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Boundary Reconstruction in Two-Dimensional
Functionally Graded Materials Using a Regularized MFS

Liviu Marin1

Abstract: We investigate the stable numerical reconstruction of an unknown por-
tion of the boundary of a two-dimensional domain occupied by a functionally
graded material (FGM) from a given boundary condition on this part of the bound-
ary and additional Cauchy data on the remaining known portion of the boundary.
The aforementioned inverse geometric problem is approached using the method
of fundamental solutions (MFS), in conjunction with the Tikhonov regularization
method. The optimal value of the regularization parameter is chosen according to
Hansen’s L-curve criterion. Various examples are considered in order to show that
the proposed method is numerically stable with respect to decreasing the amount
of noise added into the Cauchy data, accurate and computationally very efficient.

Keywords: Functionally Graded Materials (FGMs); Inverse Geometric Problem;
Method of Fundamental Solutions (MFS); Regularization.

1 Introduction

The method of fundamental solutions (MFS) is a meshless/meshfree boundary col-
location method which is applicable to boundary value problems for which a fun-
damental solution of the operator in the governing equation is known. In spite of
this restriction, it has, in recent years, become very popular primarily because of
the ease with which it can be implemented, in particular for problems in complex
geometries. Since its introduction as a numerical method by Mathon and Johnston
(1977), it has been successfully applied to a large variety of physical problems, an
account of which may be found in the survey papers [Fairweather and Karageorghis
(1998); Golberg and Chen (1999); Fairweather, Karageorghis and Martin (2003);
Cho, Golberg, Muleshkov and Li (2004)].

The ease of implementation of the MFS for problems with complex boundaries
makes it an ideal candidate for problems in which the boundary is of major im-
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portance or requires special attention, such as inverse problems. For these reasons,
the MFS has been used increasingly over the last decade for the numerical solu-
tion of the above class of problems. Recently, the MFS has been successfully ap-
plied to solving inverse problems associated with the heat equation [Hon and Wei
(2004); Hon and Wei (2005); Mera (2005); Dong, Sun and Meng (2007); Ling and
Takeuchi (2008); Marin (2008); Young, Tsai, Chen and Fan (2008); Shigeta and
Young (2009)], linear elasticity [Marin and Lesnic (2004); Marin (2005a); Fam
and Rashed (2009)], steady-state heat conduction in functionally graded materials
(FGMs) [Marin (2005b)], Helmholtz-type equations [Marin (2005c); Marin and
Lesnic (2005a); Jin and Zheng (2006)], Stokes problems [Chen, Young, Tsai and
Murugesan (2005)], biharmonic equation [Marin and Lesnic (2005b); Zeb, Ingham
and Lesnic (2008)], source reconstruction in heat conduction problems [Jin and
Marin (2007); Yan, Fu and Yang (2008); Ahmadabadi, Arab and Ghaini (2009)],
etc.

A classical example of an inverse problem in mechanics is the so-called inverse
geometric problem . For such an inverse problem, both Dirichlet and Neumann
data, i.e. Cauchy data, can be measured on an accessible and known part of the
boundary of the solution domain, while either Dirichlet, or Neumann, or Robin-
type condition is prescribed on the remaining, inaccessible and unknown part of
the boundary. The goal is to reconstruct the unknown part of the boundary from the
aforementioned available boundary conditions. There are several important studies
in the literature devoted to the numerical solution of inverse geometric problems
associated with various partial differential operators. Hsieh and Kassab (1986)
proposed a general numerical method to determine an unknown boundary for heat
conduction problems which is independent of the type of condition imposed on
the unknown boundary. Huang and Chao (1997) investigated a steady-state shape
identification problem by using both the Levenberg-Marquardt and the conjugate
gradient methods. Their work was later extended by Huang and Tsai (1998) to a
transient inverse geometric problem in identifying the irregular boundary config-
urations from external measurements using the boundary element method (BEM).
Park and Ku (2001) considered the inverse problem of identifying the boundary
shape of a domain from boundary temperature measurements, when the temper-
ature is dominated by natural convection. Lesnic, Berger and Martin (2002) ap-
proached the boundary determination in potential corrosion damage from Cauchy
data available on the known portion of the boundary by employing a regularized
BEM minimization technique. Their method was also extended to the Lamé sys-
tem of linear elasticity and Helmholtz-type equations both in two dimensions by
Marin and Lesnic (2003), and Marin (2006), respectively.

The first attempt to solve an inverse geometric problem by a meshless method
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was carried out in Hon and Wu (2000), where radial basis functions were used
to approximate the solution. Apparently, the MFS was used for the first time in
the solution of an inverse boundary determination problem in Mera and Lesnic
(2005), where the authors solved the corresponding inverse problem associated
with the three-dimensional Laplace equation arising in potential corrosion dam-
age. Zeb, Ingham and Lesnic (2008) applied the MFS, without any physical con-
straints though, to the solution of an inverse boundary determination problem as-
sociated with the two-dimensional biharmonic equation. Hon and Li (2008) ap-
plied the MFS to solving one- and two-dimensional inverse boundary determina-
tion heat conduction problems. A combined MFS-Tikhonov regularization method
was recently employed by Marin, Karageorghis and Lesnic (2009) to reconstruct,
for two-dimensional harmonic problems, the inaccessible part of the boundary of
the domain from Cauchy data on the remaining accessible portion of the boundary.

FGMs have recently been introduced and applied in the development of structural
components subject to non-uniform service requirements. These materials pos-
sess continuously varying microstructure and mechanical and/or thermal proper-
ties. FGMs are essentially two-phase particulate composites, e.g. ceramic and
metallic alloy phases, synthesized such that the composition of each constituent
changes continuously in one direction, to yield a predetermined composition pro-
file [Suresh and Mortensen (1998)]. Although the initial application of FGMs was
to synthesize thermal barrier coatings for space applications, later investigations
uncovered a wide variety of potential applications, such as nuclear fast breeder re-
actors, graded refractive index materials in audio-video disks, piezoelectric and
thermoelectric devices, dental and medical implants, thermionic converters etc.
However, for the sake of the physical explanation, we will refer in this study to
the steady-state heat conduction problem for FGMs.

To our knowledge, inverse geometric problems in steady-state heat conduction in
two-dimensional FGMs, have not, as yet, been investigated. Hence we address
the following problem: In the framework of steady-state heat conduction in two-
dimensional FGMs, determine in a stable manner the shape of an inaccessible and
unknown part of the boundary of the solution domain, from a prescribed boundary
condition on this portion of the boundary and Cauchy data available on the remain-
ing, accessible and known part of the boundary. This inverse problem is approached
using the MFS, in conjunction with the Tikhonov first-order regularization method
[Tikhonov and Arsenin (1986)], while the optimal value of the regularization pa-
rameter is chosen according to Hansen’s L-curve criterion [Hansen (1998)].
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2 Mathematical formulation

Consider an open bounded domain Ω ⊂ R2 occupied by an exponentially graded
anisotropic solid and assume that Ω is bounded by a piecewise smooth curve ∂Ω,
such that ∂Ω = ∂Ω1 ∪ ∂Ω2, where ∂Ω1 6= /0, ∂Ω2 6= /0 and ∂Ω1 ∩ ∂Ω2 = /0. The
thermal conductivities of this material can be expressed as, [Marin (2005b)]

ki j(x) = Ki j exp(2β ·x) , x = (x1,x2) ∈Ω, i, j = 1,2, (1)

where the constant real or pure imaginary vector β = (β1,β2) characterizes the
direction and the magnitude of the variation and the matrix K = [Ki j]1≤i, j≤2 is
symmetric and positive-definite. It should be noted that K = [δi j]1≤i, j≤2 in the case
of an isotropic material, where δi j is the Kronecker delta tensor. Then the heat flux
in the solid is expressed as

ϕi(x) =−
2

∑
j=1

ki j(x)∂ ju(x), x ∈Ω, i = 1,2, (2)

where u(x) represents the temperature at x∈Ω and ∂ j≡ ∂/∂x j. On using equations
(1) and (2), the Fourier law in the absence of heat sources, namely,

2

∑
i=1

∂iϕi(x) = 0, x ∈Ω, (3)

can be expressed in terms of the temperature, u, as

−
2

∑
i, j=1

(
Ki j ∂i∂ ju(x)+2βi Ki j ∂ ju(x)

)
exp(2β ·x) = 0, x ∈Ω. (4)

We now let n(x) be the unit outward normal vector at ∂Ω and q(x) be the normal
heat flux at a point x ∈ ∂Ω defined by

q(x) =
2

∑
i=1

ni(x)ϕi(x) =−
2

∑
i, j=1

ni(x)ki j(x)∂ ju(x), x ∈ ∂Ω. (5)

In the direct problem formulation, the knowledge of the thermal conductivity ma-
trix K, the vector β, the location, shape and size of the entire boundary ∂Ω, the
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temperature and/or normal heat flux on the entire boundary ∂Ω gives the corre-
sponding Dirichlet, Neumann, or Robin conditions which enable us to determine
the unknown boundary conditions, as well as the temperature distribution in the so-
lution domain. A different and more interesting situation occurs when a part of the
boundary is unknown, say ∂Ω2, whilst some additional information is supplied on
the remaining part of the boundary ∂Ω1 = ∂Ω\∂Ω2. More precisely, we consider
the following inverse geometric problem for two-dimensional FGMs:

Determine the boundary ∂Ω2 ⊂ ∂Ω, ∂Ω2 6= /0, such that the temperature u satisfies
the Fourier law (3), or its equivalent form (4), both temperature and flux conditions,
i.e. Cauchy data, are given on the known part of the boundary, and either Dirichlet,
or Neumann, or Robin boundary condition is prescribed on ∂Ω2, namely

−
2

∑
i, j=1

(
Ki j ∂i∂ ju(x)+2βi Ki j ∂ ju(x)

)
exp(2β ·x) = 0, x ∈Ω, (6a)

u(x) = ũ(x), x ∈ ∂Ω1, (6b)

q(x) = q̃(x), x ∈ ∂Ω1, (6c)

αu u(x)+αq q(x) = f̃(x), x ∈ ∂Ω2, (6d)

where αu,αq ∈ R, while ũ, q̃ and f̃ are prescribed Dirichlet, Neumann and Robin
boundary conditions, respectively. It should be noted that, in Eq. (6d), the cases
when αu = 1 and αq = 0, and αu = 0 and αq = 1 correspond to given Dirichlet and
Neumann boundary conditions on ∂Ω2, respectively, whilst the condition αuαq 6= 0
is associated with prescribed Robin boundary condition on ∂Ω2.

In addition, we also assume that the known boundary ∂Ω1 is the graph of a known
Lipschitz function φ1 : [−r,r]−→ [0,∞), whilst the unknown boundary ∂Ω2 is the
graph of an unknown Lipschitz function φ2 : [−r,r]−→R, where φ1(x) > φ2(x) for
all x ∈ (−r,r). Moreover, both the known and unknown boundaries intersect the
x1−coordiante axis at the points (±r,0), see e.g. Fig. 1.

This inverse geometric problem is much more difficult to solve both analytically
and numerically than the direct problem, since the solution does not satisfy the
general conditions of well-posedness. Although the problem may have a unique
solution, it is well known, see e.g. Hadamard (1923), that this solution is unstable
with respect to small perturbations in the data on ∂Ω1. Thus the problem is ill-
posed and we cannot use a direct approach to solve it in a stable manner.
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3 Method of fundamental solutions

3.1 Boundary discretization

The boundary ∂Ω of the solution domain Ω is discretized by selecting the N1

boundary points z(i), i = 1, . . . ,N1, on the known boundary ∂Ω1 and the N2 bound-
ary points z(N1+i), i = 1, . . . ,N2, on the unknown boundary ∂Ω2, such that N =
N1 +N2. Consequently, the boundary ∂Ω is approximated by

∂Ω≈ ∂ Ω̃ =
N1+N2⋃

i=1

Γ
(i), where Γ

(i) =
[
z(i),z(i+1)

]
, i = 1, . . . ,N1 +N2, (7)

with the following convention z(N1+N2+1) = z(1). Note that as a direct consequence
of the discretization given by Eq. (7), the known and unknown boundaries ∂Ω1

and ∂Ω2, respectively, are approximated by

∂Ω1 ≈ ∂ Ω̃1 =
N1⋃
i=1

Γ
(i) and ∂Ω2 ≈ ∂ Ω̃2 =

N1+N2⋃
i=N1+1

Γ
(i). (8)

x2

x1O

z(k)

z(k+1)
x(k)

z(N1+1)

z(N1+N2)

z(1)

1

2

Figure 1: Geometry and boundary discretization of the problem.

Further, we consider the MFS boundary collocation points to be the midpoints x(i),
i = 1, . . . ,N1 +N2, of each segment Γ(i), i = 1, . . . ,N1 +N2, namely
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x(i) =
1
2

(
z(i) + z(i+1)

)
= x(i)

(
z(i),z(i+1)

)
, i = 1, . . . ,N1 +N2. (9)

In this way, the outward unit normal vector n to the approximate boundary ∂ Ω̃ at
the MFS boundary collocation points is given by

n(x(i)) =
1

‖z(i+1)− z(i)‖

(
z(i+1)

2 − z(i)
2 ,−z(i+1)

1 + z(i)
1

)
, i = 1, . . . ,N1 +N2. (10)

In this study, the boundary points z(i), i = 1, . . . ,N1 + N2, are chosen such that
their x1−components are uniformly distributed on the segment [−r,r], while the
x2−components are expressed as functions of the corresponding x1−components.
More specifically, with respect to Fig. 1, we have

z(i) =
(

z(i)
1 ,z(i)

2

)
, i = 1, . . . ,N1 +N2, (11a)

z(i)
1 = r

(
1−2 i−1

N1

)
, z(i)

2 = φ1(z
(i)
1 ), i = 1, . . . ,N1, (11b)

z(N1+i)
1 =−r

(
1−2 i−1

N2

)
, z(N1+i)

2 = φ2(z
(N1+i)
1 ), i = 1, . . . ,N2, (11c)

z(1) = (r,0), z(N1+1) = (−r,0). (11d)

Hence from Eqs. (9) and (11), it follows that the unknown boundary ∂Ω2 is com-

pletely determined by the unknown vector z =
[
z(N1+2)

2 , . . . ,z(N1+N2)
2

]T
∈ RN2−1.

3.2 MFS approximation

The fundamental solution G of the heat balance equation (3), or equivalently (4),
for two-dimensional anisotropic FGMs is given by [Marin (2005b)]

G(x,ξ) =− K0 (κR)

2π
√

detK
exp{−β · (x+ξ)} , x ∈Ω, ξ ∈ R2 \Ω, (12)

where ξ is a singularity or source point, K0 is the modified Bessel function of the

second kind of order zero, κ=
√

β ·Kβ, R =
√

r ·K−1r and r = x−ξ.
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The main idea of the MFS consists of the approximation of the temperature in the
solution domain by a linear combination of fundamental solutions with respect to
M singularities ξ( j), j = 1, . . . ,M, in the form

u(x)≈ uM(c,ξ;x) =
M

∑
j=1

c j G(x,ξ( j)), x ∈Ω, (13)

where c = [c1, . . . ,cM]T and ξ ∈ R2M is a vector containing the coordinates of the
singularities ξ( j), j = 1, . . . ,M. On taking into account the definitions of the heat
flux (2), the normal heat flux (5) and the fundamental solution (12) then the normal
heat flux, through a curve defined by the outward unit normal vector n(x), can be
approximated on the boundary ∂Ω by

q(x)≈ qM(c,ξ;x) =
M

∑
j=1

c j H(x,ξ( j)), x ∈ ∂Ω, (14)

where

H(x,ξ) =−
2

∑
i, j=1

ni(x)Ki j ∂ jG(x,ξ) exp(2β ·x)

=− exp(β · r)
2π
√

detK

[
κ
R (n(x) · r)K1 (κR)+(n(x) ·Kβ)K0 (κR)

]
,

x ∈ ∂Ω, ξ ∈ R2 \Ω,

(15)

with K1 the modified Bessel function of second kind of order one.

According to the MFS approximations (13) and (14), the discretized version of the
boundary conditions (6b)− (6d) recasts as

M

∑
j=1

G(x(i),ξ( j))c j = ũ(x(i)), i = 1, . . . ,N1, (16a)

M

∑
j=1

H(x(i),ξ( j))c j = q̃(x(i)), i = 1, . . . ,N1, (16b)
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M

∑
j=1

[
αu G(x(i),ξ( j))+αq H(x(i),ξ( j))

]
c j = f̃(x(i)), i = N1 +1, . . . ,N1 +N2. (16c)

Eqs. (16a)− (16c) represent a system of 2N1 + N2 nonlinear algebraic equa-
tions with M +N2−1 unknowns, namely the MFS coefficients c = [c1, . . . ,cM]T ∈

RM and the x2−coordinates z =
[
z(N1+2)

2 , . . . ,z(N1+N2)
2

]T
∈ RN2−1 of the boundary

points that determine the unknown boundary ∂Ω2. It should be noted that in order
to uniquely determine the solution (c,z) ∈ RM×RN2−1 of the system of nonlinear
algebraic equations (16a)− (16c), the number N1 of MFS boundary collocation
points on the known boundary ∂Ω1 and the number M of singularities must satisfy
the inequality M− 1 ≤ 2N1. However, the system of nonlinear algebraic equa-
tions (16a)− (16c) cannot be solved by direct methods, such as the least-squares
method, since such an approach would produce a highly unstable solution.

3.3 MFS boundary collocation points and singularities

In order to implement the MFS, the location of the singularities has to be deter-
mined and this is usually achieved by considering either the static or the dynamic
approach. In the static approach, the singularities are pre-assigned and kept fixed
throughout the solution process, while in the dynamic approach, the singulari-
ties and the unknown coefficients are determined simultaneously during the so-
lution process, see Fairweather and Karageorghis (1998). For nonlinear systems,
the uniqueness of the solution is not always guaranteed and it is computationally
much more expensive. Thus the dynamic approach transforms the inverse geomet-
ric problem into a more difficult nonlinear ill-posed problem. Therefore, we have
decided to employ the static approach in our computations with the singularities,
ξ( j), j = 1, . . . ,M, located on the boundary, ∂ΩS, of the disk of radius RS and cen-
tered at the origin, ΩS =

{
x = (x1,x2)

∣∣x2
1 +x2

2 < R2
S

}
, with the mention that RS is

taken sufficiently large such that Ω⊂ΩS.

Although not considered herein, it should be mentioned that the dynamic approach
for selecting the location of the MFS singularities can also be adopted. In this case,
two situations can occur:

(i) The singularities, ξ( j), j = 1, . . . ,M, are located on the boundary ∂ΩS of the
disk ΩS =

{
x = (x1,x2)

∣∣x2
1 +x2

2 < R2
S

}
and hence the radius RS also be-

comes an unknown of the problem.

(ii) The singularities, ξ( j), j = 1, . . . ,M, are located on the pseudo-boundary
∂ΩS, which has the same shape as the boundary ∂Ω and is situated at a
distance d > 0 from ∂Ω such that Ω ⊂ ΩS, and hence the distance d also
becomes an unknown of the problem.
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4 Description of the algorithm

In this section, we present a numerical scheme for the stable solution of the system
of nonlinear algebraic equations (16a)− (16c), as well as details regarding the
numerical implementation of the proposed method.

4.1 Tikhonov regularization method

Several regularization techniques used for solving stably systems of linear and
nonlinear algebraic equations are available in the literature, such as the Singu-
lar Value Decomposition (SVD) [Hansen (1998)], Tikhonov regularization method
[Tikhonov and Arsenin (1986)] and iterative methods [Kunisch and Zou (1998)].
Recently, Liu (2008a) proposed a new and robust numerical technique for the stable
solution of ill-posed systems of linear algebraic equations, namely the Fictitious
Time Integration Method (FTIM). The FTIM consists of introducing a fictitious
time that plays the role of a regularization parameter, while its filtering effect being
better than that of the Tikhonov and exponential filters. This method was suc-
cessfully used for solving inverse vibration problems [Liu (2008b); Liu (2008c);
Liu, Chang, Chang and Chen (2008)], nonlinear complementarity problems [Liu
(2008d)], boundary value problems for elliptic partial differential equations [Liu
(2008e)], m-point boundary value problems for ordinary differential equations [Liu
(2008f)], mixed-complementarity problems and optimization problems [Liu and
Atluri (2008a)] and inverse Sturm-Liouville problems [Liu and Atluri (2008b)].
Liu and Atluri (2009) have recently shown that, when applied to solving an ill-
posed system of linear equations, the general FTIM may be interpreted as leading,
as a special case, to the Tiknonov regularization method.

However, the inverse geometric problem investigated in this paper is solved, in a
stable manner, by minimizing the following Tikhonov regularization functional, see
Tikhonov and Arsenin (1986)

Fλ (·, ·) : RM×RN2−1 −→ [0,∞), Fλ (c,z) = FLS(c,z)+Rλ (z), (17)

where FLS is the least-squares functional associated with the inverse geometric
problem investigated in this study, Rλ is the regularization term to be specified and
λ > 0 is the regularization parameter to be prescribed.

The least-squares functional, FLS, in Eq. (17) given by
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FLS(·, ·) : RM×RN2−1 −→ [0,∞),

FLS(c,z) = 1
2

N1

∑
i=1

{[
F1(c,ξ;x(i))

]2
+
[
F2(c,ξ;x(i))

]2
}

+1
2

N1+N2

∑
i=N1+1

[
F3(c,ξ;x(i))

]2
,

(18)

where

F1(c,ξ;x(i)) = ũ(x(i))−uM(c,ξ;x(i)), i = 1, . . . ,N1, (19a)

F2(c,ξ;x(i)) = q̃(x(i))−qM(c,ξ;x(i)), i = 1, . . . ,N1, (19b)

F3(c,ξ;x(i)) = f̃(x(i))−
[
αu uM(c,ξ;x(i))+αq qM(c,ξ;x(i))

]
,

i = N1 +1, . . .N1 +N2.
(19c)

In this paper, the regularization term, Rλ , in Eq. (17) was chosen to be the
Tikhonov first-order regularization term, namely

Rλ (·) : RN2−1 −→ [0,∞), Rλ (z) = λ‖z′‖2. (20)

Here z′ =
[
z(N1+2)

2 − z(N1+1)
2 , . . . ,z(N1+N2+1)

2 − z(N1+N2)
2

]T
denotes an approximation

to the first order derivative to the function φ2, keeping in mind that z(i+1)
1 − z(i)

1 ,
i = N1, . . . ,N1 +N2, is constant.

It should be emphasized that the zeroth-order Tikhonov regularization procedure,
which is based on penalizing the norm of the solution, i.e. Rλ (z) = λ‖z‖2 in
Eq. (17), rather than its derivative, i.e. Rλ (z) = λ‖z′‖2 as given Eq. (17), did
not produce satisfactorily accurate and stable results for the unknown boundary
∂Ω2. This observation is consistent with the results obtained by Peneau, Jarny
and Sarda (1996), Lesnic, Berger and Martin (2002), and Marin, Karageorghis and
Lesnic (2009); Marin and Lesnic (2003); and Marin (2006) who have solved a
similar problem for the Laplace equation, the Lamé system and Helmholtz-type
equations, respectively. However, Zeb, Ingham and Lesnic (2008) successfully
employed the zeroth-order Tikhonov regularization functional, without imposing
any physical constraints on the x2−coordinates of the unknown boundary ∂Ω2.
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4.2 Physical constraints

In order to retrieve an accurate and physically correct numerical solution of the
inverse geometric problem investigated herein, the Tikhonov first-order functional
given by Eq. (17) is minimized subject to the following simple bounds imposed

for the components of the unknown vector z =
[
z(N1+2)

2 , . . . ,z(N1+N2)
2

]T
∈ RN2−1:

−
√

R2
S−
(

z(i)
1

)2
< z(i)

2 < φ1(z
(i)
2 ), i = N1 +2, . . . ,N1 +N2. (21)

The simple bounds (21) require that the x2−coordinates of the unknown boundary
∂Ω2 are situated below those corresponding to the known boundary ∂Ω2, while,
at the same time, the singularities are located outside Ω. Alternatively, one can
impose different lower and/or upper bounds for the components of the unknown
vector z ∈ RN2−1, provided that some additional a priori information about the
location of the unknown boundary ∂Ω2 is known. For example, if it is known that
the x2−coordinates of the unknown boundary ∂Ω2 are situated below the x1−axis
then the simple bounds (21) can be replaced with the following ones:

−
√

R2
S−
(

z(i)
1

)2
< z(i)

2 < 0, i = N1 +2, . . . ,N1 +N2. (22)

To summarize, the Tikhonov regularization method solves a physically constrained
minimization problem using a smoothness norm in order to provide a stable solu-
tion which fits the data and also has a minimum structure. More precisely, the MFS
system of nonlinear algebraic equations (16a)− (16c) associated with the inverse
geometric problem given by Eqs. (6a)− (6d) is solved numerically by minimizing
the Tikhonov first-order regularization functional (17) with respect to the unknown
(c,z) ∈ RM×RN2−1, subject to the physical constraints (21) or (22), i.e.

(cλ ,zλ ) : Fλ (cλ ,zλ ) = min
(c,z)∈RM×RN2−1

{
Fλ (c,z)

∣∣∣zsatisfies (21) or (22)
}

. (23)

4.3 Numerical implementation

The minimization of the constrained Tikhonov first-order regularization functional
(23) is obtained using the NAG subroutine E04UNF [NAG Library Mark 21 (2007)]
which minimizes a sum of squares subject to constraints. This may include simple
bounds, linear constraints and smooth nonlinear constraints. Each iteration of the
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subroutine E04UNF includes the following: (i) the solution of a quadratic program-
ming subproblem; (ii) a line search with an augmented Lagrangian function; and
(iii) a quasi-Newton update of the approximate Hessian of the Lagrangian function,
see e.g. Gill, Murray and Wright (1981).

4.3.1 Tikhonov regularization functional

To implement a code using E04UNF, we firstly denote by η = (c,z) ∈ RM+N2−1

the vector containing the unknowns of the MFS system of nonlinear algebraic
equations (16a)− (16c) associated with the inverse geometric problem for two-
dimensional FGMs given by Eqs. (6a)− (6d), i.e.

η` = c`, ` = 1, . . . ,M,

ηM+` = z(N1+`+1)
2 , ` = 1, . . . ,N2−1.

(24)

Then we re-write the Tikhonov first-order regularization functional defined by Eq.
(17) in the following form:

Fλ (·) : RM+N2−1 −→ [0,∞),

Fλ (η) =
1
2

2N1+N2

∑
i=1

[
yk−Fk(η)

]2
︸ ︷︷ ︸

= FLS(c,z)

+
1
2

[
y2N1+N2+1−F2N1+N2+1(η)

]2︸ ︷︷ ︸
= Rλ (z)

, (25)

where the vectors F(η) =
[
F1(η), . . . ,F2N1+N2+1(η)

]T ∈ R2N1+N2−1 and

y =
[
y1, . . . ,y2N1+N2+1

]T ∈ R2N1+N2−1 are given by

Fk(η) =
M

∑
j=1

G(x(k),ξ( j))c j, yk = ũ(x(k)), k = 1, . . . ,N1, (26a)

FN1+k(η) =
M

∑
j=1

H(x(k),ξ( j))c j, yN1+k = q̃(x(k)), k = 1, . . . ,N1, (26b)

F2N1+k(η) =
M

∑
j=1

[
αu G(x(k),ξ( j))+αq H(x(k),ξ( j))

]
c j,

y2N1+k = f̃(x(k)), k = 1, . . . ,N2,

(26c)
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F2N1+N2+1(η) =
√

2λ

[
N2+1

∑
j=2

(
z(N1+ j)

2 − z(N1+ j−1)
2

)2
]1/2

, y2N1+N2+1 = 0. (26d)

4.3.2 Gradient of the Tikhonov regularization functional

We define the components of the gradient, J(η)= ∇Fλ (η)∈R(2N1+N2+1)×(M+N2−1),
corresponding to the Tikhonov first-order regularization functional, as defined in
Eq. (25), by

Jk,`(η) =

 G(x(k),ξ(`)), k = 1, . . . ,N1, ` = 1, . . . ,M,

0, k = 1, . . . ,N1, ` = M +1, . . . ,M +N2−1,
(27a)

JN1+k,`(η) =

 H(x(k),ξ(`)), k = 1, . . . ,N1, ` = 1, . . . ,M,

0, k = 1, . . . ,N1, ` = M +1, . . . ,M +N2−1,

(27b)

J2N1+k,`(η) =



αu G(x(N1+k),ξ(`))+αq H(x(N1+k),ξ(`)),
k = 1, . . . ,N2, ` = 1, . . . ,M,

M

∑
j=1

∂

∂η`

[
αu G(x(N1+k),ξ( j))+αq H(x(N1+k),ξ( j))

]
c j,

k = 1, . . . ,N2, ` = M +1, . . . ,M +N2−1,

(27c)

J2N1+N2+1,`(η) =


0, ` = 1, . . . ,M,

√
2λ

∂

∂η`
‖z′‖, ` = M +1, . . . ,M +N2−1.

(27d)

It should be mentioned that providing as many exact value for the components of
the gradient J(η) = ∇Fλ (η) as possible to the NAG subroutine E04UNF results
not only in an improvement in the accuracy of the numerical approximation of
the unknown boundary, but also in a marked decrease in the computational time
required to minimize the Tikhonov first-order regularization functional given by
(17) with respect to the unknown vector η ∈ RM+N2−1, subject to the physical
constraints (21) or (22).
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4.3.3 Stability estimate

It is important to mention that if the right-hand side of Eqs. (16a)− (16c) is cor-
rupted by noise, i.e.

‖y−yε‖ ≤ ε, (28)

where yε ∈R2N1+N2 is a perturbation of the vector y =
[
y1, . . . ,y2N1+N2

]T ∈R2N1+N2

defined by Eqs. (26a)−(26c), then the following stability estimate holds, see Engl,
Hanke and Neubauer (2000),

‖ηλ −ηε

λ
‖ ≤ ε

λ
, (29)

where ηλ = (cλ ,zλ ) and ηε

λ
=
(
cε

λ
,zε

λ

)
are the numerical solutions to the con-

strained minimization problem (23) with exact and noisy right-hand sides, respec-
tively.

5 Numerical results and discussion

It is the purpose of this section to present the performance of the proposed numer-
ical method, namely the regularized MFS described in Section 4. To do so, we
solve numerically the inverse geometric problem given by Eqs. (6a)− (6d) for a
two-dimensional FGM with K11 = 1.0, K12 = K12 = 0, K22 = 1.0, β1 =−0.5 and
β2 = 0.3, in the two-dimensional geometries which are schematically presented in
Figs. 2(a)–(d).

5.1 Examples

For all examples investigated in this paper, we consider the following analytical
solution for the temperature

u(an)(x) =
1− e−2(β1x1+β2x2)

1− e−2(β1+β2)
, x = (x1,x2) ∈Ω, (30)

whilst the corresponding analytical normal heat flux on the boundary ∂Ω is given
by

q(an)(x) = −2
1− e−2(β1+β2)

[(K11β1 +K12β2) n1(x)+(K21β1 +K22β2) n2(x)] ,

x = (x1,x2) ∈ ∂Ω.
(31)
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(b) Example 2: Peanut-shaped domain
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(d) Example 4: Hexagon

Figure 2: Schematic diagram of the domain Ω, and the known and unknown bound-
aries ∂Ω1 and ∂Ω2, respectively, for the inverse geometric problems analyzed.

Example 1. We consider the unit disk Ω =
{

x = (x1,x2)
∣∣x2

1 +x2
2 < r2

}
, r = 1.0,

whose boundary ∂Ω consists of two parts, namely

∂Ω1 =
{

x = (x1,x2)
∣∣∣∣−1≤ x1 ≤ 1; x2 =

√
r2−x2

1

}
(32a)

and
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∂Ω2 =
{

x = (x1,x2)
∣∣∣∣−1 < x1 < 1; x2 =−

√
r2−x2

1

}
. (32b)

Example 2. We consider the peanut-shaped domain Ω =
{

x = (x1,x2)
∣∣x2

1 +x2
2

< r2(θ); θ ∈ [0,2π)
}

, where r2(θ) = cos2(θ) + 1
4 sin2(θ), which is bounded by

the following curves

∂Ω1 =
{

x = (x1,x2)
∣∣x1 = r(θ)cos(θ); x2 = r(θ)sin(θ); θ ∈ [0,π]

}
(33a)

and

∂Ω2 =
{

x = (x1,x2)
∣∣x1 = r(θ)cos(θ); x2 = r(θ)sin(θ); θ ∈ (π,2π)

}
. (33b)

Example 3. We consider the domain Ω as the square
(
−r
/√

2, r
/√

2
)2

, r = 1.0,

rotated by an angle θ= π/4, whose boundary ∂Ω consists of two parts, namely

∂Ω1 =
{

x = (x1,x2)
∣∣0≤ x1 ≤ r; x2 = r−x1

}
∪
{

x = (x1,x2)
∣∣− r≤ x1 ≤ 0; x2 = r+x1

} (34a)

and

∂Ω2 =
{

x = (x1,x2)
∣∣− r < x1 ≤ 0; x2 =−(r+x1)

}
∪
{

x = (x1,x2)
∣∣0≤ x1 < r; x2 =−(r−x1)

}
.

(34b)

Example 4. We consider the hexagonal domain Ω inscribed in the circle ∂B(0; r) ={
x = (x1,x2)

∣∣x2
1 +x2

2 = r2
}

, r = 1.0, which is bounded by the following curves

∂Ω1 =
{

x = (x1,x2)
∣∣∣ r
2 < x1 ≤ r; x2 = (r−x1)

√
3
}

∪
{

x = (x1,x2)
∣∣∣∣− r

2 ≤ x1 ≤− r
2 ; x2 = r

√
3

2

}
∪
{

x = (x1,x2)
∣∣∣−r≤ x1 <− r

2 ; x2 = (r+x1)
√

3
} (35a)
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and

∂Ω2 =
{

x = (x1,x2)
∣∣∣−r < x1 < r

2 ; x2 =−(r+x1)
√

3
}

∪
{

x = (x1,x2)
∣∣∣∣− r

2 ≤ x1 ≤ r
2 ; x2 =−r

√
3

2

}
∪
{

x = (x1,x2)
∣∣∣ r
2 < x1 < r; x2 =−(r−x1)

√
3
}

.

(35b)

The inverse geometric problems investigated in this paper have been solved us-
ing the uniform distribution of both the MFS boundary collocation points x(i),
i = 1, . . . ,N, and the singularities ξ( j), j = 1, . . . ,M, as described in Sections 3.1 and
3.3, respectively. Furthermore, the numbers of MFS boundary collocation points
N1 and N2 corresponding to the known ∂Ω1 and unknown ∂Ω2 boundaries, respec-
tively, as well as the radius of the disk on whose boundary the singularities are
situated, were set to:

(i) N1 = N2 = 12 and RS = 2.0 for Examples 1, 3 and 4;

(ii) N1 = N2 = 10 and RS = 3.0 for Example 2.

In addition, for Examples 1−4 the number of singularities was taken to be equal to
that of MFS boundary collocation points, i.e. M = N = N1 + N2. Also, for all ex-
amples investigated in this paper, the Tikhonov first-order regularization functional
(17) has been minimized subject to the physical constraints (22), see also Eq. (23),
and this is consistent with the shape of the unknown boundary ∂Ω2 considered in
Examples 1− 4, see Eqs. (32b), (33b), (34b) and (35b). Moreover, in all exam-
ples, the initial guesses for the unknown MFS coefficients c = [c1, . . . ,cM]T and the

unknown x2−coordinates z =
[
z(N1+2)

2 , . . . ,z(N1+N2)
2

]T
of the boundary points that

determine the unknown boundary ∂Ω2 were taken as:

(i) η` = c` = 1.0×100, ` = 1, . . . ,M;

(ii) ηM+` = z(N1+`+1)
2 =−1.0×10−15, ` = 1, . . . ,N2−1.

5.2 Numerical results obtained without regularization

In what follows, the temperature, u|∂Ω1
= u(an)|∂Ω1

, and/or the normal heat flux,
q|∂Ω1

= q(an)|∂Ω1
, on the known boundary have been perturbed as

ũε|∂Ω1
= u|∂Ω1

+δu, δu = G05DDF(0,σ1), σ1 = max
∂Ω1

|u|× (p1/100) , (36)
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and

q̃ε|∂Ω1
= q|∂Ω1

+δq, δq = G05DDF(0,σ2), σ2 = max
∂Ω1

|q|× (p2/100) , (37)

respectively. Here δu and δq are Gaussian random variables with mean zero and
standard deviations σ1 and σ2, respectively, generated by the NAG subroutine
G05DDF [NAG Library Mark 21 (2007)], while p1% and p2% are the percentages
of additive noise included into the input boundary temperature, u|∂Ω1

, and normal
heat flux, q|∂Ω1

, respectively, in order to simulate the inherent measurement errors.

The initial guess, exact and reconstructed values for the boundary ∂Ω2, obtained
in the case of Example 2 using the least-squares functional (18) subject to the
physical constraints (22), perturbed Dirichlet data and exact Neumann data on ∂Ω1

and exact Dirichlet data on ∂Ω2, and exact Dirichlet data and perturbed Neumann
data on ∂Ω1 and exact Neumann data on ∂Ω2, are illustrated in Figs. 3(a) and
3(b), respectively. As can be observed from these figures, the MFS approximations
are not only poor, but also highly oscillatory and, in some cases unbounded, i.e.
unstable. At the same time, Figs. 3(a) and 3(b) clearly show the necessity of
employing regularization methods to obtain accurate and stable solutions to the
inverse geometric problems investigated. Similar results have been obtained for the
other examples analyzed in this paper and, therefore, they are not illustrated.

5.3 Accuracy errors

In order to analyze the accuracy of the numerical results obtained for the unknown
boundary, ∂Ω2, of the two-dimensional domain, Ω, occupied by an FGM, using
various values of the regularization parameter, λ > 0, we define the root mean-
square (RMS) error by

ez(λ ) =

√√√√ 1
N2−1

N1+N2

∑
i=N1+2

(
z(i;λ )

2 − z(i;an)
2

)2
, λ > 0, (38)

where z(i;λ )
2 is the numerically retrieved value corresponding to the regularization

parameter, λ > 0, for the exact x2−coordinate, z(i;an)
2 , that determines the unknown

boundary, ∂Ω2.

Figs. 4(a) and 4(b) present on a log-log scale the RMS error, ez, defined by Eq.
(38), as a function of the regularization parameter, λ , obtained using perturbed
Dirichlet data on the known boundary, ∂Ω1, exact Dirichlet data on the unknown
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(a) Perturbed Dirichlet data on ∂Ω1 and exact Dirichlet data on ∂Ω2

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

x1

-1.0

-0.5

0.0

x2

Exact

Guess

p2 = 1%

p2 = 3%

p2 = 5%

(b) Perturbed Neumann data on ∂Ω1 and exact Neumann data on ∂Ω2

Figure 3: Initial guess, exact and reconstructed values for the boundary ∂Ω2, ob-
tained with perturbed Cauchy data on ∂Ω1, exact (a) Dirichlet, and (b) Neumann
data on ∂Ω2, and the least-squares method, in the case of Example 2.

boundary, ∂Ω2, and the MFS-based Tikhonov first-order regularization method de-
scribed in Section 4, for the inverse geometric problems given by Examples 1 and
2, respectively. From these figures it can be seen that the minimum value of the
RMS error decreases as the level of noise added into the Dirichlet data on ∂Ω1

increases, therefore emphasizing the numerical stability of the proposed method.
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Figure 4: The RMS error, ez, as a function of the regularization parameter, λ ,
obtained with perturbed Dirichlet data on ∂Ω1, exact Dirichlet on ∂Ω2 and the
Tikhonov regularization method, for (a) Example 1, and (b) Example 2.

5.4 Selection of the optimal regularization parameter

The performance of regularization methods depends crucially on the suitable choice
of the regularization parameter. One extensively studied criterion is the discrep-
ancy principle, see e.g. Morozov (1966). Although this criterion is mathematically
rigorous, it requires a reliable estimation of the amount of noise added into the
data which may not be available in practical problems. Heuristical approaches are
preferable in the case when no a priori information about the noise is available.
Several heuristical approaches have been proposed for the Tikhonov regularization
method, including the L-curve criterion, see Hansen (1998), and the generalized
cross-validation, see Wahba (1977). In this paper, we employ the L-curve criterion
to determine the optimal regularization parameter, λopt, for the proposed numerical
method.

If we define on a logarithmic scale the following curve{(√
2FLS(ηλ ),

√
2R(zλ )

) ∣∣λ > 0
}

=
{
(‖F(ηλ )−y‖, ‖zλ‖)

∣∣λ > 0
}

, (39)

where F(η) =
[
F1(η), . . . ,FN1+N2(η)

]T
and y =

[
y1, . . . ,yN1+N2

]T
, then this typi-

cally has an L-shaped form and hence it is referred to as the L-curve. According to
the L-curve criterion, the optimal regularization parameter corresponds to the cor-
ner of the L-curve since a good tradeoff between the residual and solution norms is
achieved at this point. Numerically, the L-curve method is robust and stable with
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Figure 5: The L-curves obtained with perturbed Dirichlet data on ∂Ω1, exact
Dirichlet on ∂Ω2 and the Tikhonov regularization method, in the case of (a) Exam-
ple 1, and (b) Example 2.

respect to both uncorrelated and highly correlated noise. Furthermore, this criterion
works effectively with certain classes of practical problems, see Hansen (1998) and
Chen, Chen, Hong and Chen (1995). For a discussion of the theoretical aspects of
the L-curve criterion, we refer the reader to Hanke (1996) and Vogel (1996).

Figs. 5(a) and 5(b) illustrate clearly the L-shaped curves retrieved using perturbed
Dirichlet data and exact Neumann data on the known boundary, ∂Ω1, exact Dirich-
let on the unknown boundary, ∂Ω2 and the Tikhonov regularization method, in the
case of Examples 1 and 2, respectively; therefore, Hansen’s L-curve criterion is ap-
plicable. The corresponding values for the optimal regularization parameter, λopt,
obtained according to the aforementioned criterion, are as follows:

(i) λopt = 5.0× 10−4 and λopt = 5.0× 10−2 for p1 = 1%, and p1 = 5%,10%,
respectively, in the case of Example 1;

(ii) λopt = 1.0× 10−3 and λopt = 1.0× 10−1 for p1 = 1% and p1 = 3%,5%,
respectively, in the case of Example 2.

On comparing Figs. 4 and 5, it can be seen that, for both Examples 1 and 2 and
all levels of noise added into the Dirichlet data on ∂Ω1, the minimum in the RMS
accuracy error, ez, is attained for λ ≈ λopt, with λopt given by the L-curve crite-
rion. Similar results have been obtained for the other inverse geometric problems
investigated in this study and hence they are not presented here. Therefore, we can
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conclude that Hansen’s L-curve criterion provides very good approximations for
the optimal regularization parameter.

5.5 Numerical results obtained with regularization

Figs. 6(a) and 6(b) show the initial guess, the exact and numerical values for the
unknown boundary, ∂Ω2, obtained using the regularized MFS algorithm described
in Section 4, the optimal regularization parameter, λ = λopt, chosen according to
the L-curve criterion, and various levels of noise added into the temperature data
u|∂Ω1

for the inverse geometric problem (6a)− (6d) with αu = 1 and αq = 0, and
the normal heat flux data q|∂Ω1

for the inverse geometric problem (6a)− (6d) with
αu = 0 and αq = 1, respectively, in the case of Example 1. From these figures, it
can be observed that for Example 1 the numerical solutions are stable and consistent
with respect to the amounts of noise p1 and p2 added into the input Dirichlet and
Neumann data, respectively, on the accessible boundary ∂Ω1. Moreover, for both
inverse problems associated with Example 1, the numerically retrieved solutions
converge to their corresponding exact solution given by Eq. (32b).
The MFS-based Tikhonov first-order regularization method presented in Section 4,
in conjunction with Hansen’s L-curve criterion for determining the optimal value
of the regularization parameter, produces stable and consistent numerical solutions
with respect to the amount of noise added into the Dirichlet or Neumann data on
the known part of the boundary, ∂Ω1, which are at the same time accurate approx-
imations for and convergent towards their corresponding exact value, also in the
case of two-dimensional non-convex domains with a smooth boundary, such as the
peanut-shaped domain occupied by an FGM and considered in Example 2, see Eq.
(33). These results can be observed from Figs. 7(a) and 7(b) which illustrate the
initial guess, the exact and numerically retrieved values for the unknown boundary
given by Eq. (33b), for perturbed Dirichlet (p1 = 1%,3% and 5%) and exact Neu-
mann data on ∂Ω1 and exact Dirichlet data on ∂Ω2, and exact Dirichlet and noisy
Neumann data (p2 = 1%,3% and 5%) on ∂Ω1 and exact Neumann data on ∂Ω2,
respectively.

The proposed MFS-Tikhonov regularization procedure works equally well also for
the inverse geometric problem (6a)− (6d) in two-dimensional domains occupied
by an FGM and bounded by a piecewise smooth boundary, such as the rotated
square and the hexagonal domain considered in Examples 3 and 4, respectively,
with perturbed Cauchy data on the accessible part of the boundary, ∂Ω1, i.e. p1 > 0
and/or p2 > 0, and either exact Dirichlet (αu = 1 and αq = 0) or Neumann (αu = 0
and αq = 1) data on the unknown boundary, ∂Ω2. The initial guess, the exact and
numerical values for the unknown boundary, ∂Ω2, in the case of Examples 3 and 4,
obtained using the regularization method presented in Section 4, the optimal regu-
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(a) Perturbed Dirichlet data on ∂Ω1 and exact Dirichlet data on ∂Ω2
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(b) Perturbed Neumann data on ∂Ω1 and exact Neumann data on ∂Ω2

Figure 6: Initial guess, exact and reconstructed values for the boundary ∂Ω2, ob-
tained with perturbed Cauchy data on ∂Ω1, exact (a) Dirichlet, and (b) Neumann
data on ∂Ω2, and the Tikhonov regularization method, in the case of Example 1.

larization parameter, λ = λopt, selected by Hansen’s L-curve criterion, and various
levels of noise added into the Cauchy data, are shown in Figs. 8 and 9, respec-
tively. However, it can be noted from these figures that, in both Examples 3 and
4, the corner points are, as expected, slightly rounded-off since the minimization
of the Tikhonov first-order regularization functional (17) subject to the physical
constraints (22) imposes the numerical solution to be smooth.

Although not illustrated herein, it is reported that accurate, convergent, consistent
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(a) Perturbed Dirichlet data on ∂Ω1 and exact Dirichlet data on ∂Ω2

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

x1

-0.6

-0.4

-0.2

0.0

x2

Exact

Guess

p2 = 1%

p2 = 3%

p2 = 5%

(b) Perturbed Neumann data on ∂Ω1 and exact Neumann data on ∂Ω2

Figure 7: Initial guess, exact and reconstructed values for the boundary ∂Ω2, ob-
tained with perturbed Cauchy data on ∂Ω1, exact (a) Dirichlet, and (b) Neumann
data on ∂Ω2, and the Tikhonov regularization method, in the case of Example 2.

and stable numerical approximations for the inaccessible boundary, ∂Ω2, have also
been obtained for the inverse problem (6a)− (6d) in a convex or non-convex do-
main occupied by an FGM material and bounded by a smooth or piecewise smooth
boundary, with noisy Cauchy data on the accessible part of the boundary, ∂Ω1, and
exact Robin condition (αuαq 6= 0) on the inaccessible boundary, ∂Ω2. It is also
important to mention that taking RS ≥ 1.50 does not affect significantly the errors
of the numerical results obtained for all examples investigated in this study.
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(a) Perturbed Dirichlet data on ∂Ω1 and exact Dirichlet data on ∂Ω2
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(b) Perturbed Neumann data on ∂Ω1 and exact Neumann data on ∂Ω2

Figure 8: Initial guess, exact and reconstructed values for the boundary ∂Ω2, ob-
tained with perturbed Cauchy data on ∂Ω1, exact (a) Dirichlet, and (b) Neumann
data on ∂Ω2, and the Tikhonov regularization method, in the case of Example 3.

6 Conclusions

The MFS was applied for solving accurately and stably an inverse problem associ-
ated with two-dimensional FGMs, namely the detection of an unknown portion of
the boundary from a given exact boundary condition on this part of the boundary
and additional noisy Dirichlet and Neumann data (i.e. Cauchy data) on the remain-
ing known portion of the boundary. This inverse geometric problem is ill-posed and
recasts in discrete form as an ill-conditioned system of nonlinear algebraic equa-
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(a) Perturbed Dirichlet data on ∂Ω1 and exact Dirichlet data on ∂Ω2
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(b) Perturbed Neumann data on ∂Ω1 and exact Neumann data on ∂Ω2

Figure 9: Initial guess, exact and reconstructed values for the boundary ∂Ω2, ob-
tained with perturbed Cauchy data on ∂Ω1, exact (a) Dirichlet, and (b) Neumann
data on ∂Ω2, and the Tikhonov regularization method, in the case of Example 4.

tions, which was solved in a stable manner by using the Tikhonov first-order reg-
ularization method. The optimal value of the regularization parameter was chosen
according to Hansen’s L-curve criterion. Various examples for two-dimensional
simply connected, convex and non-convex domains occupied by an FGM and hav-
ing smooth and piecewise smooth boundaries, were considered. From the numeri-
cal results presented in this study it can be concluded that the proposed method is
consistent and stable with respect to decreasing the amount of noise added into the
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Cauchy data, accurate and computationally very efficient.

The present method can be extended to other two-dimensional inverse geometric
problems associated with partial differential operators whose fundamental solu-
tions are available, such as the Lamé system of linear elasticity, Helmholtz-type
equations and anisotropic heat conduction, as well as similar three-dimensional in-
verse geometric problems, but these are deferred as future work.
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