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Abstract: This work addresses the problem of tracking feature points along im-
age sequences. In order to analyze the undergoing movement, an approach based
on the Kalman filtering technique has been used, which basically carries out the
estimation and correction of the features’ movement in every image frame. So as
to integrate the measurements obtained from each image into the Kalman filter, a
data optimization process has been adopted to achieve the best global correspon-
dence set. The proposed criterion minimizes the cost of global matching, which is
based on the Mahalanobis distance. A management model is employed to manage
the features being tracked. This model adequately deals with problems related to
the occlusion of the tracked features, the appearance of new features, as well as op-
timizing the computational resources used. Experimental results obtained through
the use of the proposed tracking framework are presented.
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1 Introduction

Object tracking based on image processing and analysis techniques is a complex
issue that has evolved considerably over the past decade. Movement analysis us-
ing video systems for motion acquisition and interactive modeling can assist one in
terms of the analysis, diagnosis and assessment of movements through the use of
tools that are exceptionally useful in a number of application areas such as in [Han,
Feng and Owen (2007)] a study dealing with the transportation of irregular parti-
cles in turbulent flows which can be accomplished by tracking the particles along
the pipeline structure; additionally, it could be applied to a study of the interspinous
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process spacer device placed at L2-L3 if a tracking framework with orientation is
employed [Zhang, Cheng, Oh, Spehar and Burgess (2008)]. There are numerous
examples of movement tracking applications, such as: surveillance, deformation
analysis, gait analysis, traffic control or even medical diagnosis, [Azarbayejani,
Wren and Pentland (1996); Chen, Huang and Arrott (1998); Cucchiara, Grana, Pic-
cardi and Prati (2000); Feldman and Balch (2003); Fish and Nielsen (1993); Zhou
and Hu (2008)]. For instance, the analysis of human movement can be employed
in medical diagnosis procedures, physical therapy or sports, to improve the study
of gait disorders related to knee or hip pain, or even to help the control of motion
cycles in rehabilitation or training processes, [Aggarwal and Cai (1999); Deutscher
and Reid (2005); Veeraraghavan, Roy-Chowdhury and Chellappa (2005); Vieth
(2007); Wang and Singh (2003); Zhou and Hu (2008)].

Many tracking applications require the simultaneous tracking of several objects,
thus implying problems related to their appearance and disappearance in/from the
scene, which can be analyzed over extended periods of time. The complexity of
the tracked features and all the variables involved has led to the development of
new technologies, such as high-speed cameras, and innovative computational ap-
proaches, that have been increasingly integrated in laboratories progressively dedi-
cated to movement analysis, which has allowed for new insight into the tracking of
features throughout image sequences. In fact, automated movement visual analy-
sis computational systems can provide a number of significant advantages as is the
case of more reliable events assessment, seeing that the computational algorithms
always use and apply the same criteria, in addition to the fact that the systems do
not suffer issues of fatigue or drifts, thereby permitting the processes to operate al-
most indefinitely and continually. However, the computational tracking of features
in images is not a self-contained problem, as it involves several complex issues,
such as image segmentation, an issue which is not addressed by this paper, but can
be further developed in [Gonçalves, Tavares and Natal (2008); Raut, Raghuvanshi,
Dharaskar and Raut (2009); Zhang, Fritts and Goldman (2008)].

1.1 Related Work

Many strategies have been proposed so as to address the difficulties associated with
the visual tracking of features. In the following section, some of the key contribu-
tions produced over the last number of years, which are closely related to the topic
of this paper are pointed out.

From single object to multi-target methods, first tracking approaches could not
overcome problems related to the occlusion [Sethi and Jain (1987)], entrance, or
disappearance of features [Rangarajan and Shah (1991)]. In the meantime, new so-
lutions were presented; namely, [Salari and Sethi (1990)] the management of these
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problems by first establishing the correspondence between the points detected, and
subsequently, by extending the tracking process of the missing features by adding
a number of hypothetical points [Rangarajan and Shah (1991)]. The problem of
missed features is addressed by predicting their position based on an assumption
of constant velocity. In turn, [Intille, Davis and Bobick (1997)] contend with the
change in the number of features by examining specific regions in the image to
detect appearances/disappearances before computing the correspondence results.
[Rosales and Sclaroff (1998)] propose an occlusion detection routine which deals
with occlusion problems by predicting the future locations of features, based on
current 3D velocity and position estimates, and assumptions relating to the char-
acteristics of the shape of the objects, and the manner in which they evolve over
time.

[Veenman, Reinders and Backer (2001)] contribute to previous studies by intro-
ducing a common motion constraint for correspondence. The adopted constraint
provides a severe restriction for the coherent tracking of points that lie on the same
object. However, it is unsuitable for points lying on isolated objects moving in
different directions. The algorithm in question assumes that the number of objects
remains invariable along the image sequences.

[Arnaud, Memin and Cernuschi-Frias (2005)] use two points trackers: the first is a
linear tracker well-suited for image sequences exhibiting global dominant motion;
the latter is a nonlinear tracker, implemented by a conditional particle filter, which
permits the tracking of points whose motion may be described locally. Hence, the
proposed methodology deals with noisy sequences, abrupt changes of trajectories,
occlusion cases and cluttered background.

In [Tissainayagam and Suter (2005)] objects are tracked through the image se-
quence by using a multiple hypothesis tracking algorithm coupled with a multiple
model Kalman filter from the first frame onwards. The tracking process is car-
ried out by predicting the position of each object’s centroid in the next frame, and
then by analyzing a region of interest surrounding the centroid so as to identify key
points. This process is continued by matching the key points with the associated
object’s contour within the region under analysis. The correspondence between
the extracted measurements and the predictions is established on a Mahalanobis
distance basis.

Another key characteristic of a successful tracking system is its ability to effectively
search for the pursued features in each frame of the image sequence under analysis
and to establish the correct correspondences with the features being tracked.

A common approach for the detection of objects is to use the information from a
single frame. However, some of the methods used to detect objects in image se-
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quences make use of the temporal information computed from the sequence under
analysis in order to reduce the number of false detections. The tasks of detect-
ing the objects and establishing the correspondence between their instances across
image frames can either be performed separately or jointly. In the former case,
possible objects’ regions in every image frame are obtained by using an object de-
tection algorithm. Subsequently, the tracker matches the objects across the image
frames. For instance, [Shafique and Shah (2003)] propose a multiframe approach
to preserve the temporal coherency of velocity and position. The authors consider
the correspondence issue as being a graph theoretic problem. Multiple image frame
correspondence is concerned with identifying the best unique path for each point.
In the cases of misdetection or occlusion, the path will consist of the missing po-
sitions in the corresponding image frames. This approach uses a window of image
frames in the establishment of the correspondences in order to successfully handle
occlusion cases whose durations are shorter than the defined temporal period. In
the later case, the objects’ regions and their correspondences are jointly estimated
by iteratively updating the information of the previous frames in terms of the lo-
cations and regions of the objects being tracked, [Arnaud, Memin and Cernuschi-
Frias (2005); Raut, Raghuvanshi, Dharaskar and Raut (2009); Rosales and Sclaroff
(1998)].

Another possible approach is based on a Track Before Detect (TBD) setup, which
deals with the tracking problem by assuming unthresholded measurements. The
TBD is especially suitable for tracking weak objects, i.e. objects which in a classi-
cal setting will not often lead to a successful detection, [Boers and Driessen (2004);
Salmond and Birch (2001)].

In order for a tracking system to present an appropriate performance, the most
probable potential features’ locations obtained should be used to update the fea-
tures’ state estimator. This is usually a data association problem. The probability
of a given measurement being correct can be established by a distance function be-
tween the predicted state of the feature and the associated measured feature. The
fact that the features’ state may also consist of several characteristics such as color,
size or shape, or even the composition of signals from heterogeneous sensors, such
as in [Zhou, Taj and Cavallaro (2008)] should also be noted. This gains signifi-
cant importance when distinguishing the features that are to be tracked as they may
appear close to each other or even overlap one another.

The simplest correspondence implies the use of the nearest neighbor approach.
However, in the case of the objects being close to each other, there is always a
high probability that the correspondence obtained will be incorrect. An associated
measurement which is incorrect can prevent the filter from successfully converg-
ing. Several statistical data association techniques exist to overcome this problem:
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for example, Joint Probability Data Association Filtering (JPDAF) and Multiple
Hypothesis Tracking (MHT) are two techniques which are widely used to solve
problems related to data association. A detailed review and comparison of these
techniques can be found, for example, in [Cox (1993)] and [Drummond (1995)].

Different approaches may be used to incorporate the updated measurements ob-
tained by the tracking method. The Kalman filter is a widespread technique used in
the tracking of objects throughout image sequences. However, it has recently been
substituted by particle filters, [Arulampalam, Maskell, Gordon and Clapp (2002);
Sitz, Schwarz and Kurths (2004)]. The Kalman filter is based on the assumption
that disturbances and the initial features’ state vector are distributed normally. It has
been proven that the statistical mean obtained for the conditional distribution of a
state is an optimal estimator in the sense that it minimizes the mean square error.
However, if the assumption of normality is overlooked, there is no guarantee that
the Kalman filter will provide the conditional mean of the state vector, [Maybeck
(1979)].

Particle filters have been presented as representing a good alternative for the Kalman
filter; mainly, because they represent a conditional distribution with several parti-
cles, which allows for multimodal state distributions, [Blake, Curwen and Zisser-
man (1993)]. However, particle filters have also revealed some serious problems,
such as difficulties in tracking multiple objects as well as articulated objects. Addi-
tionally, if the modeled system has reduced noise or if the measured features have
a very low variance, then the particle filter may not perform successfully or even
collapse. To overcome these difficulties, several variations of the particle filter have
been proposed, such as the Path Relinking Particle Filter, the Scatter Search Particle
Filter, [Pantrigo, Sanchez, Gianikellis and Montemayor (2005)], the Kernel Parti-
cle Filter, [Chang and Ansari (2005)] and the Annealed Particle Filter, [Deutscher,
Blake, North and Bascle (1999)]. Nevertheless, particle filters continue to represent
an expensive computational solution, [Petrie (2004)].

1.2 Proposed Tracking Framework

In order to track the movement of feature points along image sequences, this work
proposes the use of difference equations to model the features’ trajectories, which
are updated with the measurements obtained at discrete instances (in every image
frame). This is achieved by using, a well-known statistical modeling approach:
the Kalman filter, [Arulampalam, Maskell, Gordon and Clapp (2002); Welch and
Bishop (1995)]. Thus, the tracking framework which has been developed benefits
from the advantages of a statistical approach which has been properly formulated:
it has the flexibility to adequately represent the undergoing movement in time se-
ries, in addition to allowing for the prediction of future observations. The Kalman



56 Copyright © 2009 Tech Science Press CMES, vol.46, no.1, pp.51-75, 2009

filter estimates a dynamical system by using a form of feedback control: the filter
estimates the system’s state at a particular point in time and then obtains feedback
in the form of (noisy) measurements.

As has been previously indicated, the drawbacks of the Kalman filter are related to
its relatively severe restrictive assumptions, [Arulampalam, Maskell, Gordon and
Clapp (2002)]. To track the movement of features throughout image sequences,
the tracking framework which has been developed combines the Kalman filter with
optimization techniques for data association, in order to improve the filters’ robust-
ness whenever cases of the occlusion of features and non-linear movements are
concerned. The correspondence between the predicted features and the measured
features is based on the Mahalanobis distance minimization. The Mahalanobis dis-
tance ensures that the correspondence is performed according to the behavior of
each tracked feature which has been previously identified. Its approximation to the
χ-square distribution allows for the choice of a significance level, which represents
the minimum value for a possible match. Therefore, even in the case of the Kalman
filter restrictions not being satisfied, a frequent reality in many tracking applica-
tions, the results obtained by the proposed tracking framework may be corrected
by the adopted matching solution.

In the proposed tracking framework, a management model has also been employed,
as proposed in [Tavares and Padilha (1995)], which assures a successful resolution
of problems related to the appearance, disappearance and occlusion of features,
which has proven to be especially useful when the tracking is performed through-
out image sequences of a considerable length. The model is capable of making
the decision to continue tracking each tracked feature by taking into account its
previous behavior. Features which continue to successfully appear in the image
scene will obviously continue to be tracked; On the other hand in the case of no
measured feature being associated with a feature in an image frame, then its track-
ing may cease, depending on the feature’s previous behavior and on the number
of existing image frames in which the measured feature has not been successfully
associated with that feature.

Therefore, the approach which has been adopted by us and which is explained
in detail in the subsequent sections of this paper, represents a novel and unified
framework to track feature points along image sequences, which has the advantage
of being extremely robust and computationally efficient, as can be verified by the
experimental results which have been included and analyzed in detail throughout
this paper.
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1.3 Paper Overview

This paper is organized as follows: In the following section, an introduction is pro-
vided on the Kalman filter. Section 3 presents the solution which has been adopted
for overcoming the correspondence problem, which is based on the optimization
and Mahalanobis distance. Next, in section 4, an explanation as to the manner
in which the integrated management model deals with the features being tracked,
as well as their appearance and disappearance along image sequences is provided.
Subsequently, some experimental tracking results obtained by using the proposed
tracking framework on synthetic and real image sequences are presented and dis-
cussed. Finally, in the last section, some main conclusions are presented and future
work is suggested.

2 The Kalman Filter

The Kalman filter is an optimal recursive Bayesian stochastic method. It provides
optimal estimates that minimize the mean of the squared error of the modeled sys-
tem. From a Bayesian stochastic viewpoint, the filter propagates the conditional
probability density of the system’s state conditioned by the knowledge of the actual
data on the tracked features acquired by the measuring devices.

The equations of the Kalman filter fall into two main processes: time update (or
prediction) and measurement update (or correction). Time update equations are
responsible for projecting forward (in time) the current system’s state and error co-
variance estimates so as to obtain the a priori system’s estimates for the subsequent
time step. In turn, measurement update equations deal with the system’s feedback;
that is, new measurements are incorporated into the a priori system’s estimates to
obtain improved a posteriori system’s values, [Welch and Bishop (1995)].

The prediction step is based on the Chapman-Kolmogorov equation for a first order
Markov system:

X−
t

= ΦX+
t−1,

where Φ represents the system’s state X+
t−1 it the previous time step t − 1 to the

system’s state X−t in the current step t. The superscripts + and − indicate if the
measurement data has or not been respectively incorporated. The related uncer-
tainty is obtained by:

P−t = ΦP+
t−1Φ

T +Q,

where P is the covariance matrix and Q models the system’s noise.
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The correction equations, that update the predicted estimates upon the incorpora-
tion of new Ut measurements, are expressed by:

Kt = P−t HT [HP−t HT +Rt
]−1

,

X+
t = X−t +Kt

[
Ut −HX−t

]
,

P+
t = [I−KtH]P−t ,

where K is chosen to represent the filter’s gain, that minimizes the a posteriori
error covariance equation, H processes the transformation of coordinates between
the predicted and the measurement spaces, Rt is the measurement noise, and I is
the identity matrix, [Arulampalam, Maskell, Gordon and Clapp (2002); Welch and
Bishop (1995)].

In the developed tracking framework, each features’ state, Xt , is composed by its
position

[
xt yt

]T
in the image frame, as well as its velocity

[
vxt vyt

]T
and accel-

eration
[
axt ayt

]T
. Although the measurements update, Ut , only comprehends the

features’ positions, the associated velocity and acceleration can be derived:

Xt =
[
xt yt vxt vyt axt ayt

]T
,

where:

vxt = xt − xt−1, vyt = yt − yt−1, axt = vxt − vxt−1 , ayt = vyt − vyt−1 .

In the developed tracking framework, if a tracked feature finds no correspondent in
the set of new measurements, then its prediction would function as its measurement
but with greater uncertainty (in the experimental examples presented in this paper,
the uncertainty of a missed feature is doubled). Thus, using a binary variable z(i)

t

which returns 1 (one) if a new measured feature has been successfully matched
with feature i:

Ut =


[
xt yt

]T
if z(i)

t
= 1[

x−t y−t
]T

otherwise
,

with:

P−t =

{
P−t if z(i)

t
= 1

2P−t−1 otherwise
.

Thereafter, the tracking of missed features continues as usual, unless the features
are discarded by the management model delineated further on. Throughout the
image sequence, whenever a new feature is detected, its tracking is begun by ini-
tializing a new Kalman filter for it.
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2.1 Kalman Filter Initialization

In the proposed tracking framework, when the tracking process is initialize for a
feature, Q, P+

0 , R1 are defined as the identity matrix and Φ is associated with a
constant acceleration model:

Φ =



1 0 ∆t 0 ∆t2

2 0

0 1 0 ∆t 0 ∆t2

2
0 0 1 0 ∆t 0
0 0 0 1 0 ∆t
0 0 0 0 α 0
0 0 0 0 0 α


.

In the experimental examples presented in this paper, ∆t has been made equal to
1(one) and α to 0.1. Additionally, X+

0 and U1 are defined by the measurements

obtained from the first image frame and H =
[

1 0 0 0 0 0
0 1 0 0 0 0

]
.

3 Correspondence with Optimization techniques and Mahalanobis Distance

During the updating step of the Kalman filter, in order to associate the new mea-
surement data which has been acquired (measure features) with the previously
tracked features (predicted features), a criteria of correspondence (matching) must
be adopted. That is, during this step, it is assumed that for each feature being
tracked, one measurement should be considered for the correction of its predicted
state.

According to the usual Kalman approach, the search area for each feature’s po-
sition in the image plane under analysis is provided by an ellipse centered on its
predicted position, whose axes are determined by the eigenvectors of the associated
covariance reduced matrix, and its rays are derived by the related eigenvalues, [Cor-
reia, Campilho and Padilha (1995); Tavares and Padilha (1995); Tissainayagam and
Suter (2005)]. As the filter is converging, it provides more accurate estimates and
consequently, the size of the search areas successively decreases, and the involved
computational cost is thereby reduced, [Correia, Campilho and Padilha (1995);
Tavares and Padilha (1995)]. However, this usual approach may raise a number
of inconveniences: there may not be any measured feature in the searching area;
alternatively, there might be several measured features in the same area; and even
if there is only one measured feature for each estimated feature in the associated
search area, there is no guarantee that the best set of correspondences has been
achieved. Further on in this paper, an approach which is capable of surpassing
such ambiguities is outlined: an optimization technique is used to obtain the most
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favorable association between the predictions and the actual set of measurements;
and the cost of each correspondence is provided by the normalized squared Ma-
halanobis distance. Thus, this matching approach permits one to obtain the best
global set of correspondences between the estimates and the measurements in a
Mahalanobis distance sense.

3.1 Optimization in the Measurement Update

To optimize the set of correspondences found between the filters’ predictions and
the acquired measurements, various optimization algorithms may be used. In the
proposed tracking framework, the Simplex algorithm has been applied. This algo-
rithm is a widespread iterative algebraic procedure used to determine at least one
optimal solution for each problem, [Bastos and Tavares (2006); Hillier and Lieber-
man (2001); Press, Teukolsky, Flannery and Vetterling (2002)].

As a linear optimization method, the Simplex algorithm optimizes a function, which
is subject to some restrictions. In the case of tracking the movement of points along
image sequences, the main goal adopted has been to minimize the global cost of
the association between the set of acquired measurements and the estimates pro-
vided by the Kalman filter. According to the approach in question, it has been as-
sumed that for each estimate, there will be one measurement at most, and thus each
new measurement will thereby correspond to a feature’s position. In the proposed
tracking framework, this has been accomplished through the use of the assignment
formulation of the Simplex algorithm, [Hillier and Lieberman (2001)].

3.2 Mahalanobis Distance

To optimize the correspondences between the set of measured features and the set
of estimated features, a cost has been associated to each correspondence which is
provided by the squared Mahalanobis distance.

The Mahalanobis distance between two features is scaled by the statistical variation
in each component of the entity. Therefore, if XE is an estimated feature’s position
and XM represents the measured feature’s position, then their squared Mahalanobis
distance is obtained by:

dχ2
s
=

(XM−XE)T (VM +VE)−1(XM−XE)
2

,

where VM is the covariance matrix of the measurements, and VE is the covariance
matrix associated with the feature’s prediction, [Tavares and Padilha (1995)]. The
Mahalanobis distance has been chosen, instead of the Euclidean distance, essen-
tially because it takes into account the correlations of the data set in addition to the
fact that it is scale-invariant.
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In the tracking framework which has been proposed, the covariance of each esti-
mate is considered to be the reduced prediction error covariance matrix provided
by the Kalman filter, and the measurement covariance matrix is calculated by con-
sidering all the measurements acquired from the associated image frame.

According to the above expression, not only does the Mahalanobis distance de-
pend on the actual measurement and estimate of that tracked feature, but also on its
previous behavior as its covariances are also contemplated. Therefore, the Maha-
lanobis distance values will be inversely proportional to the quality of the predic-
tion/measurement association; consequently, to optimize the correspondences, the
related cost function should be minimized.

The squared Mahalanobis distance can be approximated, in this case, by a χ-square
distribution with 2 degrees of freedom. Thus, if a significance level of 90% is cho-
sen, then all correspondences should be inferior to the threshold value of 4.6052.
If a feature does not satisfy this condition, then it will have no correspondence,
[Tavares and Padilha (1995)].

3.3 Problems of Object Occlusion, Appearance and Disappearance

One of the restrictions of the assignment formulation of the Simplex algorithm is
the “one to one” correspondence between each measured and estimated feature by
the Kalman filter. However, when features are occluded or disappear off the scene
definitively, or alternatively, new features appear on the scene, this restriction does
not stand, due to the fact that the numbers of estimated and measured features
are not equal. To overcome this difficulty, a standard procedure has been applied:
fictitious features are added in order for the number of estimated features to be
equal to the number of the measured features. The cost of each correspondence
that has been made with a fictitious variable is considered to be nil. Subsequently,
each estimated feature that has been matched with a fictitious feature is considered
to be unmatched, [Bastos and Tavares (2006); Hillier and Lieberman (2001); Press,
Teukolsky, Flannery and Vetterling (2002)]. Additionally, as has been described in
the previous section, estimated features are also considered to be unmatched if the
associated minimal squared Mahalanobis distance is greater than a given threshold
value.

Thus, if a previously tracked feature does not find any correspondence among the
set measured features, then its tracking may be stopped (depending on the adopted
management model that the following section will describe), or may continue with
greater uncertainty, as previously explained in section 2. If a measured feature does
not find any correspondence among the set of estimated features, then it will be
considered to be a new feature and its tracking will be initialized, Figure 1.
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4 Tracked Features Management Model

As has been stressed, new features can arise in any image frame of an image se-
quence, but they may also disappear temporarily or even definitively. Thus, in the
very lengthy image sequences obtained, for example, from surveillance systems,
one has to decide if a missed feature should be kept in the tracking process due to it
having been temporally occluded, or alternatively, if its tracking process should be
stopped, and the associated computational resources freed, as it could have defini-
tively disappeared from the image scene. This decision is even of greater impor-
tance if many features are being tracked and the available computational resources
are reduced.

In the proposed tracking framework, a management model which associates a con-
fidence value, λ

(i)
t , to each tracked feature has been used: while a feature is being

tracked, in each image frame t, if it has successfully been matched with a measure
feature, then its confidence value will be increased if this is lower than an upper
threshold value, λmax; on the other hand, if it is not matched with any measure
feature, its confidence value will decrease, and if it is inferior to a lower thresh-
old confidence value, λmin, then the feature will be considered to have definitively
disappeared from the scene in which case its tracking should be stopped and its
computational resources freed:

λ
(i)
t =


λ

(i)
t−1−1 if λmin < λ

(i)
t−1∧ z(i)

t 6= 1

λ
(i)
t−1 +1 if λ

(i)
t−1 < λmax∧ z(i)

t = 1

λmax if λ
(i)
t−1 = λmax∧ z(i)

t = 1

tracking of i is stopped if λ
(i)
t−1 = λmin∧ z(i)

t 6= 1

,

where z(i)
t is a binary variable that returns 1 (one) if feature i has been successfully

matched in frame t.

Therefore, if a feature disappears for a reduced number of consecutive image frames,
its tracking process will be continued without losing any data. However, if the num-
ber of consecutive images in which the tracked feature has not been successfully
matched with a measured feature is higher than a predefined value, its tracking will
be stopped and the feature discarded by the management model and consequently,
its computational resources will be freed. If a discarded feature reappears later, it
will be considered to be a new feature and its tracking initialized.

With the followed management strategy, the proposed tracking framework can con-
tinually track lengthy image sequences containing several features and maintain the
computational resources used as reduced as possible, which can be essential in ap-
plications with severe restrictions in terms of the computational resources available.
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Figure 1: Integrated solution in the proposed tracking framework for the matching
and management of the tracked features.

The results presented in this paper were obtained using integer confidence values
between 0 (zero) and 5, and all features have been initialized with a confidence
value of 3, [Tavares and Padilha (1995)].

5 Experimental Results

In this section, the use of the proposed tracking framework is exemplified and dis-
cussed with the aid of three experimental image sequences.
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In each frame of the examples presented, the predicted position is indicated with
a red +, the uncertainty area is circumscribed in black, each measurement is the
center of the detected green contour, and the corrected position is represented by
a blue x. The association between each prediction/measurement is depicted by a
black line segment.

For the first example, Figure 2, a synthetic sequence of 15 image frames has been
considered. At the beginning of the sequence, the two blobs are visible. Then,
the circular blob disappears definitively, yet the management model continues its
tracking during the subsequent image frames, gradually increasing its uncertainty,
until it stops its tracking (it should be noted that in image frame (e), the uncertainty
region surpasses the image border). In the 2nd image frame, a triangular blob ap-
pears, and in the 3rd image frame the square blob instantly disappears. In the 4th

image frame, the acquired blobs overlap each other, and with the image processing
techniques that have been used, only one measured feature is obtained and matched
with one tracked blob. However, both blobs continue to be subsequently correctly
tracked. From the 7th image frame onwards 25 blobs are successfully tracked. In
the 10th image frame, the 23rd rectangular blob disappears, and the management
model proceeds as previously described in the case of the circular blob. Their track
is discontinued after the 14th image frame thereby freeing the associated computa-
tional resources which, in turn, favorably implies the computational performance
achieve by the proposed tracking framework, Figure 3.

The confidence values associated with the tracked features using the tracking man-
agement model presented are indicated in Table 1.

As previously mentioned, in order to associate the measured features and the tracked
features, a global optimization criterion is used which is based on the Mahalanobis
distance. In this first example, all the distances are lower than 1.5, Figure 4, and
consequently, the threshold provided by χ-square never has to be used. The low
Mahalanobis distances are a guarantee of a high matching confidence.

In this first experimental example, one can notice that if a feature disappears, the
related uncertainty value increases, yet the approach adopted will keep on trying
to track it for several image frames, at which time it will be definitively discarded.
As has already been referred to, this may be helpful in application cases in which
some features can be occlude or incapable of being detectable for short periods of
time.

In the second experimental example, the tracking of people in images from a surveil-
lance system in a shopping centre has been analyzed, Figure 5 (images from [EC-
Funded-CAVIAR-project and 2001-37540 (2004)]). The features that were to be
tracked were obtained by manual segmentation; however, their detection could have
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been done automatically by using suitable image processing techniques.

In the first 8 image frames (Figure 5(a-h)) 3 persons are successfully tracked. It
the 10th image frame (Figure 5(j)) another person begins to be tracked. In the 12th

frame (Figure 5(l)) one of the previously tracked persons starts to enter a store
and thus the management model stops his tracking in the 16th image frame (Figure
5(p)). However, if he had left the store earlier, the management model could have
maintained its previous tracking data, in which case, when he left the store the
proposed tracking framework would initialize his tracking as a new feature. Once
again, it should be noted that in the proposed tracking framework, the maximum
number of image frames during which a feature continues to be tracked without any
acquired measurement being associated is user-determined (in this case, 5 image
frames have been stipulated).

Table 1: Tracking the blobs in the first 9 image frames of Figure 1: Features’
confidence values ([0, 5]).

Features/Frames 1 2 3 4 5 6 7 8 9
Circular 3 2 1 0 - - - - -
Square 3 4 3 4 5 5 5 5 5

Triangular - 3 4 5 4 5 5 5 5
23x Rectangular - - - - - - 3 4 5

In the third, and final, experimental example, a sequence of 414 image frames with
3 mice in a lab environment, have been considered, Figures 6 and 7. Several diffi-
culties are associated with the tracking of the center points of the mice’s silhouettes
in the image sequence in question. One of which entails the rapid movement of the
mice, as they may move back and forth, drastically changing direction at any time,
Figure 6, or alternatively, may move very quickly in an invariable direction, Figure
7.

The non-linear behavior verified in this third example, which is not successfully
dealt with by the usual Kalman filter approach, can give rise to variations of up
to 45 pixels between the estimated positions and the associated measurement (in
320x240 images), both along the xx and yy axis, Figure 81. In this figure, the error
represented is due to the difference between the positions of the features predicted
by the Kalman filter and the matched measured features. Despite the discrepancies
of the mice’s movements, the proposed tracking framework always recovers well,

1 The noise data considered by the graph of this figure is due to a noisy measurement which was in-
stantly acquired in image frame 293, but it was not successfully matched with a new measurement,
and consequently, it was discarded by the management model in use.
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Figure 2: Tracking blobs along a 15 image frame sequence: (a) - original 1st frame;
(b)-(o) - Kalman Filtering results: search area defined by solid ellipses, the pre-
dicted position for each blob is indicated by +, and the corrected positions indicated
by x.
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Figure 3: Tracking the blobs in the image sequence of Figure 1: Processing time
in an Intel(R) Core(TM)2 Duo CPU at 2.00 GHz and 2038 MB RAM running
Microsoft Windows Vista.

 

Figure 4: Values of the Mahalanobis distances used in the matching of the blobs
tracked during the first 9 image.
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 Figure 5: Tracking persons in a shopping centre: (a) - original 1st image frame;
(b) to (s) - the management model in use allows for the successfully tracking of
features during extensive image sequences.

as can be verified in Figure 8 where the relative maximum errors are quite often
followed by relatively low errors (below 10 pixels).

By calculating the Root of the Mean Square Errors (RMSE) for each of the mice
tracked, the results indicated in Table 2 are obtained, which are quite low bearing
in mind the complexity of the movement involved.

Another difficulty related to the third experimental example is related to the mice’s
segmentation: in some image frames the mice are so close to each other that there
are only two segmented tracked features, or even only one, as can be verified in
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Figure 6: Tracking mice in a lab environment over 414 image frames: (a) - original
205th image frame; (b) - (o) - even with significant changes in the tracked move-
ment, the proposed tracking framework can perform the tracking correctly.

  
 

Figure 7: Tracking mice in a lab environment over 414 image frames: quick move-
ment with severe direction changes can be correctly tracked by the proposed track-
ing framework.

Figure 9. In this third case, the segmentation task has been achieved by background
subtraction and then the center of the mass of each blob detected has been found.

This experimental example also proves that the proposed tracking framework can
recover the tracking of features which are not visible or non-detected during some
image frames well, due to the features’ management policy defined in the integrated
features’ management model.

6 Conclusions and Future Work

This paper has aimed to present a novel and integrated computational tracking
framework capable of performing the tracking of feature points throughout image
sequences in a robust and efficient manner. In such a framework, the Kalman filter
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has been used to predict and correct the position of the tracked features’ position, as
well as their velocity and acceleration, throughout the image sequences. To accom-
plish the most efficient matching in each new image frame between the predicted
features and the measured features, optimization techniques and Mahalanobis dis-
tance have been employed. This matching approach allows one to overcome the
cases in which the measured features lie beyond the searching areas considered by
the default Kalman approaches, as well as when the movement in question presents
high non-linearity, enhancing the robustness and flexibility of the proposed tracking
framework.

In the proposed tracking framework, a tracked features’ management model has
been integrated. The model used associates each tracked feature to a confidence
value that is used to distinguish cases of a feature’s temporal occlusion from its
definitive disappearance. When a tracked feature is merely temporally occluded, its
tracking is maintained. However, when it has disappeared definitively, its tracking
is ceased and the associated computational resources are freed, thereby enhancing
the computational efficiency of the proposed tracking framework, which can be
extremely attractive in applications of low computational resources.

Table 2: RMSE in xx and yy axis associated with the tracking results of the mice
case.

Mouse No of image frames RMSE in xx RMSE in yy
1 395 7.42 7.51
2 394 6.59 7.05
3 366 8.36 8.38

This work can be continued by carrying out a comparison between the tracking
results obtained by the Kalman filter and those accomplished by other stochastic
filters, such as the Unscented Kalman filter and Particle filters. Additionally, the
comparison of the proposed tracking framework with other tracking systems ap-
plied in the tracking of features throughout complex image sequences, involving
the appearance and disappearance of the tracked features as well as interactions
between them, would be of great importance and interest.
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Figure 8: Tracking mice in a lab environment throughout 414 image frames: differ-
ences between predicted positions and associated measurements in xx and yy axis,
(a) and (b) respectively.
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Frame 337 

 Figure 9: Tracking mice in a lab environment throughout 414 image frames: the
tracked features may not be continually and successfully matched, but the proposed
tracking framework always recovers their tracking adequately.
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