if the initial approximation
is properly chosen and if we can do this, only two or three iterations are sufficient
to approximate the real root. For the root formula of 3-th algebraic equations, let’s
consider the following algebraic equation

ax3 +bx2 + cx+d = 0

if there exists only one real root, the analytical solution can be expressed as follows

x =− b
3a

+
2(
√

s2 + t2)
1
3

3 3
√

2a
cos

(
1
3

arccos
s√

s2 + t2

)
where s =−2b3 +9acb−27a2d, t =

√
−4(3ac−b2)3− (−2b3 +9acb−27a2d)2.

Using the procedures described above, we can obtain the value of the real root η .
Thus, we have

xk− yk =xk− xp
k + xp

k − yk

=
1
2
(ξ −η)

[
(x1

k−2x3
k + x2

k)(ξ +η)+(x2
k− x1

k)
]
+ xk(η)− yk

(9)

By using Eq. (9), the distance square r2 between the field point y and the source
point x(ξ ) can be written as

r2(ξ ) = (xk− yk)(xk− yk) = (ξ −η)2g(ξ )+d2 (10)
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where d2 = (xk(η)− yk)(xk(η)− yk),

g(ξ ) =
1
4
(x1

k−2x3
k + x2

k)(x
1
k−2x3

k + x2
k)(ξ +η)2

+
1
2
(x1

k−2x3
k + x2

k)(x
2
k− x1

k)(ξ +η)

+h2 +(x1
k−2x3

k + x2
k)(xk(η)− yk),

where h = 1
2

√
(x2

k− x1
k)(x

2
k− x1

k).

Apparently, there is g(ξ )≥ 0.

By some simple deductions, the nearly singular integrals in Eq. (7) would be re-
duced to the following two types

I =
∫ A

0
f (ξ ) ln

(
ξ

2g(ξ )+d2)dξ (11)

II =
∫ A

0

f (ξ )
(ξ 2g(ξ )+d2)α dξ (12)

where A is a constant which is possibly with different values in different element
integrals; f ( ·) is a regular function that consists of shape function, Jacobian and
ones which arise from taking the derivative of the integral kernels.

4 Variable transformation

The main reason why nearly singular integrals can not be calculated accurately
by using the standard Gaussian quadrature, in common observation, is caused by
some bad qualities of the nearly singular kernels such as the fiercer oscillation and
the unboundedness of the integrands. However, in the authors’ opinion, that is not
true. Some regular integral kernels, such as x2

x2+c2 or x4

x2+c2 which are obviously
neither unbounded nor oscillating rapidly during the integral interval, still can not
be calculated accurately by using the standard Gaussian quadrature (See Figs. 2
and 3). For this phenomenon, we can also speculate that some methods such as
attenuation mapping method, which eliminate the nearly zero factors by adopting
another zero factors in the density function, would be not very effective, and the
practices proved it. According to the authors’ point of view, the main reason of
this phenomenon is caused by the different orders of magnitude of the zero-divisor.
In this section, a general variable transformation for high order boundary elements
was constructed in order to diminish the difference of the orders of magnitude or
the scale of change for operational factors. The constructed transformation can
remove the near singularity efficiently and high accurate results can be obtained by
using the standard Gaussian quadrature.
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Figure 2: The images of two integral kernels with c2 = 0.2
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Figure 3: Relative errors of the computation results of x2/(x2 +c2) and x4/(x2 +c2)
using 8-point/16-point/24-point Gaussian quadrature

Based on the idea of diminishing the difference of the orders of magnitude or the
scale of changes of operational factors, we introduce the following transformation

ξ = d(ek(1+t)−1) (13)

where k = 1
2 ln(1+ A

d ).
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Substituting (13) into Eqs. (11) and (12), then we obtain the following equations

I =2kd lnd
∫ 1

−1
f (d(ek(1+t)−1))ek(1+t)dt

+ kd
∫ 1

−1
f (ξ ) ln

(
(ek(1+t)−1)2g(ξ )+1

)
ek(1+t)dt

(14)

II =
1

d2α−1

∫ 1

−1

f (ξ )(
(ek(1+t)−1)2g(ξ )+1

)α ek(1+t)dt (15)

where ξ = d(ek(1+t)−1).
By following the procedures described above, the near singularity of the boundary
integrals has been fully regularized. The final integral formulations over parabolic
elements are obtained as shown in Eqs. (14) and (15), which can be computed
straightforward by using standard Gaussian quadrature.

5 Numerical examples

In this section, three examples of 2D elastostatics with curved boundaries are given
to test the proposed method. Isoparametric quadratic elements are employed to
approximate the geometrical elements and the boundary densities. The proposed
transformation technique is used to estimate the nearly singular integrals when the
interior points are very close to the integral elements.

Example 1 As shown in Fig. 4, a thick cylinder subjected to the uniform radial
pressures p = 5 along the surfaces is considered. The inner and outer radii of the
cylinder are 1 and 2, respectively. In this example, the elastic shear modulus is
G = 807692.3N/cm2, and the Poisson’s ratio is v = 0.3.

Fifteen and ten quadratic elements are divided along the outer and inner surfaces,
respectively. Therefore, the total number of the elements is 25.

The numerical solutions of the tangential stresses σθ at the interior points close to
the outer and inner surfaces are listed in Tab. 1 and Tab. 2. Results of the radial
stresses σr at the interior points close to the outer and inner surfaces are listed
in Fig. 5 and Fig. 6, respectively. Both the CBEM and the proposed method are
employed for the purpose of comparison. The convergence rates of the computed
σθ at interior points (1.0000001,0) and (1.9999999,0) are shown in Fig.7.

It can be seen from Tab. 1 and Tab. 2 that the results of stresses σθ can be accurately
calculated by using the CBEM and the present method when the computed points
are not very close to the boundary (r < 1.95 or r > 1.04). However, when the
distance between the interior point and the boundary is equal to or less than 0.04,
the results calculated by the CBEM become less satisfactory or even invalid. In
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Figure 4: Thick cylinder subjected to
the uniform radial pressure on the inner
surface
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contrast with the CBEM, the present method can be used to obtain accurate results
with the largest percentage error less than 0.1% even when the distance between
the interior point and the outer boundary reaches10−10.

Table 1: Tangential stresses σθ at interior points close to the outer surface

Radius r Exact CBEM Present Relative error
1.9 0.3513389E+01 0.3517443E+01 0.3513383E+01 0.1593349E-03
1.95 0.3419899E+01 0.3520995E+01 0.3418865E+01 0.3023558E-01
1.99 0.3350126E+01 0.3324564E+01 0.3347962E+01 0.6459433E-01
1.999 0.3335001E+01 0.2885692E+01 0.3332540E+01 0.7380650E-01

1.999 9 0.3333500E+01 0.2836292E+01 0.3331008E+01 0.7475973E-01
1.999 99 0.3333350E+01 0.2831348E+01 0.3330852E+01 0.7493745E-01

1.999 999 0.3333335E+01 0.2830854E+01 0.3330847E+01 0.7464263E-01
1.999 999 9 0.3333334E+01 0.2830804E+01 0.3330859E+01 0.7423208E-01

1.999 999 99 0.3333333E+01 0.2830799E+01 0.3330729E+01 0.7813735E-01
1.999 999 999 0.3333333E+01 0.2830799E+01 0.3330762E+01 0.7714073E-01
1.999 999 9999 0.3333333E+01 0.2830799E+01 0.3331151E+01 0.6546329E-01

We can observe from Fig. 5 and Fig. 6 that the results of radial stresses σr calcu-
lated by using the CBEM become less satisfactory as the computed points locate
increasingly close to the boundary, i.e., when the distance between the interior point



238 Copyright © 2009 Tech Science Press CMES, vol.45, no.3, pp.227-247, 2009

Table 2: Tangential stresses σθ at interior points close to the inner surface

Radius r Exact CBEM Present Relative error
1.1 0.7176309E+01 0.7177468E+01 0.7177468E+01 -0.1616178E-01
1.04 0.7830375E+01 0.7810632E+01 0.7833678E+01 -0.4218329E-01
1.01 0.8201974E+01 0.5963880E+01 0.8207646E+01 -0.6916232E-01
1.001 0.8320020E+01 0.1187044E+02 0.8326496E+01 -0.7783813E-01

1.0001 0.8332000E+01 0.1319104E+02 0.8338553E+01 -0.7864782E-01
1.00001 0.8333200E+01 0.1332452E+02 0.8339803E+01 -0.7923699E-01
1.000001 0.8333320E+01 0.1333787E+02 0.8339923E+01 -0.7923119E-01
1.0000001 0.8333332E+01 0.1333921E+02 0.8339887E+01 -0.7865526E-01

1.00000001 0.8333333E+01 0.1333934E+02 0.8338562E+01 -0.6274595E-01
1.000000001 0.8333333E+01 0.1333935E+02 0.8343783E+01 -0.1253925E+00
1.0000000001 0.8333333E+01 0.1333935E+02 0.8341133E+01 -0.9360174E-01

and the boundary is equal to or less than 0.05. By using the same mesh, the present
method gains excellent accuracy even when the distance between the interior point
and the outer boundary approaches 10−10.
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computed σθ

In addition, the convergence curves in Fig. 7 show that the convergence rates of the
present method are fast even when the distance between the computed point and
the boundary reaches 10−7.

Example 2 As shown in Fig. 8, an infinite plate with a circular hole subjected to
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the uniform tensile forces p = 2 at infinity is considered. The radius of the circle
is r = 1. In this example, the elastic shear modulus G and the Poisson’s ratio v are
the same as in the example 1. There are 20 uniform quadratic boundary elements
divided along the circular boundary.

 

p  

p  p

p

Figure 8: An infinite plate with a circular hole subjected to the uniform tensile
forces

Table 3: Tangential stresses σθ at interior points on the line x2 = 0

Coordinatex1 Exact CBEM Present Relative error
1.1 0.4875487E+01 0.4876466E+01 0.4876466E+01 -0.2009130E-01
1.01 0.5863237E+01 0.5805375E+01 0.5866426E+01 -0.5438222E-01
1.001 0.5986033E+01 0.6103824E+01 0.5989719E+01 -0.6157678E-01

1.0001 0.5998600E+01 0.6148594E+01 0.6002340E+01 -0.6234624E-01
1.00001 0.5999860E+01 0.6153027E+01 0.6003606E+01 -0.6243178E-01
1.000001 0.5999986E+01 0.6153470E+01 0.6003737E+01 -0.6251000E-01

1.0000001 0.5999999E+01 0.6153514E+01 0.6003735E+01 -0.6226901E-01
1.00000001 0.6000000E+01 0.6153518E+01 0.6003726E+01 -0.6210675E-01
1.000000001 0.6000000E+01 0.6153519E+01 0.6003862E+01 -0.6437451E-01
1.0000000001 0.6000000E+01 0.6153519E+01 0.6003715E+01 -0.6191998E-01

Tab. 3 presents the results of tangential stresses σθ calculated by using both the
CBEM and the present method at interior points on the line x2 = 0. It can be
seen that the results calculated by the CBEM are not in a good agreement with the
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Table 4: Tangential stresses σθ at interior points with the radius of r = 1.000000001

Angle θ Exact CBEM Present Relative error
0 0.6000000E+01 0.6153519E+01 0.6003862E+01 -0.6437451E-01

π/10 0.5236068E+01 0.5503660E+01 0.5239481E+01 -0.6518125E-01
2π/10 0.3236068E+01 0.3802308E+01 0.3238303E+01 -0.6906802E-01
3π/10 0.7639320E+00 0.1699320E+01 0.7647112E+00 -0.1019982E+00
4π/10 -0.1236068E+01 -0.2032196E-02 -0.1236467E+01 -0.3232167E-01
5π/10 -0.2000000E+01 -0.6518910E+00 -0.2000850E+01 -0.4251437E-01
6π/10 -0.1236068E+01 -0.2032196E-02 -0.1236469E+01 -0.3240459E-01
7π/10 0.7639320E+00 0.1699320E+01 0.7647094E+00 -0.1017558E+00
8π/10 0.3236068E+01 0.3802308E+01 0.3238301E+01 -0.6901786E-01
9π/10 0.5236068E+01 0.5503660E+01 0.5239480E+01 -0.6516227E-01

π 0.6000000E+01 0.6153519E+01 0.6003862E+01 -0.6437451E-01

analytic solutions as the computed points locate increasingly close to the boundary,
i.e., when the distance between the interior point and the boundary is equal to or
less than 0.01. However, the results calculated by the proposed method are very
consistent with the exact solutions even when the distance between the interior
point and the outer boundary approaches 10−10. The percentage errors are also
listed in Tab. 3, from which we can see that the accuracy of the results calculated
by the present method are high and stable with the largest relative error less than
0.07%.

For different angles, the calculation results of tangential stresses σθ at interior
points with radius of 1.000000001 are listed in Tab. 4, from which we can observe
that the results calculated by the CBEM become less satisfactory or even invalid. In
contrast with the CBEM, the present method can be applied successfully to obtain
accurate results at these interior points.

The results of radial stresses σr at interior points on the line x2 = 0 are shown in Fig.
9, from which we can see that the present method yields excellent accuracy even
when the distance between the interior point and the inner surface reaches 10−10.
In addition, the convergence plot in Fig. 10 shows that the convergence rates of the
present method are fast even when the distance between the computed point and
the boundary approaches 10−9.

Example 3 An infinite plate with a circular hole subjected to a uniform radial
pressure p = 5, as shown in Fig. 11. The radius of the circle is r = 5. In this
example, the elastic shear modulusG and the Poisson’s ratio v are the same as in
the example 1.
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Figure 10: Convergence curve of the 
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Figure 9: Radial stresses σr at interior
points on the line x2 = 0
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Figure 10: Convergence curve of the 
computed θσ at the point (1E-09, 0) 
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Figure 10: Convergence curve of the
computed σθ at the point (1E-09, 0)
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Figure 11: An infinite plate with a circular 
hole subjected to a uniform radial pressure 
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Figure 11: An infinite plate with a cir-
cular hole subjected to a uniform radial
pressure
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Figure 11: An infinite plate with a circular 
hole subjected to a uniform radial pressure 
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Figure 12: Convergence curves of the
stresses σr and σθ at the point (5E-07,
0)

The boundary is discretized into twenty quadratic elements. For the interior points
increasingly close to the boundary, the results of the radial and tangential stresses,
σr and σθ , on the line x2 = 0 are listed in Tab. 5 and Tab. 6, respectively. It can
be observed that the values of the interior stresses obtained by using the CBEM be-
come deviated when x1 < 5.2. In contrast, the present method can obtain excellent
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results with the largest relative error less than 0.06% for radial stresses and 0.2%
for tangential stresses even when x1 = 5.0000000001.

Table 5: Radial stresses σr at interior points on the line x2 = 0

Radius r Exact CBEM Present Relative error
5.2 -0.462278E+01 -0.4590583E+01 -0.4621969E+01 0.1757317E-01
5.1 -0.480584E+01 -0.3778935E+01 -0.4805366E+01 0.9943386E-02

5.01 -0.498006E+01 0.3201157E+01 -0.4980010E+01 0.9963969E-03
5.001 -0.499800E+01 0.3696937E+01 -0.4997996E+01 0.9480385E-04
5.0001 -0.499980E+01 0.3743547E+01 -0.4999791E+01 0.1804154E-03
5.00001 -0.499998E+01 0.3748205E+01 -0.5000032E+01 0.1049353E-02

5.000001 -0.499999E+01 0.3748671E+01 -0.4999921E+01 0.1531263E-02
5.0000001 -0.500000E+01 0.3748718E+01 -0.4999513E+01 0.9744626E-02
5.00000001 -0.500000E+01 0.3748722E+01 -0.5000367E+01 0.7330816E-02
5.000000001 -0.500000E+01 0.3748723E+01 -0.5002389E+01 0.4778081E-01

5.0000000001 -0.500000E+01 0.3748723E+01 -0.5002995E+01 0.5990278E-01

Table 6: Tangential stresses σθ at interior points on the line x2 = 0

Radius r Exact CBEM Present Relative error
5.2 0.4622781E+01 0.4600389E+01 0.4624871E+01 -0.4521102E-01
5.1 0.4805844E+01 0.4163711E+01 0.4809111E+01 -0.6798521E-01
5.01 0.4980060E+01 0.6704914E+01 0.4984544E+01 -0.9004280E-01
5.001 0.4998001E+01 0.8542143E+01 0.5002605E+01 -0.9213396E-01

5.0001 0.4999800E+01 0.8732868E+01 0.5004408E+01 -0.9217102E-01
5.00001 0.4999980E+01 0.8751950E+01 0.5004650E+01 -0.9339370E-01
5.000001 0.4999998E+01 0.8753859E+01 0.5004510E+01 -0.9023574E-01
5.0000001 0.5000000E+01 0.8754049E+01 0.5004211E+01 -0.8422029E-01

5.00000001 0.5000000E+01 0.8754068E+01 0.5005206E+01 -0.1041124E+00
5.000000001 0.5000000E+01 0.8754070E+01 0.5006909E+01 -0.1381724E+00
5.0000000001 0.5000000E+01 0.8754071E+01 0.5006582E+01 -0.1316304E+00

In addition, the convergence rates of the radial and tangential stresses, σr and σθ ,
at the point (5.0000001,0) are shown in Fig. 12, from which we can observe that
the convergence rates of the computed stresses σr and σθ are acceptable even when
the distance between the computed point and the boundary reaches 10−7.
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6 Conclusions

In the present paper, a general strategy based on a nonlinear transformation is pro-
posed in order to calculate the nearly singular integrals occurring on high-order
geometrical elements. The strategy produces very high accuracy for determining
the nearly singular integrals even when the distance between the field points and
the integral elements are as small as 1.0E−9. Three numerical examples show that
the present algorithm has been successfully employed in the numerical calculation
of nearly singular integrals on curved elements. As a result, accurate stress results
of the interior points close to the boundary are achieved. The present method is
also general and can be applied to other problems in BEM (such as thin-walled
structures), which will be discussed later.
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