
Copyright © 2009 Tech Science Press CMES, vol.46, no.1, pp.21-50, 2009

Quasilinear Hybrid Boundary Node Method for Solving
Nonlinear Problems

F. Yan1,2, Y. Miao2,3 and Q. N. Yang2

Abstract: A novel boundary type meshless method called Quasilinear Hybrid
Boundary Node Method (QHBNM), which combines quasilinearization method,
dual reciprocity method (DRM) and hybrid boundary node method (HBNM), is
developed to solving a class of nonlinear problems. The nonlinear term of the gov-
erning equation is linearized by the generated quasilinearization method, in which
the solution of the linearized equation can exactly converge to the solution of origi-
nal equation at a very wide range initial value, and the convergence rate is quadratic.
Then dual hybrid boundary node method is applied to solving the linearized equa-
tion, in which DRM is introduced into HBNM to deal with the integral for the
inhomogeneous terms of the governing equations. The solution in present method
is divided into two parts, i. e., the complementary solution and the particular so-
lution. The complementary solution is solved by HBNM, and the particular one is
obtained by DRM. In order to get a generated use, the basis form of particular solu-
tion is presented in this paper. So a boundary type truly meshless method QHBNM
is proposed, which retains all the advantages of BEM of linear problems. It does
not require the ‘boundary element mesh’, either for interpolation of the variables,
or for the integration of the ‘energy’. The convergence of present iteration scheme
is quadratic, and the initial values can be widely chosen. The computation is small
in this method, in which only several matrixes are needed to update on each itera-
tion.
The numerical examples are presented for several nonlinear problems, for which
accurate results, quadratic convergence and high stability can be available. It is
shown that present method is effective and can be widely applied in practical engi-
neering.
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1 Introduction

A class of nonlinear problems can be written as, ∇2u = f (x,u), in which u is the
dependent variable, f (x,u) is a forcing term which is dependent on the variable u.
A physical situation where this equation is encountered are the diffusion with si-
multaneous reaction in a porous catalyst particle [Aris (1975)] and heat conduction
with temperature dependent heat generation within the medium. And a Frank-
Kamenitski explosion model also belongs to this category. So if f (x,u) is a nonlin-
ear function of u, explicit analytic solutions are rarely possible to get, one needs to
exploit numerical method.

Numerical methods have been developed rapidly in the past decades. Those meth-
ods include finite element method(FEM)[Zienkiewicz (1977)], boundary element
method(BEM) [Brebbia and Dominguez (1992); Colli et al. (2009)], meshless
method, etc. And FEM and BEM as two popular tools have been well developed
in the past decades. Compared with FEM and BEM, the meshless method does not
require elements and thus attracts more and more attention in recent years.

The meshless method has great varieties and can be divided into two types, i.e.,
the domain type and the boundary type. The domain type has the element free
Galerkin (EFG) method [Belytschko et al. (1994)], the meshless local Petrov-
Galerkin (MLPG) method [Atluri (2002, 2004); Atluri et al. (2003); Atluri and
Zhu (1998, 2000); Atluri and Shen (2002); Han and Atluri (2003a, b); Ma (2007,
2008); Pini et al. (2008); Li and Atluri (2008); Sellountos et al. (2009)] and so on.
On the other hand, the boundary type includes the local boundary integral equation
(LBIE) method [Atluri and Zhu (2000); Sladek et al. (2001); Chen et al. (2007);
Li and Atluri (2008); Sellountos et al. (2009)], the method of fundamental solu-
tions (MFS)[Liu (2008); Shiah et al. (2008); Hu et al. (2008); Young and Ruan
(2005); Marin (2008)], the local hypersingular boundary integral equation method
(LHBIE) [Vavourakis (2008)], hybrid boundary node method (HBNM) [Zhang and
Yao (2002, 2004)] and dual reciprocity hybrid boundary node method (DHBNM)
[Yan and Wang (2008a, b, 2009)].

Though all meshless methods do not need the element mesh for the field variable
interpolation, some of them require a background mesh for integration. For exam-
ple, Mukherjee et al. (1994) applied MLS to the boundary integration equations and
proposed Boundary node method(BNM). It only requires to discrete the boundary.
Although this method does not require an element mesh for the interpolation of the
boundary variables, a background element is inevitable for integration.
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Based on BNM, Zhang and Yao(2002) proposed another boundary-type meshless
method: Hybrid Boundary Node Method (HBNM). It achieves a truely mesh-
less method. However, it has a drawback of serious ‘boundary layer effect’. To
avoid this shortcoming, Zhang and Yao(2004) further proposed the Regular Hybrid
Boundary Node Method(RHBNM), in which the source points of the fundamental
solution are located outside of the domain. Although this method can avoid the
singular integration and boundary layer effect, it creates some new problems. For
example, how to arrange the positions of the source points?

To overcome these problems, Wang and Yao et al.(2004) presented a meshless sin-
gular hybrid node method for 2-D elasticity. And Miao and Wang (2005) proposed
the rigid body motion approach to deal with the singular integration and applied an
adaptive integration scheme to solve the boundary layer effect.

Those methods, however, can only be used for solving homogeneous problems.
For the nonlinear problem, the domain integration is inevitable. DRM was first
proposed by Nardini and Brebbia(1983) for elasto-dynamic problems in 1982 and
extended by Wrobel and Brebbia(1987) to time dependent diffusion in 1986. Based
on HBNM, DRM is first introduced into HBNM by Yan and Wang(2008a, b, 2009),
and a new truly meshless method Dual Hybrid Boundary Node Method(DHBNM)
is proposed, which can be applied to dynamic problem and nonlinear problem and
so on.

For a nonlinear problem, iteration is inevitable for numerical procedure. As a effec-
tive iteration scheme, the quasilinearization method is first developed by Bellman
and Kalaba(1965), and this method combines linear approximation techniques with
capabilities of the digital computer in various adroit fashions. Combined method of
upper and lower solutions and monotone iterative technique together with quasilin-
earization method, the approximations are constructed to yield rapid convergence
and monotonicity as well.

In this paper, firstly, the quasilinearization method, DRM and HBNM are com-
bined, and a new truly meshless method for nonlinear problems is proposed, which
is named as QHBNM. The generated quasilinearization method is employed to lin-
earize the nonlinear term of the governing equation, in which the solution of the
linearized equation can exactly monotonically converge to the solution of original
equation at a wide range initial value, and convergence rate is quadratic. Secondly,
DHBNM is employed to solve this linearized equation. The solution in this method
composes two parts: complementary solution and particular solution. For the first
part, HBNM is applied. For the second part, DRM has been used and the radial
basis functions are applied to interpolating the nonlinear part of the equations. Be-
cause of the nonlinear term of the governing equations, the boundary integral equa-
tions obtained by DHBNM are not enough to solve all variables. Some additional
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equations are proposed to obtain the relation of the variables in the domain and on
the boundary.

This method keeps the ‘boundary-only’ and truly meshless method character of
HBNM, and the convergence is quadratic, which is much higher than some other
methods. Another important advantage of present method is its insensitivity with
initial guesses and high stability. The numerical examples are presented for several
nonlinear problems, for which very accurate results, quadratic convergence and
high stability can be available. Besides, this method has the advantage of small
amount of calculation, in which only several matrixes are needed to update on each
iteration, but when QBEM is applied, integral for coefficient matrixes are needed
for each iteration. It is shown that the present method is effective and can be widely
applied in practical engineering.

2 The generated quasilinearization method

In this section, the quasilinearization method is introduced, and then this method
is extended and forms a general method, which named as the generated quasilin-
earization method.

2.1 The Quasilinearization Method

Let Ω ⊂ R2 be a bounded domain with boundary ∂Ω. We consider the following
nonlinear elliptic boundary value problem{

Lu =−∇2u+ c(x)u = F(x,u)
Bu = φ on ∂Ω

(1)

Assume that α0, β0 with α0(x)≤ β0(x) in Ω satisfy{
Lα0 ≤ F(x,α0) Bα0 ≤ φ on ∂Ω
Lβ0 ≥ F(x,β0) Bβ0 ≥ φ on ∂Ω

(2)

And F(x,u) is nondecreasing in u. So α0, β0 are the lower and upper solutions of
Eq. (1), and there exist monotone sequence {αn(x)}, {βn(x)}, such that αn(x) ≤
u≤ βn(x) and converge to the unique solution of Eq. (1) [Deo and Pandit (1996)].

Assume that condition of Eq. (2) holds, and Fu(x,u), Fuu(x,u) exist and are contin-
uous and Fuu(x,u)≥ 0 on Ω×R, and

0 < N ≤ c(x)−Fu(x,β0) (3)

Then there exist monotone sequences{αn(x)}, {βn(x)} such that αn→ r, βn→ s,
r = s = u is the unique solution of Eq. (1) satisfying α0(x) ≤ u ≤ β0(x) and the
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convergence is quadratic[Deo and Pandit (1996)]. And the sequences of iterates are
constructed as follows:{

Lαn+1 = F(x,αn)+Fu(x,αn)(αn+1−αn) Bαn+1 = φ on ∂Ω
Lβn+1 = F(x,βn)+Fu(x,αn)(βn+1−βn) Bβn+1 = φ on ∂Ω

(4)

But it can be see that the above sequences of iterates is only true when F(x,u) is
convex. Fortunately, a dual result when F(x,u) is concave is also true, the results
are not stated here.

2.2 The Generated Quasilinearization Method

Now for a function of F , we can divided it into a sum of a concave function g and
a convex function f , that is

F(x,u) = f (x,u)+g(x,u) (5)

Assume that α0, β0 with α0(x)≤ β0(x) are the lower and upper solutions in Ω and
satisfy [Lakshmikantham and Vatsala (2000)]{

Lα0 ≤ f (x,α0)+g(x,α0) Bα0 ≤ φ on ∂Ω
Lβ0 ≥ f (x,β0)+g(x,β0) Bβ0 ≥ φ on ∂Ω

(6)

In addition, fu, gu, fuu, guu exist, are continuous, and fuu ≥ 0, guu ≤ 0. And satisfy

0 < N ≤ c(x)− [ fu(x,β0)+gu(x,α0)] (7)

Then there exist monotone sequences{αn(x)}, {βn(x)} such that αn→ r, βn→ s,
r = s = u is the unique solution of Eq. (1) satisfying α0(x) ≤ u ≤ β0(x) and the
convergence is quadratic[Lakshmikantham and Vatsala (2000)]. And the sequences
of iterates are constructed as follows:{

Lαk+1 = F(x,αk+1,αk,βk) Bαn+1 = φ on ∂Ω
Lβk+1 = G(x,βk+1,αk,βk) Bβn+1 = φ on ∂Ω

(8)

Where

F(x,u,αk,βk) = f (x,αk)+g(x,αk)+ fu(x,αk)(u−αk)+gu(x,βk)(u−αk) (9)

G(x,u,αk,βk) = f (x,βk)+g(x,βk)+ fu(x,αk)(u−βk)+gu(x,βk)(u−βk) (10)

This is the generated quasilinearization method. In order to simplify the descrip-
tion, either convex or concave function is used in the following.
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3 Dual reciprocity hybrid boundary node method

Although the present method is fully general in solving general nonlinear problems
in this type, only the following nonlinear partial differential equation is used to
demonstrate the formulation:

∇2u = MuN + p(x,y) (11)

Where p(x,y) is a given source function, M, N are constant, and the domain Ω is
enclosed by Γ = Γu +Γq, with the boundary conditions are{

u = ¯̄u on Γu

q = ∂u
∂n = ¯̄q on Γq

(12)

In which ¯̄u and ¯̄q are the prescribed potential and normal flux, respectively, on the
essential boundary Γu and on the flux boundary Γq, and n is the outward normal
direction to the boundary Γ.

It is show in Eq. (11) that F(x,u) = MuN + p(x,y) is either convex or concave
function, so applying the generated quasilinearization method, one can get

∇2um+1 = F(x,um)+Fu(x,um)(um+1−um)

= MN(um)N−1um+1 + p(x,y)+(M−MN)(um)N
(13)

In which um is the potential value of mth iteration.

3.1 Dual reciprocity method

Applying DRM, the (m+1)th iteration variables um+1 can be divided into two parts,
i.e., the complementary solution uc

m+1 and particular solution up
m+1, that is

um+1 = uc
m+1 +up

m+1 (14)

The particular solution up
m+1 has to satisfy the inhomogeneous equation on whole

space as

∇2up
m+1 = MN(um)N−1up

m+1 + p(x,y)+(M−MN)(um)N (15)

On the other hand, the complementary solution uc
m+1 must satisfy the homogeneous

equation in the calculation domain Ω and the modified boundary conditions. It can
be written in the form

∇2uc
m+1 = 0 (16)
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uc
m+1 = ¯̄uc

m+1 = ¯̄u−up
m+1

qc
m+1 = ¯̄qc

m+1 = ¯̄q−qp
m+1

(17)

In which ¯̄u, ¯̄q is the boundary node value of each node on the boundary, ¯̄uc
m+1, ¯̄qc

m+1
is the generous solution of boundary nodes on the (m+1)th iteration.

The DRM can be used in nonlinear problems to transform the domain integral
arising from the application of inhomogeneous into equivalent boundary integrals.
Applying interpolation for inhomogeneous term, the following approximation can
be proposed as [Nardini and Brebbia (1983); Wrobel and Brebbia (1987)]

MN(um)N−1up
m+1 + p(x,y)+(M−MN)(um)N ≈

NB+NI

∑
j=1

f j
α

j (18)

where the α j are a set of initially unknown coefficients, the f j are approximation
functions. NB and NI are the total number of boundary nodes and interior nodes
respectively.

If the basis form of the particular solution ū j is defined and satisfies the following
equations, one can obtain [Yan and Wang (2008a, b, 2009)]

∇2ū j = f j (19)

Substituting Eqs. (18) and (19) into Eq. (15), the particular solution up of origin
equation can be interpolated by the basis form of the particular solution, which is
shown as

up =
NB+NI

∑
j=1

ū j
α

j (20)

For simplicity, the conical function can be chosen as the interpolation function,
f j = 1+ r + r2 + · · · . And the basis form of particular solution ū satisfying Eq.(19)
can be obtained as[Nardini and Brebbia (1983); Wrobel and Brebbia (1987)]

ū =
r2

4
+

r3

9
+

r4

16
+ · · · (21)

The corresponding expression for the normal flux q̄ is

q̄ = (r,x
∂x
∂n

+ r,y
∂y
∂n

)(
1
2

+
r
3

+
r2

4
+ · · ·) (22)

Solving Eq. (18), one can get

ααα = MNF−1(um)N−1um+1 +(M−MN)F−1(um)N +F−1p (23)
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In which each column of F consists of a vector f j containing the values of the
function f j at the DRM collocation nodes.

(um)N−1 =


(u1

m)N−1 0 0 0
0 (u2

m)N−1 0 0

0 0
. . . 0

0 0 0 (uNB+NI
m )N−1


(um)N =

[
(u1

m)N (u2
m)N · · · (uNB+NI

m )N
]T

p =
[
p(x1,y1) p(x2,y2) · · · p(xNB+NI ,yNB+NI )

]T
um+1 =

[
u1

m+1 u2
m+1 · · · uNB+NI

m+1

]T
In which the subscript is the number of iteration and the superscript is the nodes
number in u j

m. If assuming that

S1 = MNF−1(um)N−1

S2 = (M−MN)F−1(um)N +F−1p
(24)

Substituting Eqs. (23) and (24) into Eq. (20), the particular solution can be written
as

up
m+1 = ŪS1um+1 + ŪS2 (25)

qp
m+1 = Q̄S1um+1 + Q̄S2 (26)

In which Ū and Q̄are matrixes of the basic form of the particular solution.

3.2 Hybrid boundary node method

The Hybrid BNM is based on a modified variational principle and moving least
square(MLS). The functions in the modified principle assumed to be independent
are: potential field within the domain, u, boundary potential field ũ and boundary
normal flux q̃ [Zhang and Yao (2002)].

According to MLS, one can approximate ũ and q̃ at the boundary Γ, as

ũ(s) =
NB

∑
I=1

ΦI(s)ûI (27)

q̃(s) =
NB

∑
I=1

ΦI(s)q̂I (28)
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where NB stands for the number of nodes located on the surface; ûI and q̂I are nodal
values, and ΦI(s) is the shape function of the MLS approximation, corresponding
to node SI , which is given by[Lancaster and Salkauskas (1981)]

ΦI(s) =
m

∑
j=1

p j(s)
[
A−1(s)B−1(s)

]
jI

(29)

In the above equation, p j(s) provide a basis function of order m. In this study, we
take m to 4, namely, pT (s) = [1, s, s2, s3]. Matrixes A(s) and B(s) are defined as

A(s) =
NB

∑
I=1

wI(s)p(sI)p
T (sI) (30)

B(s) = [w1(s)p(s1), w2(s)p(s2), · · · , wNB(s)p(sNB)] (31)

In Eqs.(30) and (31), wI(s)are weight functions. Gaussian weight function corre-
sponding to node SI can be written as

wI(s) =

{
exp[−(dI/cI)2]−exp[−(rI/cI)2]

1−exp[−(rI/cI)2] 0≤ dI ≤ rI

0 dI ≥ rI

(32)

where dI = |s− sI| is the distance between an evaluation point and node SI , cI is a
constant controlling the shape of the weight function wI(s), and d̂I is the size of the
support for the weight function wI(s) and determines the support of node SI .

According to HBNM formulation, the domain variables u and q are interpolated by
the fundamental solution, and can be written as

u =
NB

∑
I=1

uS
I xI

q =
NB

∑
I=1

∂uS
I

∂n
xI

(33)

In which xI is the unknown parameter, uS
I = ln(r)

2π
is the fundamental solution, where

r is the distance between source point SI and field point Q.

Applied modified variational principle, the corresponding variational function ΠAB

is defined as[Zhang and Yao (2002)]

ΠAB =
∫

Ω

1
2

u,iu,idΩ−
∫

Γ
q̃(u− ũ)dΓ−

∫
Γq

¯̄qũdΓ (34)
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where, u is the internal node value, and the boundary displacement ũ satisfies the
essential boundary condition, i.e. ¯̄u = ũ, on Γu.

Taking the variational of Eq. (34) and with the vanishing of δΠAB over the domain
and its boundary, the following equivalent integral can be obtained∫

Γ
(q− q̃)δudΓ−

∫
Ω

u,iiδudΩ = 0 (35)

∫
Γ
(u− ũ)δ q̃dΓ = 0 (36)∫

Γ
(q̃− ¯̄q)δ ũdΓ = 0 (37)

 

Q
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r
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Figure 1: Local domain and source point of fundamental solution corresponding to
SJ

Eq. (37) will be satisfied if the flux boundary condition, q = ¯̄q, is imposed. So it will
be ignored in the following. Eqs. (35) and (36) hold for any portion of the domain
Ω, for example, a sub-domain Ωs, which is defined as an intersection of a domain
and a small circle centered at node SI , and its boundary Γs and Ls(see Fig.1). So,
we can use the following weak form for the sub-domain and its boundary to replace
Eqs. (35) and (36) [Zhang and Yao (2002)]:∫

Γs+Ls

(q− q̃)hdΓ−
∫

Ωs

u,iihdΩ = 0 (38)

∫
Γs+Ls

(u− ũ)hdΓ = 0 (39)

where h is a test function.
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In Eqs.(38) and (39), ũs and q̃s at Γs can be represented by Eqs.(27) and (28), since
Γs is a portion of Γ, while ũs and q̃s at Ls has not been defined yet. To solve this
problem, we select h such that all integrals vanish over Ls. This can be easily
accomplished by using the weight function in the MLS approximation for h, with
the half-length of the major axis dI of the support of the weight function being
replaced by the radius of the sub-domain Ωs, i.e.

hJ(Q) =

{
exp[−(dJ/cJ)2]−exp[−(rJ/cJ)2]

1−exp[−(rJ/cJ)2] 0≤ dJ ≤ rJ

0 dJ ≥ rJ

(40)

where dJ is the distance between point Q in the domain and the nodal point SJ . On
Ls, dJ = rJ , from Eq. (40) it can be seen that hJ(Q) = 0, so it vanishes on boundary
Ls. Eqs.(38) and (39) can be rewritten as[Zhang and Yao (2002)]∫

Γs

(q− q̃)hJ(Q)dΓ−
∫

Ωs

u,iihJ(Q)dΩ = 0 (41)

∫
Γs

(u− ũ)hJ(Q)dΓ = 0 (42)

By substituting Eqs.(27), (28) and (33) into Eqs. (41) and (42), and omitting the
vanishing terms, we have

NB

∑
I=1

∫
ΓS

∂us
I

∂n
hJ(Q)xIdΓ =

NB

∑
I=1

∫
ΓS

ΦIhJ(Q)q̂IdΓ (43)

NB

∑
I=1

∫
ΓS

us
IhJ(Q)xIdΓ =

NB

∑
I=1

∫
ΓS

ΦIhJ(Q)ûIdΓ (44)

Using the above equations for all nodes, one can get the system equations

Ux = Hû (45)

Tx = Hq̂ (46)

Where matrix U, H, T can be referred in Zhang and Yao (2002).

3.3 Dual reciprocity hybrid boundary node method

For a well-posed problem, either û or q̂ is known at each node on the boundary.
However, transformation between ûI and ũI , q̂I and q̃I is necessary because the
MLS approximation lacks the delta function property. For the panels where ũI is
prescribed, ũI is related to ûI by [Zhang and Yao (2002)]

u(s) =
n

∑
J=1

n

∑
I=1

ΦI(s)RIJ ũJ =
n

∑
J=1

ϕJ(s)ûJ (47)
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and for the panels where q̃I is prescribed, q̂I is related to q̃I by

q(s) =
n

∑
J=1

n

∑
I=1

ΦI(s)RIJ q̃J =
n

∑
J=1

ϕJ(s)q̂J (48)

where RIJ = [ΦJ(xI)]−1, n is the total number on a piece of the edge.

Substituting Eqs.(25) and (26) into Eq. (14), one can get

uc
m+1 = um+1− ŪS1um+1− ŪS2

qc
m+1 = qm+1− Q̄S1um+1− Q̄S2

(49)

Substituting Eq.(49) into Eqs. (45) snd (46), we can get

Ux = HR(um+1− ŪS1um+1− ŪS2) (50)

Tx = HR(qm+1− Q̄S1um+1− Q̄S2) (51)

where matrix R is the transition matrix from Eqs. (47) and (48).

From Eq. (50), x can be expressed as

x = U−1HR(um+1− ŪS1um+1− ŪS2) (52)

Substituting Eq.(52) into Eq. (51), one can obtain

TU−1HRûm+1 +(HRQ̄S1−TU−1HRŪS1)um+1

= HRq̂m+1 + TU−1HRŪS2−HRQ̄S2 (53)

In which

ûm+1 =
[
u1

m+1 u2
m+1 · · · uNB

m+1 0 · · ·
]T

um+1 =
[
u1

m+1 u2
m+1 · · · uNB+NI

m+1

]T
q̂m+1 =

[
q1

m+1 q2
m+1 · · · qNB

m+1 0 · · ·
]T

where the subscript stands for the number of iteration and superscript is the node
number.

Assuming that NB nodes are located on the boundary, we can get NB equations on
the boundary from Eq. (53). However, the equations above include the potential of
the NI internal nodes. So the additional equations are needed.
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3.4 Additional equations

The Eq. (53) can not be solved for the variables of the internal nodes, so additional
equations for nonlinear problem will be developed in this section.

The unknown variables of the internal nodes can be expressed as follows

um+1 = uc
m+1 +up

m+1 (54)

The complementary solution, uc
m+1, can be interpolated by the fundamental solution

which is expressed in Eq. (33) and the particular solution, up
m+1, can be expressed

in Eq.(25). So the Eq.(54) can be rewritten as

ǔm+1 =us
Ix+ Ūα

=us
IU
−1HRûm+1−us

IU
−1HRŪS1um+1 + ŪS1um+1 + ŪS2−us

IU
−1HRŪS2

(55)

In which ǔm+1 = [
[
uNB+1

m+1 uNB+2
m+1 · · · uNB+NI

m+1

]
]T , us

I is a matrix which composes
by the value of internal nodes of fundamental solution.

Eq. (55) can be rewritten as

us
IU
−1HRûm+1 +(ŪS1−us

IU
−1HRŪS1)um+1− ǔm+1 + ŪS2−us

IU
−1HRŪS2 = 0

(56)

With the initial guesses u = u0, q = q0 on unknown nodes, combined Eq. (53)
and Eq. (56), the solutions of origin equation on first iteration can be gotten. And
update the initial values via the first iteration values, we can get the new iteration
values. Assumed the tolerance is ε , which is small enough. Do above iterations,
until the following equation is satisfied

em+1 =

√√√√√NB+NI

∑
i=1

(ui
m+1−ui

m)2

NB +NI
≤ ε (57)

In which the subscript of ui
m+1 stands by the number of iteration, and the superscript

stands by the nodes number.

According to formulation of generated quasilinearization method, convergence of
present method is quadratic, which is higher than some other iteration scheme. And
most important advantage is that this method is insensitive to the initial guesses, and
has rapid convergence, high stability and less computation.
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4 Numerical examples

In all examples, the support size for the weight function d̂I is set to be 3.5h, with h
being the average distance of adjacent nodes. The parameter cI is taken to be that
dI/cI = 0.5. In this paper, rJ = 0.85h is chosen as the radius of the sub-domain,
and the parameter cJ is taken to be rJ/cJ = 1.1. In order to deal with the normal
flux discontinuities at the corners, the nodes are not arranged at these places and
the support domain for interpolation is truncated.

In order to demonstrate the high accuracy and high convergence rate and insensitiv-
ity with the initial guesses of present method, the following three iteration schemes
and methods are used for comparison.

Iteration scheme 1:

∇2um+1
∼= M(um)N + p(x,y) (58)

Iteration scheme 2:

∇2um+1
∼= M(um)N−1um+1 + p(x,y) (59)

For above two iteration schemes, DHBNM is applied to solve the problems.

Quasilinear boundary element method(QBEM) scheme:
According to Quasilinearization method, we can get

∇2up
m+1 = MN(um)N−1up

m+1 + p(x,y)+(M−MN)(um)N (60)

The above equation can be rewritten as

∇2up
m+1−MN(ūm)N−1up

m+1

∼= MNup
m((um)N−1− (ūm)N−1)+ p(x,y)+(M−MN)(um)N (61)

Using above equation, we can use the formulation of Helmholtz equation to solve
it. In the following calculation, the initial values are 0.0 except that some special
description is made.

4.1 patch test

Consider a standard patch test in a domain of dimension 1× 1 as shown in Fig.
2. we consider a problem for a known coefficient M=4.0, N=3.0. With the exact
solution

u =
1

x+ y
(62)
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q =− 1
(x+ y)2 (

∂x
∂n

+
∂y
∂n

) (63)

where the essential boundary condition is prescribed on all boundary nodes accord-
ing to Eq. (62) satisfaction of patch test requires that the value of u at any interior
node be given by the same function (62), and that the derivatives of the computed
solution along the boundary satisfy the Eq. (63).

 
Figure 2: Calculation model

4.1.1 Computational accuracy

For comparison, QBEM is applied, which is mentioned above. In QBEM calcula-
tion, we used one subdomain and each side of boundary is divided into 10 constant
elements, and 81 internal nodes are arranged in the domain. For present method,
8 boundary nodes are arranged on the boundary and 51 internal nodes are used for
interpolation.

Table 1: Potential on internal nodes and flux on boundary nodes

Quantity Coordinate QHBNM results QBEM results Analytical results

u

(0.625,0.625) 0.799730 0.800887 0.800000
(0.75,1.00) 0.571434 0.571398 0.571428

(1.125,1.25) 0.421085 0.421092 0.421052
(1.375,1.375) 0.363649 0.363668 0.363636

q

(0.5,0.5109) 0.98143 0.98776 0.97861
(0.5109,1.5) -0.25083 -0.27789 -0.24730
(1.5,1.4891) -0.11356 -0.11786 -0.11192
(1.4891,0.5) 0.25838 0.29081 0.25273
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Figure 3: The internal potential results obtained by present method and QBEM

Potential values on internal nodes and flux values on the boundary nodes are shown
in Table 1, in addition, the results obtained by QBEM are also shown in this table
for comparison. It can be see that the result obtained by QHBNM is much more
accurate than that of QBEM. Additionally, the internal node potential on x=1.0 and
boundary flux on AB are shown in Fig. 3 and 4 respectively. It is shown that the
results obtained by present method is very close to the analytical results, which is
accurate than the results obtained by QBEM.

4.1.2 Convergence

The convergence rate of present method, iteration scheme 1, iteration scheme 2 and
QBEM are shown in Fig. 5 for comparison. It is clearly see that present method has
the highest convergence rate among them, and via approximation we can get that
the convergence is quadratic, where the convergence of other method mentioned
here are near linear, although quasilinearization method is also used in quasilinear
boundary element method.

4.1.3 Initial value discussion

Applying Eq. (7), we can see that the iteration can always converge when

−gu(x,α0) = 12α
2
0 ≥ 0 (64)
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Figure 4: The boundary flux results obtained by present method and QBEM
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Figure 5: Convergence rate of those methods

So we can get that the initial guesses α0 ∈ (−∞,+∞), in other word, the present
method can converge at any initial values. A wide range of initial guesses are
applied to calculation for this example, and results are shown that Eq. (64) is right.
The most important advantage is that this method is stable on every initial values,
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Figure 6: Convergence rate of present method with different initial guesses

which can be see in Fig. 6, although initial value is -10000.0, the error is also
monotone decreasing. The same calculation is done by QBEM, and the results
shown that when α0 ∈ (−∞,−100), the calculation can converge, which may be
caused by the some term is omitted in the calculation.

According to iteration scheme 1, the same calculations is done, and results shown
that when α0 ∈ (−2.0,2.3) this iteration scheme can converge, it is obvious that
the choice of initial value is very small. The same work has been done for iteration
scheme 2, it is shown that calculation by this method can converge at any initial
value, but the convergence is very slow.

4.1.4 Condition number discussion

Assuming that the finally equation of this problem can be written as Ax = y. Now
the condition number of matrix of A is discussed in this section. We denote the
condition number as cond(A) = ‖A‖∞

∥∥A−1
∥∥

∞.

So we can get the condition number for each iteration steps, for comparison, the
results by QBEM is also applied, which are shown in Fig. 7. It is shown that the
condition number does not vary greatly with the iteration steps and the value is not
very large. One can see that the iteration is stability and the property of matrix is
good.
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Figure 7: Condition number for each iteration steps

4.2 A cubic solution with different boundary condition

The example here is a nonlinear equation with M=1.0, N=3.0 in the 2×2 domain
shown in Fig. 8, with the exact solution, a cubic polynomial, as [Zhu et al. (1998)]

u =− 1
12

(x3 + y3)+
3

10
(x2y+ xy2) (65)

p =−
[
− 1

12
(x3 + y3)+

3
10

(x2y+ xy2)
]3

+
x+ y
10

(66)

A mixed boundary condition is applied on this problem, for which the essential
boundary condition is imposed on AB and CD and the flux boundary condition is
prescribed on AD and BC, according to Eqs. (65) and (66).

The same as example 4.1, in the computation, 8 boundary nodes are arranged on
the boundary and 51 internal nodes are used for interpolation. For comparison, the
results obtained by LBIE [Zhu et al. (1998)] are quoted, in which 36 nodes are
used.

The values of u, ∂u/∂x, ∂u/∂y for x = 1.0 are depicted in Fig. 9∼11. It can be see
that the results obtained by present method and LBIE and analytical solution are
very close to each other.

The convergence of present iteration scheme, iteration 1 and iteration 2 are shown
in Fig. 12. It can be see that the convergence of present method is higher than the
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Figure 8: Calculation model
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Figure 9: Value of u at x = 1.0

other two method, where convergence of present method is close to quadratic and
convergence of the other two method is near linear.

The same as example 4.1, the stability and the sensitivity of the iteration scheme
are examined in this paper, numerical results shows that the iteration scheme 1 can
only converge at α0 ∈ (−4.5,4.5), but present method can monotone converge on
any initial values. So the stability and insensitivity with the initial value of present
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Figure 10: Value of ∂u/∂x at x = 1.0
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Figure 11: Value of ∂u/∂y at x = 1.0

method are more excellent than the other two methods.
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Figure 12: Convergence rate of those methods

4.3 A mixed boundary condition diffusion problem

In this example, a diffusion reaction problem is considered, where u represents
the concentration of the diffusing species [Kasab et al. (1995)], and in this case
p(x,y) = 0.0. It is shown in Fig. 13, in which the Dirichlet condition is prescribed
along AB and the Neumann condition (zero flux) on the other boundary.

For comparison, QBEM is applied, in which 12 constant elements are used on each
side of the domain. In present method computation, 8 nodes are arranged on each
side of object, and 51 internal nodes are used for interpolation. At the same time,
the results by QBEM[Kasab et al. 1995] are quoted for comparison.

Table 2 shows the results on different M and N by present method, QBEM, and
some other method mentioned by Kasab et al. (1995). It is shown that the results
of present method can get the much more accurate results than QBEM and some
other numerical method.

Fig 14 shows the convergence of different method and iteration schemes, and it
can be see that among those methods, the present method has the most highest
convergence, which is quadratic, and convergence of the other methods are near
linear. Actually, the iteration scheme 1 does not converge with the initial value of
u = 0.

The CPU time of different method on the same nodes arrangement is shown in
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Figure 13: Calculation model

Table 2: Results by different method on different coefficient

Quantity Method M=2.0, M=12.0, M=-0.5,
N=2.0 N=2.0 N=2.0

u(CD) QHBNM 0.58151 0.25339 1.49911
QBEM 0.58179 0.253246 1.49770

QBEM [Kasab et al.(1995)] 0.5896 0.309900 1.486
DRM [Kasab et al.(1995)] 0.5809 0.250600 1.498

1D BEM [Kasab et al.(1995)] 0.5813 0.252700 1.500
q(AB) QHBNM 1.03611 2.83739 -0.88824

QBEM 1.03303 2.802327 -0.88416
QBEM [Kasab et al.(1995)] 1.0190 2.630900 -0.867
DRM [Kasab et al.(1995)] 1.0400 2.921000 -0.888

1D BEM [Kasab et al.(1995)] 1.0350 2.805000 -0.890

Table 3, it can be see that the CPU time of present method is less than that of
QBEM. It is obvious that the computation of present method is less than that of
QBEM. Especially on case M=-0.5 and N=2.0, the iteration can not converge with
initial values u = 0.

Table 3: CPU time by different method on different coefficient

Method M=2.0,N=2.0 M=12.0,N=2.0 M=-0.5,N=2.0
QHBNM 2.75 2.844 2.672
QBEM 39 56 —-



44 Copyright © 2009 Tech Science Press CMES, vol.46, no.1, pp.21-50, 2009

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
-32

-28

-24

-20

-16

-12

-8

-4

0
ln

(e
m

+1
)

ln(em)

 Iteration scheme 2
 QBEM
 QHBNM

 
Figure 14: Convergence rate of those methods

Applying Eq. (7), we can see that the iteration can always converge when

−gu(x,α0) = 4α0 ≥ 0 (67)

So we can see that when α0 ≥ 0 the present method can converge. The same as
before, many initial values are attempted for M=2.0 and N=2.0, and we can get that
the QBEM and QHBNM can converge at α0 ∈ (−100,+∞), and the convergence
of QHBNM is much more higher that that of QBEM.

On this case, it is shown that this method is stable on any initial values in α0 ∈
(−100,+∞), which can be seen in Fig. 15, the error is monotone decreasing at any
initial values, and this is a very important advantage of present method.

4.4 Complex geometries problem

In this numerical example, a case of diffusion reaction in a trilobe catalyst particle
problem is considered, and the catalyst geometry of the schematic is shown in Fig.
16. Dirichlet boundary conditions u = 1.0 are imposed along the boundary of the
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Figure 15: Convergence rate of present method with different initial guesses

catalyst particle. Due to the symmetry, only one sixth of the geometry needs to be
discretized.

 

Figure 16: Geometry of a trilobe shaped particle

For this particular problem, M is taken to be 25, and a total of 30 nodes are arranged
on the boundary and 20 nodes on the domain. The total normal concentration gradi-
ent along the boundary (

∫
Γ pdΓ) is directly proportional to the effectiveness factor

of the catalyst which is a key parameter in the design of heterogeneous reactions, so
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Table 4: Total gradient along the boundary for diffusion reaction in a trilobe catalyst
particle for different N

Method N=0.5 N=1.0 N=2.0
Present method 30.579 25.816 20.581

QBEM [Kasab et al.(1995)] 29.870 25.341 20.590
DRM [Kasab et al.(1995)] 31.173 26.069 20.576

this quantity is evaluated. For comparison, the results obtained by QBEM [Kasab
et al. (1995)] and DRM are also shown in Table 4. In QBEM, 12 cubic boundary
elements are used to discretize the one sixth of the problems. It is shown that a
good agreement can be got between those methods.

5 Conclusion

In this paper, firstly, the quasilinearization method, dual reciprocity method and
hybrid boundary node method are combined, and a new truly meshless method for
nonlinear problems is proposed, which is named as QHBNM. The generated quasi-
linearization method is employed to linearize the nonlinear term of the governing
equation, in which method of upper and lower and monotone iterative technique
are applied, and the solution of the linearized equation can exactly converge to the
solution of original equation at a very wide range initial value, and convergence
rate is quadratic.

Secondly, DHBNM is employed to solve this linearized equation. The solution in
this method composes two parts: complementary solution and particular solution.
For the first part, HBNM is applied. For the second part, DRM has been used
and the radial basis functions are applied to interpolating the nonlinear part of the
equations. Because of the nonlinear term of the governing equations, the bound-
ary integral equations obtained by DHBNM are not enough to solve all variables.
Some additional equations are proposed to obtain the relation of the variables in the
domain and on the boundary.

This method keeps the ‘boundary-only’ and truely meshless method character of
HBNM, and the convergence is quadratic, which is much higher than some other
methods. The most important advantage of present method is its stability, insensi-
tivity with initial guesses and less computation.

The numerical examples are presented for several nonlinear problems, for which
accurate results can be available. The convergence of present method is quadratic,
and the stability and its insensitivity with the initial value is very excellent. It is
shown that the present method is effective and can be widely applied in practical



Quasilinear Hybrid Boundary Node Method for Solving Nonlinear Problems 47

engineering. Besides, this method has the advantage of small amount of calcula-
tion, in which on each iteration only several matrixes are needed to update, while
when QBEM is applied, integral for coefficient matrixes are needed on each itera-
tion. And the present procedure can easily be extended to 3D problems.

Acknowledgement: Project supported by the National Natural Science Founda-
tion of China. (No. 50808090)
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