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Two- and Three-Dimensional Transient Thermoelastic
Analysis by the MLPG Method
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Abstract: The meshless local Petrov-Galerkin (MLPG) method for transient lin-
ear thermoelastic analysis is presented. Orthotropic material properties are consid-
ered here. In uncoupled thermoelasticity, the temperature field is not influenced by
displacements. Therefore, in the first step, the heat conduction equation is solved
for the temperature distribution in the domain. The equations of motion are then
solved with the inertial term considered. A Heaviside step function as the test
functions is applied in the weak-form to derive local integral equations for solving
two- and three-dimensional problems. Local integral equations are written on small
sub-domains with circular or spherical shapes. They surround nodal points which
are distributed over the analyzed domain. The spatial variation of the displacements
and temperature are approximated by the moving least-squares (MLS) scheme. Af-
ter performing the spatial integrations, a system of ordinary differential equations
for certain nodal unknowns is obtained. The backward finite difference method is
applied for the approximation of the diffusive term in the heat conduction equation.
Then, the system of the ordinary differential equations of the second order resulting
from the equations of motion is solved by the Houbolt finite-difference scheme as
a time stepping method.

Keywords: Transient thermoelasticity, orthotropic materials, moving least-squares
interpolation, Houbolt finite-difference scheme, crack problems, functionally graded
materials

1 Indroduction

In recent years, meshless methods have become very popular computational tools
for many engineering problems. This is due to their high adaptivity and low costs
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to prepare input and output data for numerical analyses. The moving least-squares
(MLS) approximation is generally considered as one of many schemes to interpo-
late discrete data with a reasonable accuracy [Belytschko et al. (1996); Atluri and
Shen (2002); Atluri (2004)]. The order of continuity of the MLS approximation
is given by the minimum between the orders of continuity of the basis functions
and that of the weight function. This allows the order of continuity to be tuned to
a desired value. In conventional discretization methods, such as the finite element
method (FEM) or the boundary element method (BEM), the interpolation functions
usually result in a discontinuity of secondary fields (gradients of primary fields) on
the interfaces of elements. For modeling continuously non-homogeneous solids,
the approach based on piecewise continuous elements can yield some inaccuracies.
Therefore, modeling based on C1-continuity, such as in meshless methods, is ex-
pected to be more accurate than conventional discretization techniques. The mesh-
less or generalized FEM methods are also very convenient for modeling cracks.
One can embed particular enrichment functions at the crack-tip which enable the
stress intensity factors to be compurted accurately [Fleming et al, (1997)].

The meshless method can be obtained from a weak-form formulation on either the
global domain or a set of local subdomains. In the global formulation, background
cells are required for the integration of the weak-form. In methods based on local
weak-form formulation [Zhu et al. (1998), Atluri and Zhu (1998)], no background
cells are required and therefore they are often referred to as truly meshless meth-
ods. The meshless local Petrov-Galerkin (MLPG) method is a fundamental base
for the derivation of many meshless formulations since the trial and test functions
can be chosen from different functional spaces. By using the fundamental solution
as the test function, accurate numerical results can be obtained; this has been re-
ported in previous papers for 2-D transient heat conduction problems in isotropic,
homogeneous or continuously non-homogeneous solids [Sladek et al. (2003a,b),
(2005a)] and elasticity problems under static and dynamic loads [Atluri et al. (2000,
2003); Sellountos and Polyzos (2003); Sellountos et al. (2005, 2009)]. Recently,
the MLPG method with a Heaviside step function as the test functions [Atluri and
Shen (2002), Atluri et al. (2003)] has been applied to solve two-dimensional homo-
geneous and continuously non-homogeneous elastic solids [Sladek et al., (2004b;
2009), (2008d)] and for 3-D problems in homogeneous and isotropic solids un-
der a static or a dynamic load [Han and Atluri (2004a,b), Sladek et al. (2009)].
The present authors have recently analyzed 3-D axisymmetric dynamic problems
in continuously non-homogeneous elastic solids [Sladek et al. (2005b), (2008e)]
and heat conduction problems [Sladek et al. (2007a)]. The MLPG has also been
successfully applied to 2-D piezoelectric problems [Sladek et al. (2007b)], 2-D
and general 3-D heat conduction [Sladek et al. (2004a; 2008c)], plate and shell
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problems [Sladek et al. (2008a,b)].

In recent years, the application of composite materials has increased in many ar-
eas of technology. Composites consist of two or more materials mixed in vari-
ous manners. If volume fractions of the constituents vary gradually in space in a
pre-determined profile, such solids are referred to as functionally graded materials
(FGMs). FGMs possess some advantages over conventional composites because
of their continuously graded composition and properties [Suresh and Mortensen
(1998); Miyamoto et al. (1999)]. FGMs may exhibit isotropic or anisotropic mate-
rial properties, depending on the processing technique and the practical engineer-
ing requirements. Recent progress in the development and research of FGMs has
also enhanced interests in the development of numerical methods for the solution
of elastic and thermoelastic problems in continuously non-homogeneous solids.
One can find in the literature works concerning mainly elastic or heat conduction
problems in FGMs with exponential variations of material properties and under
steady-state boundary conditions [Noda and Jin (1993); Erdogan and Wu (1996);
Jin and Noda (1993)]. Transient heat transfer in FGMs with the exponential spatial
variation has also been examined, but to a lesser extent [Jin and Batra, 1996; Noda
and Jin (1994); Jin and Paulino (2001); Sutradhar et al. (2002); Jin (2002)]. The
first numerical studies of elastic FGMs have been carried out using the finite ele-
ment method [Santare and Lambros (2000); Anlas et al. (2000); Kim and Paulino
(2002)]. The boundary element method (BEM) is a very powerful computational
method if the fundamental solution is available. Anisotropy increases the number
of elastic constants in Hooke’s law, hence the construction of fundamental solu-
tions becomes difficult even in a homogeneous medium. The fundamental solution
is available in closed form for 2-D problems in a homogeneous, anisotropic, linear
elastic solid [Eshelby et al. (1953); Schclar (1994)] and it is given in a complex
variable space. Recently, Shiah et al. (2008) have presented an explicit form of
the fundamental solutions for displacements and stresses in 3-D anisotropic elastic
solids. Governing equations for continuously non-homogeneous solids are more
complicated than for their homogeneous counterparts. To the present authors’
knowledge, the fundamental solutions for general functionally graded materials are
not available in 2-D and 3-D elasticity. However, those for problems in exponen-
tially graded, isotropic, linear elastic materials have been derived recently [Martin
et al. (2002); Chan et al. (2004); Criado et al. (2008).

Dynamic thermoelasticity is relevant for many engineering problems since thermal
stresses play an important role in the integrity of structures. Several computa-
tional methods have been proposed over the past years to analyze thermoelasticity
problems in homogeneous or piece-wise homogeneous materials. Shiah and Tan
(1999) applied the BEM for 2-D uncoupled thermoelasticity in anisotropic solids.
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Particular integral formulations for 2-D and 3-D transient uncoupled thermoelastic
analyses have been presented by Park and Banerjee (2002). The BEM has been
successfully applied also to coupled thermoelastic problems [Sladek and Sladek
(1984); Dargush and Banerjee (1991); Chen and Dargush (1995); Suh and Tosaka
(1989); Hosseini-Tehrani and Eslami (2000); Keppas et al. (2008)]. Dual reci-
procity BEM has been presented by Gaul et al. (2003), and Kögl and Gaul (2003).
A variety of meshless methods has been proposed so far and some of them also
applied to transient heat conduction problems [Batra et al. (2004); Sladek et al.
(2003a,b, 2004a, 2005a); Wang et al. (2006)] or to thermoelastic problems [Sladek
et al. (2001, 2006); Bobaru and Mukherjee (2003); Qian and Batra (2004); Ching
and Chen (2006)]. The present authors are not aware of any paper in the literature
devoted to a meshless treatment of 2-D and 3-D thermoelastic problems in FGM
with anisotropic material properties.

In this paper, the MLPG method is applied to solving two- and three-dimensional
transient uncoupled thermoelasticity problems. Orthotropic material properties are
considered here. In uncoupled thermoelasticity, the temperature field is not influ-
enced by displacements. Therefore, the heat conduction equation is solved first to
obtain the temperature distribution. The equation of motion is subsequently solved
with the inertial term. In the process, nodal points are introduced and distributed
over the analyzed domain, each of which is surrounded by a small circle for 2-D
and a small sphere for 3-D problems. The weak-form on small subdomains with a
Heaviside step function as the test functions is applied to derive local integral equa-
tions. The spatial variation of the displacements and temperature are approximated
by the moving least-squares (MLS) scheme. After performing the spatial integra-
tions, a system of ordinary differential equations for certain nodal unknowns is ob-
tained. The backward finite difference method is applied for the approximation of
the diffusive term in the heat conduction equation. Then, the system of the ordinary
differential equations of the second order resulting from the equations of motion is
solved by the Houbolt finite-difference scheme as a time stepping method.

2 The MLPG in transient uncoupled thermoelasticity

Consider a continuously non-homogeneous, orthotropic, linear elastic solid. The
equilibrium and the thermal balance equations in transient uncoupled thermoelas-
ticity [Nowacki (1986)] can be written as

σi j, j(x,τ)−ρ üi(x,τ)+Xi(x,τ) = 0, (1)

[ki j(x)θ, j(x,τ)],i−ρcθ̇(x,τ)+Q(x,τ) = 0, (2)

where σi j, θ , ui, Xi and Q are the stresses, temperature difference, displacements,
density of body force vector and density of heat sources, respectively. Also, ρ ,
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ki jand c are the mass density, thermal conductivity tensor and specific heat, respec-
tively. The dots over a quantity indicate the derivatives with respect to time. A
static problem can be considered formally as a special case of the dynamic one,
by omitting the acceleration üi(x,τ) in the equations of motion (1) and the time
derivative term in equation (2). Therefore, both cases are analyzed in this paper
simultaneously.

In the case of orthotropic materials, the relation between the stresses σi j and the
strains εi j including the thermal expansion, is given by the well known Duhamel-
Neumann constitutive equations for the stress tensor

σi j(x,τ) = ci jklεkl(x,τ)− γi jθ(x,τ), (3)

where ci jklare the materials elastic coefficients and γi jis the stress-temperature mod-
ulus. The stress-temperature modulus can be expressed through the elastic coeffi-
cients and the coefficients of linear thermal expansion αklas

γi j = ci jklαkl. (4)

For 2-D plane problems, the constitutive equation (3) is frequently written in terms
of the second-order tensor of elastic constants [Lekhnitskii (1963)]. The constitu-
tive equation for orthotropic materials and plane strain problems has the following
formσ11

σ22
σ12

=

c11 c12 0
c12 c22 0
0 0 c66

 ε11
ε22
2ε12

−
c11 c12 c13

c12 c22 c23
0 0 0

α11
α22
α33

θ = C

 ε11
ε22
2ε12

−γγγθ ,

(5)

with

γγγ =

c11 c12 c13
c12 c22 c23
0 0 0

α11
α22
α33

=

γ11
γ22
0

 .

Equation (5) can be reduced to a simple form for isotropic materials

σi j = 2µεi j +λεkkδi j− (3λ +2µ)αθδi j, (6)

with Lame’s constants λ and µ .
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The constitutive equations for 3-D problems in orthotropic materials can be written
as

σ11
σ22
σ33
σ23
σ13
σ12

=



c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66





ε11
ε22
ε33
2ε23
2ε13
2ε12

−


c11 c12 c13
c12 c22 c23
c13 c23 c33
0 0 0
0 0 0
0 0 0


α11

α22
α33

θ

= C



ε11
ε22
ε33

2ε23
2ε13
2ε12

−γγγθ .

(7)

The compliance coefficients βi j are obtained by the inversion of the matrix C.
For orthotropic materials they can be expressed in terms of engineering constants,
namely, the Young’s moduli and Poisson’s ratios, as

β11 = 1/E1, β22 = 1/E2, β33 = 1/E3,

β12 = β21 =−ν12/E1 =−ν21/E2, β13 = β31 =−ν13/E1 =−ν31/E3,

β23 = β32 =−ν23/E2 =−ν32/E3, β44 = 1/G23,

β55 = 1/G13, β66 = 1/G12, (8)

where Ek is the Young’s modulus with respect to the xkaxis, G12is the shear modulus
for the x1− x2 plane and νi j are Poisson’s ratios.

The following essential and natural boundary conditions are assumed for the me-
chanical quantities

ui(x,τ) = ũi(x,τ) on Γu,

ti(x,τ) = σi j(x,τ)n j(x) = t̃i(x,τ) on Γt ,

and for the thermal quantities

θ(x,τ) = θ̃(x,τ) on Γp,

q(x,τ) = ki jθ, j(x,τ)ni(x) = q̃(x,τ) on Γq,
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where Γu is the part of the global boundary with prescribed displacements, while
on Γt , Γp and Γq the traction vector ti, the temperature and the heat flux q are
prescribed, respectively.

Initial conditions for the mechanical and thermal quantities are prescribed as

ui(x,τ)|
τ=0 = ui(x,0) and u̇i(x,τ)|

τ=0 = u̇i(x,0)

θ(x,τ)|
τ=0 = θ(x,0) in Ω.

The local weak-form of the governing equations (1) can be written as [Atluri,
(2004), Sladek et al. (2009)]∫
Ωs

[σi j, j(x,τ)−ρ üi(x,τ)+Xi(x,τ)]u∗ik(x)dΩ = 0, (9)

where u∗ik(x) is a test function.

Applying the Gauss divergence theorem to the first integral results in∫
∂Ωs

σi j(x,τ)n j(x)u∗ik(x)dΓ−
∫
Ωs

σi j(x,τ)u∗ik, j(x)dΩ

+
∫
Ωs

[−ρ üi(x,τ)+Xi(x,τ)]u∗ik(x)dΩ = 0, (10)

where ∂Ωs is the boundary of the local subdomain which consists of three parts
∂Ωs = Ls ∪Γst ∪Γsu in general [Atluri, (2004)] (Fig. 1). For simplicity the same
symbols are used for 2-D and 3-D problems. Here, Ls is the local boundary that
is totally inside the global domain, Γst is the part of the local boundary which
coincides with the global traction boundary, i.e., Γst = ∂Ωs∩Γt , and similarly Γsu is
the part of the local boundary that coincides with the global displacement boundary,
i.e., Γsu = ∂Ωs∩Γu.

By choosing a Heaviside step function as the test function u∗ik(x) in each subdomain

u∗ik(x) =

{
δik atx ∈Ωs

0 atx /∈Ωs
,

the local weak-form (10) is converted into the following local boundary-domain
integral equations∫

Ls+Γsu

ti(x,τ)dΓ−
∫
Ωs

ρ üi(x,τ)dΩ =−
∫

Γst

t̃i(x,τ)dΓ−
∫
Ωs

Xi(x,τ)dΩ. (11)
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Figure 1: Local boundaries for weak-form formulation and support domain of
weight function at node xi

Equation (11) is recognized as the overall momentum equilibrium conditions on the
subdomain Ωs. Note that the local integral equations (LIEs) (11) are valid for both
homogeneous and non-homogeneous solids. Non-homogeneous material proper-
ties are included in eq. (11) through the elastic and thermo-elastic coefficients
involved in the traction components

ti(x,τ) =
[
ci jkl(x)uk,l(x,τ)−λi j(x)θ(x,τ)

]
n j(x).

Similarly, the local weak-form of the governing equation (2) can be written as∫
Ωs

{
[ki j(x)θ, j(x,τ)],i−ρcθ̇(x,τ)+Q(x,τ)

}
u∗(x)dΩ = 0, (12)

where u∗(x) is a test function.

Applying the Gauss divergence theorem to the local weak-form and considering
the Heaviside step function for the test function u∗(x), one can obtain∫

Ls+Γsp

q(x,τ)dΓ−
∫
Ωs

ρcθ̇(x,τ)dΩ =−
∫

Γsq

q̃(x,τ)dΓ−
∫
Ωs

Q(x,τ)dΩ. (13)

Equation (13) is similarly recognized as the energy balance condition on the sub-
domain.
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3 Numerical solution

In the MLPG method, the test and trial functions are not necessarily from the same
functional spaces. For internal nodes, the test function is chosen as the Heaviside
step function with support on the local subdomain. The trial function, on the other
hand, is chosen to be the moving least-squares (MLS) approximation over a number
of nodes randomly spread within the domain of influence. While the local subdo-
main is defined as the support of the test function on which the integration is carried
out, the domain of influence is defined as a region where the weight function is not
zero and all nodes lying inside are considered for interpolation. To approximate
the distribution of displacements over a number of randomly located nodes{xa},
a = 1,2, ...,n, the MLS approximant uh(x,τ) of ū is defined by

uh(x,τ) = pT (x)a(x,τ), (14)

where pT (x) =
[
p1(x), p2(x), ..., pm(x)

]
is a complete monomial basis of order m;

and a(x) is a vector containing the coefficients a j(x), j = 1,2, ...,mwhich are func-
tions of the space co-ordinates x = [x1,x2,x3]

T . For example, in 2-D problems

pT (x) = {1,x1,x2} for m = 3

and

pT (x) =
{

1,x1,x2,x2
1,x1x2,x2

2
}

for m = 6 (15)

are linear and quadratic basis functions, respectively.

In 3-D problems, the linear basis is defined as

pT (x) = [1,x1,x2,x3] , (16)

and the quadratic basis is defined as

pT (x) =
[
1,x1,x2,x3,x2

1,x
2
2,x

2
3,x1x2,x1x3,x3x2

]
. (17)

The coefficient vectora(x)is determined by minimizing a weighted discreteL2-norm
defined as

J(x) =
n

∑
a=1

wa(x)
[
pT (xa)a(x,τ)− ûa(τ)

]2
, (18)

where wa(x) is the weight function associated with the node a with wa(x) ≥ 0.
Recall that n is the number of nodes in the support domain for which the weight
function wa(x) > 0 and ûa(τ) are the fictitious nodal values, but not the nodal values
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of the unknown trial function ūh(x,τ)in general. The stationary condition of Jin eq.
(18) with respect to a(x,τ),

∂J/∂a = 0,

leads to the following linear relation between a(x,τ) and û(τ)

A(x)a(x,τ)−B(x)û(τ) = 0, (19)

where

A(x) =
n

∑
a=1

wa(x)p(xa)pT (xa),

B(x) =
[
w1(x)p(x1),w2(x)p(x2), ....,wn(x)p(xn)

]
. (20)

The MLS approximation is well defined only when the matrix A in eq. (20) is non-
singular. A necessary condition to satisfy this requirement is that at least m weight
functions are non-zero (i.e. n ≥ m) for each sample point x ∈ Ω. The solution of
eq. (19) for a(x,τ) and a subsequent substitution into eq. (14) lead to the following
relation

uh(x,τ) = ΦΦΦ
T (x) · û(τ) =

n

∑
a=1

φ
a(x)ûa(τ), (21)

where

ΦΦΦ
T (x) = pT (x)A−1(x)B(x). (22)

Similarly, the temperature field is approximated as

θ
h(x,τ) =

n

∑
a=1

φ
a(x)θ̂ a(τ).

In eq. (21), φ a(x) is usually referred to as the shape function of the MLS approxi-
mation corresponding to the nodal point xa. From eqs. (20) and (22), it can be seen
that φ a(x) = 0 when wa(x) = 0. In practical applications, wa(x) is often chosen
such that it is non-zero over a finite support of the nodal point xi. The support of
the nodal point xa is usually taken to be a sphere of the radius ri centered at xa

(see Fig. 1). The radius ri is an important parameter of the MLS approximation
because it determines the range of the interaction (coupling) between the degrees
of freedom defined at the nodes considered.
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A 4th-order spline-type weight function is applied in the present work

wa(x) =

{
1−6

(da

ra

)2
+8
(da

ra

)3−3
(da

ra

)4
0≤ da ≤ ra

0 da ≥ ra
, (23)

where da = ‖x−xa‖ and ra is the radius of the circular (2-D) and spherical (3-D)
support domain. With eq. (23), the C1-continuity of the weight function is ensured
over the entire domain; thus, the continuity condition of the traction vector and the
heat flux is satisfied.

The partial derivatives of the MLS shape functions are obtained as [Atluri (2004)]

φ
a
,k =

m

∑
j=1

[
p j

,k(A
−1B) ja + p j(A−1B,k +A−1

,k B) ja
]
, (24)

wherein A−1
,k =

(
A−1

)
,k represents the derivative of the inverse of A with respect

to xk, which is given by

A−1
,k =−A−1A,kA−1.

The traction vectors ti(x,τ) at a boundary point x ∈ ∂Ωs are approximated in terms
of the same nodal values ûa(τ) and θ̂ a(τ) as

th(x,τ) = N(x)C
n

∑
a=1

Ba(x)ûa(τ)−N(x)γγγ
n

∑
a=1

φ
a(x)θ̂ a(τ), (25)

where the matrix N(x) is related to the normal vector n(x) on ∂Ωs by

N(x) =

n1 0 0 0 n3 n2
0 n2 0 n3 0 n1
0 0 n3 n2 n1 0


for 3-D, and

N(x) =
[

n1 0 n2
0 n2 n1

]
for 2-D problems.

The matrix Ba is represented by the gradients of the shape functions for 3-D as

Ba =



φ a
,1 0 0
0 φ a

,2 0
0 0 φ a

,3
0 φ a

,3 φ a
,2

φ a
,3 0 φ a

,1
φ a

,2 φ a
,1 0
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and

Ba(x) =

ϕa
,1 0
0 ϕa

,2
ϕa

,2 ϕa
,1


for 2-D problems.

Similarly the heat flux q(x,τ) can be approximated by

qh(x,τ) = ki jni

n

∑
a=1

φ
a
, j(x)θ̂ a(τ). (26)

The local integral equation for the heat conduction, eq. (13), at the source point xi

located inside Ω, yields the following set of equations

n

∑
a=1

θ̂
a(τ)

∫
∂Ωi

s

nT (x)K(x)Pa(x)dΓ−
n

∑
a=1

˙̂
θ

a(τ)
∫
Ωi

s

ρcφ
a(x)dΩ =−

∫
Ωi

s

Q(x,τ)dΩ

(27)

where for 3-D problems

K(x) =

k11 k12 k13
k12 k22 k23
k13 k23 k33

 , Pa(x) =

φ a
,1

φ a
,2

φ a
,3

 , nT = (n1,n2,n3)

and for 2-D problems

K(x) =
[

k11 k12
k12 k22

]
, Pa(x) =

[
φ a

,1
φ a

,2

]
, nT = (n1,n2).

Substituting the MLS approximations for displacements (21) and tractions (25) into
(11) for each of the internal nodes xi, the following set of discretized LIEs for
mechanical fields is obtained

n

∑
a=1


∫

Li
s

N(x)CBa(x)dΓ

 ûa(τ)−ρ

∫
Ωi

s

φ
a(x)dΩ

 ¨̂ua
(τ)


−

n

∑
a=1

 ∫
Ls+Γsu

N(x)γγγφ
a(x)dΓ

 θ̂
a(τ) =−

∫
Ωi

s

X(x,τ)dΩ. (28)
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The discretized displacement, traction, temperature and heat flux boundary condi-
tions

n

∑
a=1

φ
a(xi)ûa(τ) = ũ(xi,τ) for xi ∈ Γ

i
su, (29)

N(xi)C
n

∑
a=1

Ba(xi)ûa(τ)−N(xi)γγγ
n

∑
a=1

φ
a(xi)θ̂ a(τ) = t̃(xi,τ) for xi ∈ Γ

i
st , (30)

n

∑
a=1

φ
a(xi)θ̂ a(τ) = θ̃(xi,τ) for xi ∈ Γsp, (31)

n

∑
a=1

nT (xi)K(xi)Pa(xi)θ̂ a(τ) = q̃(xi,τ) for xi ∈ Γ
i
sq (32)

are considered at boundary nodes Γu, Γt , Γp and Γq, respectively.

The backward finite difference method is applied for the approximation of “veloc-
ities”

ẏτ+∆τ =
yτ+∆τ −yτ

∆τ
, (33)

where ∆τ is the time step.

The system of ordinary differential equations (27) and collocation equations (31)
and (32) can be rearranged in such a way that all known quantities are in the second
member of the matrix form the system equations, viz.

Aẏ+By = Q. (34)

Substituting eq. (33) into eq. (34) results in the following set of algebraic equations
for the unknowns yτ+∆τ[

1
∆τ

A+B
]

yτ+∆τ = A
1

∆τ
{yτ−∆τ}+Q. (35)

Once the temperature field is computed from eq. (35), the mechanical fields can be
determined. The matrix form of ordinary differential equations (28) and collocation
equations (29) and (30) can be written as

Lẍ+Kx = P. (36)

Several time integration procedures for the solution of this system of ordinary dif-
ferential equations are available. In the present work, the Houbolt finite difference
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scheme [Houbolt (1950)] is adopted in which the acceleration ü = ẍ is expressed
as

ẍτ+∆τ =
2xτ+∆τ −5xτ +4xτ−∆τ −xτ−2∆τ

∆τ2 , (37)

where ∆τ is the time step.

Substituting eq. (37) into eq. (36), the following system of algebraic equations is
obtained for the unknowns xτ+∆τ[

2
∆τ2 L+K

]
xτ+∆τ = L

1
∆τ2 {5xτ −4xτ−∆τ +xτ−2∆τ}+P. (38)

To ensure the stability, the value of the time step has to be appropriately selected
with respect to the material parameters (propagation velocities) and the time de-
pendence of the boundary conditions.

4 Numerical examples

In order to test the accuracy of the present meshless method, a unit square panel
under a sudden heating on the top side is analyzed as the first example (Fig. 2).
Inertial effects are neglected here and the other boundary conditions are as indicated
in the figure. The problem is, mathematically, one-dimensional and the following
analytical solution is available for uncoupled thermoelasticity in a homogeneous
isotropic material [Carslaw and Jaeger (1959), Timoshenko and Goodier (1951)]

θ(x2,τ) = 1− 4
π

∞

∑
n=0

(−1)n

2n+1
exp
[
−(2n+1)2π2κτ

4a2

]
cos
(

(2n+1)πx2

2a

)
,

u2(x2,τ) =
(1+ν)α
(1−ν)

x2∫
0

θ(x2,τ)dx2,

σ11(x2,τ) =− αE
(1−ν)

θ(x2,τ), σ22(x2,τ) = 0 (39)

where a is the side length of the panel and κ = k/ρc is the diffusivity coeffi-
cient. In the numerical analysis here, the following material constants are used:
k = 2 ·105m2/s, ρ = 5000kgm−3, c = 3 ·106Ws/kgdeg, α = 0.4 ·10−5 deg−1, E =
1 ·1011Pa and ν = 0.3. Also, plane strain condition is assumed.

The mechanical displacement and the thermal fields on the finite square panel are
approximated by using 441 (21x21) equi-spaced nodes. The local sub-domains are
considered to be circular, each with a radius rloc = 0.035. For the purpose of error
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analysis the Sobolev-norm is calculated. The relative error of the temperature in
the considered time interval [0,T ] is defined as

r =
‖θ num−θ exact‖
‖θ exact‖ ,

where T = 105s and

‖θ‖=

 T∫
0

θ
2dτ

1/2

.

The relative error of the temperature r at both points (bottom and mid point) is less
than 0.18% at the value of the time step ∆τ = 250s.
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Figure 2: A suddenly heated unit square panel

The computed temporal variations of the temperature at the two different locations
on the x2- axis are shown in Fig. 3. Since FEM results will be used later for
comparison when dealing with more complicated problems for which analytical
solutions are not available, the accuracy of the FEM results obtained from the com-
puter code ANSYS are also examined. The FEM results have been obtained using
1650 quadratic eight-noded elements and 1000 time steps. For the range of the
time interval considered, it can be seen that there is quite good agreement of the
temperature computed. Numerical results for the displacement u2 at the free-end
of the panel and at the mid-point of the x2- axis are presented in Fig. 4. They are
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compared again with the FEM results and excellent agreement is observed as well.
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Figure 3: Temporal variation of the temperature at two different points on the x2-
axis

Next, functionally graded material properties in the x2-direction are considered. An
exponential variation of the elastic and thermal constants is assumed as

ci jkl(x) = ci jkl0 exp(γx2), ki j(x) = ki j0 exp(−γx2), (40)

where ci jkl0 and ki j0 correspond to the material parameters used in the previous
example.

The magnitude of the elastic parameters increases with x2-coordinate while the re-
verse is true for the heat conduction coefficients. This is quite typical of FGMs with
increasing content of ceramic materials in the composition. The thermal expansion
coefficient is taken to be uniform here, namely, with α = 0.4 ·10−5 deg−1. A value
γ = 0.5 is assumed for the gradient parameter in the numerical calculations and
the inertial mass effect is taken into account. The numerical results for the tem-
poral variation of the temperature and the displacement u2 at some locations are
presented in Figs. 5 and 6, respectively. It can be seen that the stationary state in
the FGM panel with a lower thermal conductivity is reached later than in a homo-
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Figure 4: Temporal variation of the displacement u2 at two different points on x2-
axis

geneous panel. Also, the displacements are slightly reduced in the FGM panel due
to the higher elastic constants and the unchanged thermal expansion coefficient.

A transversely isotropic material with the following material constants is consid-
ered next: Young‘s moduli E1 = E3 = 1 ·1011N/m2, E2 = 3 ·1011N/m2, Poisson‘s
ratios ν12 = ν32 = 0.1, ν21 = ν23 = ν13 = 0.3 and shear moduli G12 = G23 =
38.46 ·109N/m2, G13 = 115.4 ·109N/m2. The compliance matrix can be expressed
in terms of the Young’s moduli and Poisson’s ratios

β11 = 1/E1, β22 = 1/E2, β33 = 1/E3

β12 = β21 =−ν12/E1 =−ν21/E2, β13 = β31 =−ν13/E1 =−ν31/E3

β23 = β32 =−ν23/E2 =−ν32/E3, β44 = 1/G23,

β55 = 1/G13, β66 = 1/G12.

The corresponding elastic stiffness matrix can be obtained by the inversion of the
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Figure 5: Comparison of the temporal variations of the temperature in homoge-
neous and FG materials
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Figure 6: Comparison of the temporal variations of the displacement u2 in homo-
geneous and FG materials
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compliance matrix to be as follows:

116.6 46.88 39.66 0 0 0
328.1 46.88 0 0 0

116.6 0 0 0
38.46 0 0

sym. 115.4 0
38.46

 ·109N/m2.

The material considered here is evidently orthotropic in the x1− x2 plane. The
thermal conductivity coefficients are given as follows: k11 = 2 · 105m2/s, k22 =
1 · 105m2/s and k12 = 0, and the thermal expansion coefficients are: α11 = α33 =
0.4 · 10−5 deg−1 andα22 = 0.2 · 10−5 deg−1. For the purpose of comparison, the
problem is also treated in isotropy, assuming the values of some of the following
material properties of the above: E = E11, ν = ν12,k = k11.
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Figure 7: Comparison of the temporal variations of the temperature in isotropic and
orthotropic homogeneous materials

The MLPG computed results for the time variations of the temperature and the
displacements at x2=0 and x2=0.5 are given in Figs. 7 and 8, respectively. The
thermal expansion coefficient for the orthotropic material in x2-direction is smaller
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than the isotropic material. However, Young‘s modulus in the same direction is
3 times higher than in the isotropic case. Then, the equivalent thermal forces in
the orthotropic panel are only slightly higher than that in the isotropic panel. The
displacement component u2 is therefore significantly reduced in the orthotropic
panel.
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Figure 8: Comparison of the temporal variations of the displacement u2 in isotropic
and orthotropic homogeneous materials

The temporal variations of the stress σ11 at the mid-point for three different mate-
rials are given in Fig. 9; they are for the isotropic material, the orthotropic material
and the FGM with exponential variation of the properties as per eq. (40) with
γ = 0.5 as treated earlier. The elastic parameters at the mid-point of the panel are
about 30% higher in the FGM panel than in the homogeneous counterpart. The
stationary value of the stress for the FGM panel can thus be expected to be higher.
Due to the reduced thermal conductivity in the FG panel with respect to the ho-
mogeneous case, the temperature in the FGM panel is lower at each time instant.
For smaller time instants, the temperature reduction and the increase of elastic pa-
rameters at the mid of the FG panel are eliminated and the stress values for FGM
and homogeneous materials are comparable. The stresses for the orthotropic panel
are reduced compared to isotropic panel since the displacements are significantly
reduced in the orthotropic panel.
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Figure 9: Temporal variation of the compressive stress σ11 at the mid-point

Next, an edge crack in a finite orthotropic strip is analyzed. Figure 10 shows one-
half of the physical geometry that is modeled, advantage being taken of symmetry
about the x1-axis. The following values of the geometric parameters are considered:
a = 0.5, a/w = 0.4 and h/w = 1.2. A total of 930 nodes equidistantly distributed
for the MLS approximation of the physical quantities are employed. On the left
lateral side of the strip a cooling thermal shock is applied. The material parameters
are the same as those used in the previous examples.

For cracks in homogeneous, orthotropic, linear elastic solids, the asymptotic be-
haviour of the field quantities has been given by Sih et al. (1965). The asymptotic
fields in the vicinity of the crack-tip in a continuously non-homogeneous medium
are the same as in a homogeneous one [Eischen (1987]. For general mixed mode
case, they may be expressed as follows:
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(41)

where (r,ϕ) are polar coordinates with the origin at the crack-tip and related to the
local Cartesian coordinate system (x1,x2). Also, in eq. (41), Re denotes the real
part of a complex function, µ

tip
i are material parameters at the crack-tip, which are

roots of the following characteristic equation in terms of the elastic compliances
β mn (m,n = 1, 2 and 6) of the anisotropic material (Lekhnitskii, 1963)

β11µ
4−2β16µ

3 +(2β12 +β66)µ
2−2β26µ +β22 = 0. (42)
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The stress intensity factors (SIFs) KI and KII can be computed by the extrapolation
technique if the auxiliary quantities KI,II(δ ) are computed at several points on the
crack-surface at distances δ from the crack-tip. In a pure mode-I these quantities
are computed from

KI(δ ) =
u2(δ )
D21

√
π

2δ
, (43)

where

D21 = Re

{
µ

tip
1 P22−µ

tip
2 P21

µ
tip
1 −µ

tip
2

}
(44)

and

Pik =
[

β11µ2
k +β12−β16µk

β12µk +β22/µk−β26

]
. (45)
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Figure 10: Numerical model of the problem of an edge crack in a finite strip under
a thermal shock on the lateral side

For this crack problem, isotropic material properties are first considered. The time
variation of the normalized stress intensity factor fI = KI/α11c11θ0

√
πa is given in
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Fig. 11. There is clearly good agreement of the present MLPG and the ANSYS-
FEM results; the latter have been obtained with 2812 quadratic (8-node) elements.
The stress intensity factor vanishes for large time instants due to vanishing stresses
ahead of the crack-tip in a stationary state.

With the same geometry and boundary conditions as considered in the previous
case, the material properties are next taken to be orthotropic with the same elastic
constants used earlier. The heat conduction coefficient for the orthotropic material
in the x1-direction is the same as in the isotropic case. Since the heat flux caused
by a thermal gradient is only in the x1-direction, the orthotropic thermal properties
have no influence on the temperature distribution. Thus, one can observe in Fig.
12, peak values of the SIF at the same instant for both the isotropic and orthotropic
materials. The thermal forces for the orthotropic material are higher due to the
higher increase of Young‘s modulus in x2-direction than the decrease of the thermal
expansion coefficient. Therefore, the peak value of SIF is higher for the orthotropic
material than for the isotropic one.
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Figure 11: Temporal variation of the normalized SIF for isotropic case

For the last example, 3-D analysis of a clamped L-shaped console is presented. The
geometry and boundary conditions are as shown on Fig. 13. It is the same problem
as that which have been treated by Kögl and Gaul (2003) using the dual reciprocity
BEM, thus allowing comparison of the present results with those obtained by them
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Figure 12: Comparison of the temporal variations of the SIFs in isotropic and or-
thotropic strips

to be made. The following parameters for a monoclinic material are used:

For the stiffness matrix,

C =



430.1 130.4 18.2 0 0 201.3
130.4 116.7 21 0 0 70.1
18.2 21 73.6 0 0 2.4

0 0 0 19.8 −8 0
0 0 0 −8 29.1 0

201.3 70.1 2.4 0 0 147.3

GPa;

the stress-temperature coefficients

γγγ =

1.01 2 0
2 1.48 0
0 0 7.52

∗106N/degm2;

the thermal conductivity constants

k =

5.2 0 0
0 7.6 0
0 0 38.3

W/degm;
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the mass density ρ = 7820kg/m3, and the heat capacity c = 461J/degkg.
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Figure 13: Clamped L-shaped console under a thermal load

A distribution of equi-spaced nodes in the x1− x3 plane is used with a distance of
5mm between two neighbouring nodes; there are 341 nodes in each cross section.
The distance between two neighbouring cross sections in the x2-axis is 10mm. The
total number of nodes is thus 6*341=2046. Stationary boundary conditions are
considered first here. The computed variations of the temperature along the x3-axis
at x1 = 50mm and x2 = 0 are shown in Fig. 14. There is good agreement of the
results obtained by the present MLPG and the dual reciprocity BEM.. The variation
of the displacement component u3 along the same line is given in Fig. 15 where
again good agreement of the two sets of results is observed.

Finally, transient thermal conditions with Heaviside time variation of a prescribed
temperature on the right lateral clamped side is considered for the three dimen-
sional problem. All the other boundary conditions and material parameters are the
same as in the stationary case treated above. The time variations of temperature and
displacements at the nodes A and B as indicated in Fig. 13 are shown in Figs. 16
and 17, respectively; the temporal axis is normalized, where a = 0.01m is the max-
imum dimension of the L-shaped console. Numerical results of the displacements
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at node A are normalized by the static quantity ustat
3 = 0.102mm and compared with

FEM results. It can be seen that there are some minimal discrepancies only when
the instants are small.
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Figure 14: Variation of the temperature along x3.-axis at x1 = 50mm under station-
ary conditions

5 Conclusions

A meshless local Petrov-Galerkin method (MLPG) is presented for two- and three-
dimensional transient thermoelasticity of orthotropic, linear elastic solids, the ma-
terial properties of which can be continuously varying in space. The backward
finite-difference method is applied for the approximation of the diffusive term in
the heat conduction equation. The mechanical fields are described by the equations
of motion with the inertial term. In the numerical analysis, the solution domain
is divided into small overlapping circular (2-D) or spherical (3-D) subdomains. A
unit step function is used as the test functions in the local weak-form. The moving
least-squares (MLS) scheme is adopted for approximating the physical quantities.
After performing the spatial integrations, one obtains a system of ordinary differ-
ential equations for certain nodal unknowns. That system is solved numerically by
the Houbolt finite-difference time-stepping scheme. The proposed method is a truly
meshless method which requires neither domain elements nor background cells in
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Figure 15: Variation of the displacement u3 along x3-axis at x1 = 50mm under
stationary conditions
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Figure 16: Time variation of the temperature at nodes A and B
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Figure 17: Time variation of the displacements at node A

either the interpolation or the integration. It has been illustrated by a number of
examples where good agreement of the results obtained by this MLPG method and
other available solutions has been demonstrated.

The present method is an alternative numerical tool to many existing computa-
tional methods. Its main advantage is its applicability for general boundary value
problems. The conventional BEM is a very power computational method if the
fundamental solution is available and has simple mathematical forms. In many
cases, however, such as for general FGMs, the fundamental solution is either not
available, or is very complicated which can significantly affect its efficiency. The
present method requires no fundamental solutions; the test function is simple and
all integrands in the present formulation are regular thereby requiring no special
numerical techniques for the evaluation of the integrals. The present formulation
possesses the generality of the FEM. It therefore offers great promise for numeri-
cal analysis of multi-field problems which cannot be solved efficiently by, e.g., the
conventional BEM. Moreover, the present meshless method is evidently more flex-
ible than the standard FEM, since an adaptation of the nodal distribution is easier
than an element-based mesh adaptation.
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