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Preconditioned Conjugate Gradient Method Enhanced by
Deflation of Rigid Body Modes Applied to Composite

Materials

T.B Jönsthövel1, M.B. van Gijzen2, C.Vuik2, C. Kasbergen1 and A. Scarpas1

Abstract: The introduction of computed x-ray tomography allows for the con-
struction of high quality, material-per-element based 3D meshes in the field of
structural mechanics. The use of these meshes enables a shift from meso to mi-
cro scale analysis of composite materials like cement concrete, rocks and asphalt
concrete. Unfortunately, because of the extremely long execution time, memory
and storage space demands, the majority of commercially available finite element
packages are not capable of handling efficiently the most computationally demand-
ing operation of the finite element solution process, that is, the inversion of the
structural stiffness matrix. To address this issue, an efficient iterative method based
upon the preconditioned conjugate gradient method has been developed and is pre-
sented in this contribution. It is shown that enhancement of the preconditioned
conjugate gradient method with information about the rigid body modes of the ag-
gregates results in an aggregate independent convergence behavior. The resulting
number of iterations is bounded by the material behavior of the matrix only.

Keywords: Deflation, Preconditioned Conjugate Gradient, Static Analysis, To-
mography Scans

1 Introduction

Within the mechanics community homogenization is still widely used to simu-
late composite materials by means of the finite element (FE) method. However,
for more accurate simulations of material response, one-material-per-element FE
meshes can be necessary. As a consequence, large finite element meshes are needed
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for an accurate representation of the matrix and the aggregates and hence very large
and thus computational intensive, systems of equations.

The FE discretization of the linearized virtual work equation gives rise to a lin-
ear system Ku = f , in which K is the structural stiffness matrix [Scarpas (2004)].
In general the stiffness matrix is symmetric positive definite (SPD), hence its in-
verse exists. Moreover, the stiffness matrix is sparse. For small to medium scale
problems parallel direct solvers such as MUMPS [Amestoy, Duff, and L’Excellent
(2000)], PARDISO [Schenk, Gärtner, Fichtner, and Stricker (2001)] or SuperLU
[Demmel, Gilbert, and Li (1997)] are good choices with respect to cost and effi-
ciency. However, the performance of parallel direct solvers degrades when solving
linear systems corresponding to 3D meshes. The bandwidth of the stiffness matrix,
hardware limitations, delays in communication due to overhead and latency and the
arithmetic complexity (recursion) induce a boundary on the scalability of parallel
direct solvers when applied to 3D problems.

The efficient solution of large sparse (non)-linear systems remains an important
topic within computational mechanics, as is exemplified by the number of publi-
cations in CMES that address several aspects of this topic. For example, in [Grav-
vanis and Giannoutakis (2006); Gravvanis and Giannoutakis (2008)] investigate
parallel normalized explicit approximate inverses that are used in conjunction with
preconditioned conjugate gradient schemes on both shared and distributed memory
machines. An alternative way of solving non-linear algebraic equations has been
developed and presented in [Liu and Atluri (2008)] by transforming them exactly
into a system of ordinary differential equations with the fictitious time integration
method (FTIM). Moreover, in [Liu, Yeih, and Atluri (2009)] a general purpose pre-
conditioner is introduced using Trefftz expansions with multiple length scales tar-
geting ill-conditioned systems. A last example is the paper [Liu and Atluri (2009)]
where the use of FTIM yields a robust scheme for solving a system of ill-posed
linear algebraic equations including noisy data.

In this paper we focus on iterative solution of large sparse linear systems with the
preconditioned CG method. In contrast to direct solvers, iterative solvers have fa-
vorable properties for solving linear systems for 3D problems. Iterative solvers
are fast, they do not require vast amounts of memory and are highly parallelizable
without losing their scalability. Drawbacks can be slow convergence or even stag-
nation due to ill-conditioned matrices. However, preconditioners can speed up the
iterative solution process. We construct a parallelizable iterative method which is
more resource efficient and faster compared to available parallel direct methods.

Because the stiffness matrix is SPD the conjugate gradient (CG) method [Hestenes
and Stiefel (1952)] is a natural choice for solving the system. CG is composed of
only one matrix-vector multiplication and two inner-products per iteration. In exact
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arithmetic CG constructs the exact solution within n steps where the stiffness ma-
trix has dimension n×n. Although in theory CG always converges, in practice the
amount of iterations of CG is determined by the condition number of the stiffness
matrix [Golub and Van Loan (1996)]. Linear systems with large, jumps in coef-
ficients, alike the aggregates and bitumen, have a large condition number, hence
slow convergence of CG [Van der Sluis and Van der Vorst (1986)].

Preconditioning is the standard technique for improving the convergence of CG.
Common choices of preconditioners are diagonal scaling of the stiffness matrix
and incomplete Cholesky factorization without fill in, i.e. IC(0) [Meijerink and
van der Vorst (1981)]. However, treating the linear system with a traditional pre-
conditioning technique is not sufficient for our type of application. There is a direct
correlation between the rigid body modes and the condition number of the stiffness
matrix. By removing the rigid body modes of the aggregates from the stiffness
matrix we improve the condition number and hence the convergence of CG. The
deflation based preconditioners have successfully been applied within the field of
computational fluid dynamics, with excellent results on problems with discontin-
uous jumps in coefficients [Tang (2008); Frank and Vuik (2001)]. We extend the
technique of subdomain deflation, introduced in [Nicolaides (1987)], towards rigid
body modes deflation or more precisely kernel deflation to remove the effect of the
rigid body modes from the linear system. We note that this is the first successful
application of deflation based preconditioning applied to coupled systems of partial
differential equations.

The structure of this paper is as follows. The first section describes the problem
definition and the properties of the stiffness matrix. The second section describes
preconditioned CG and the limitations of standard preconditioning with respect to
convergence. We illustrate and explain these limitations by introduction of 3-D
cases that involve the simulation of asphaltic concrete, which consists of relatively
stiff aggregates embedded in a matrix of soft bitumen, resulting in significant dif-
ferences in the stiffness between the bitumen and aggregate elements especially at
higher temperatures. The third section describes preconditioned CG enhanced by
kernel deflation. We describe how to construct the deflation based preconditioner
and we show theoretically and experimentally convergence rates independent of
the number of aggregates and the differences in stiffness coefficients. Moreover,
we will see that the choice of deflation vectors is based on both sound mathemati-
cal and physical arguments.

2 Problem definition

Until recently, because of the extremely long execution time, memory and stor-
age space demands, the majority of FE simulations of composite materials such as
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asphalt concrete, rocks and cement concrete were performed by means of homoge-
nization techniques. Unfortunately these techniques do not provide an understand-
ing of the actual interaction between the components of the material. Nevertheless,
it is known that component interaction is the most critical factor in determining the
overall mechanical response of the composite material and, that, by being able to
control and specify the characteristics of the interaction, the material designer can
not only optimize the mechanical performance but, also, tailor the short and long
term response to address specific environmental and/or loading demands.

In the framework of this contribution, asphalt concrete shall be used as an exam-
ple of a composite material. It consists of a mixture of bitumen, aggregates and
air voids. Obviously, the difference between the stiffness of bitumen and the ag-
gregates is significantly large especially at higher temperatures. Moreover, plastic
and viscous behavior is not likely to be observed for stone aggregates under normal
conditions. There are many benefits when modeling asphalt concrete as a com-
posite since then aging effects, cracking and deterioration of the material due to
moisture penetration can be carefully modeled thus providing the desired insight as
to why material properties degrade or improve when the individual components of
the composite change. This reduces the need for extensive and expensive testing of
the material. Different models and parameters for plasticity, elasticity and viscosity
can be applied to the different materials of the mixture. Changing the amount of
aggregates in the mix does not influence the elastic, plastic and viscous material
parameters of the bitumen.

Even though simulation of asphalt concrete at micro scale has strong physical ad-
vantages, there are also trade offs to be considered. First of all, the construction of
the FE mesh is not as simple as in the homogeneous material case. We have to se-
lect a sample of material and make a tomography scan. Finite element meshes have
to be developed representing the geometry, the location and the mechanical char-
acteristics of the individual components. Typically this can be achieved by means
of Computed Tomography (CT) X-ray scans. Figure 1 shows a typical CT scan of
a slice of a cylinder of asphalt concrete. The aggregates, the bitumen and the air
voids are clearly visible. Many successive CT slices are necessary for construction
of high quality 3D surface renderings by means of specialized software tools like
Simpleware ScanFE [Simpleware (2009)]. Then, additional software like CUBIT
[SandiaLabs (2009)] is necessary for the generation of 3D material-per-element FE
meshes.

Up until recently, the technical limitations of medium range computer hardware
and software and the forbidding costs of high end computers did not allow the uti-
lization of CT scan produced FE meshes by the majority of academic researchers,
since the FE solution of such meshes calls for very large memory and powerful
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Figure 1: Tomography scan of column of asphaltic material.

CPUs.

The current developments on computer hardware lead us to the development of
scalable, parallel algorithms that can handle large linear systems from both a time
and resource (memory and CPU) perspective. The challenge lies in developing an
algorithm that is robust, stable and efficient. We will see that by using material
specific information we can construct an algorithm that meets all previous require-
ments.

This contribution addresses the solution of large linear systems that originate from
FE discretizations of the CT scans. Only linear elastic material is taken into ac-
count. Therefore the structural stiffness matrix remains unchanged during static,
distributed load analysis. We consider a system that is subjected to an external load
by means of small load steps. Deformation of the system is the natural response to
the applied external forces. Hence, at each load step a new force equilibrium has to
be established. We compute the force balance with a Newton-Raphson procedure.
For elastic problems this reduces to solving equation (1),

K∆u = ∆ f . (1)

Here ∆u represents the change of displacement and ∆ f the force unbalance. The
stiffness matrix K is symmetric positive definite for elastic, constrained systems,
hence ∀u 6= 0 : uT Ku > 0 and all eigenvalues of K are positive. Within the context
of mechanics, 1

2 uT Ku is the strain energy stored within the system for displace-
ment vector u, [Bathe (1995)]. Energy is defined as a non-negative entity, hence
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the strain energy must be non-negative also. When matrix K represents an uncon-
strained mechanical problem, e.g. a rigid body, the strain energy equals zero for
the rigid body displacements as the system remains undeformed and the matrix is
positive semi-definite, ∀u : uT Ku ≥ 0. More specifically, the rigid body modes of
any unconstrained volume coincide with the zero-valued eigenvalues of its corre-
sponding stiffness matrix. When a matrix has zero-valued eigenvalues the kernel
N (A) consists of non-trivial null solutions. Moreover the basis vectors of the ker-
nel of a stiffness matrix represent the principal directions of the rigid body modes.
In general, two types of rigid body modes exist, translations and rotations. In three
dimensions this implies six possible rigid body modes and hence six kernel vectors
can be associated with the rigid body modes at most.

3 Preconditioned CG

Because K is SPD, CG [Hestenes and Stiefel (1952)] will be used to solve (1)
iteratively. The CG method is based on minimizing the energy error of the i− th
solution over the Krylov subspace,

K i−1(K;r0) = span{r0,Kr0, ...,Ki−1r0}. (2)

The energy norm is defined as ‖u‖K =
(
uT Ku

) 1
2 . We should note that minimiz-

ing the error in the K-norm is in fact minimizing the strain energy over the Krylov
subspace K i−1(K;r0). This implies that for a given static distributed load we con-
struct a displacement vector that has an optimal distribution of the force over the
material.

In [Theorem 10.2.6] [Golub and Van Loan (1996)] it is stated that after i iterations
the error of CG is bounded by,

‖u−ui‖K ≤ 2‖u−u0‖K

(√
κ−1√
κ +1

)i

, (3)

where κ = κ(K) = λn
λ1

is the condition number of K and λn, λ1 are the largest and
smallest eigenvalues respectively. The error reduction capability of CG is limited
when the condition number is large. The condition number of K will increase when
the number of elements increases or when the stiffness of the materials changes.
For plastic and viscous behavior this can result in a series of increasing number of
iterations as the stiffness changes every load or time step. However, this is out of
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the scope of this paper but will need future research as plasticity and viscosity are
key to realistic simulations.

The convergence of CG is not only affected by the condition number but also by
the number and distribution of very small eigenvalues, which has been shown in
[Van der Sluis and Van der Vorst (1986)]. The eigenvectors corresponding to the
smallest eigenvalues do have a significant contribution to the global solution but
may need a significant number of iterations to convergence locally. Hence, very
small eigenvalues can increase the number of iterations. We will see that the num-
ber of aggregates has a direct correlation with the number of smallest eigenvalues
of K. Increasing the number of aggregates may therefore result in more very small
eigenvalues and deterioration of the convergence rates.

3.1 Preconditioning

To improve the performance of CG we change the linear system resulting into more
favorable extreme eigenvalues and/or clustering. The most efficient way to do this
is by preconditioning of the linear system. Preconditioners are well known for their
capabilities of improving the performance of iterative solvers and no Krylov itera-
tive solver can perform well without one. It is because Krylov subspace methods
like CG only rely on the eigenvalues that the performance of the solvers is not
measured by the choice of the solver but by the choice of the preconditioner [Saad
(2003)].

The preconditioned stiffness matrix reads

M−1Ku = M−1 f , (4)

where matrix M is the left preconditioner and assumed to be symmetric, positive
definite too. The CG iteration bound of equation (3) also applies to the precondi-
tioned matrix. The preconditioning matrix must satisfy the requirements that it is
cheap to construct and it is inexpensive to solve the linear system Mv = w. This is
because preconditioned algorithms need to solve the linear system Mv = w every
iteration step. A rule of thumb is that M must resemble the original matrix K to
obtain eigenvalues that cluster around 1. Obviously M = K would be the best but
most expensive choice and is equivalent to solving the original system. However,
common choices of M are the diagonal of K, which is known as diagonal scaling,
and the Incomplete Cholesky factorization with no fill in, IC(0).
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3.2 Motivating numerical experiments

All experiments in this section involve the same domain and an equal number of
elements. We only consider relatively small problems in order to be able to analyse
the eigenvalues with MATLAB [Moler (1980)]. All matrices and material prob-
lems were generated by the CAPA-3D finite element simulation software [CAPA3D
(2009)]. The aim of the experiments is to find out how the convergence rate of CG
depends on material properties and geometry of the volumes. Hence, there will
be an emphasis on the relation between the number of CG iterations and the ma-
terial stiffness and number of aggregates. Increasing the number of elements will
result in a more ill-conditioned problem and therefore the number of CG iterations
increases.

The experiments will involve four different set-ups.

I. Homogeneous material (bitumen) and no aggregates
II. One aggregate in bitumen layer

III. Four aggregates in bitumen layer
IV. Eight aggregates in bitumen layer

For all experiments only elastic material behavior is taken into account. The bi-
tuminous material is considered as a rubber like material, with low stiffness. Fur-
thermore, we assume that under the same conditions, the aggregates do not deform
and float in a sea of bituminous material. We use 3D meshes with a finite element
discretization of the virtual work equation that can be found in [Scarpas (2004)].
We use 20 noded, cubic elements with three directions of displacement at every
node. At the main diagonal of the stiffness matrix of equation (1) we have the elas-
tic node contributions. The dominating term for the main diagonal is the elastic
modulus over the compressibility (Poisson ratio), E

1−2ν
where 0 < ν ≤ 1

2 . We only
consider normal compressible materials, 0.2≤ ν ≤ 0.45, therefore E is the param-
eter of interest. The E of bitumen will be kept at a constant value of 200 MPa.
The E of the aggregates will vary between O(105) and O(109). The results will be
related to the ratio between the E of the bitumen and aggregates respectively.

For reasons of simplicity, Figure 2 shows a 2D representation of 3D test cases (II)
and (III). Domain Ω is divided into Ωa and Ωb which represent the aggregate and bi-
tumen subdomains respectively. We have Ω = Ωa∪Ωb, where Ωa =

⋃n
i Ωi

a,n = 1,4
and Ωb =

⋃3
i Ωi

b. The aggregates are only placed within domain Ω2
b such that the

boundary conditions at Γ3 and Γ4 are not acting on the aggregate elements directly.
The aggregates are considered as rigid bodies. We emphasize that the aggregates
are actually groups of elements, which share the same material properties.

As the total number of elements remains the same, the size of the aggregates must
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Figure 2: Schematic 2D representation of 3D test cases (II) and (III), figure (a) and
(b) contain one and four aggregates respectively.

decrease when the number of aggregates increases. The boundary conditions which
do not change are prescribed displacements (Dirichlet b.c.) at boundary Γ3 and
fixed support, i.e. no displacements (Dirichlet b.c.), at boundary Γ4. At boundaries
Γ1,Γ2 there is unconstrained displacement (homogeneous Neumann b.c.) in every
principal direction.

3.2.1 Convergence results

Figure 3 shows the convergence results of CG with diagonal scaling for all cases
(I) to (IV). Incomplete Cholesky (IC) preconditioning with zero fill-in IC(0) has
also been tested, but this preconditioner could not be computed by MATLAB due
to loss of positive definiteness because of the large jumps in stiffness. Using a drop
tolerance does work but is expensive and no fixed bounds can be given on the fill-in
of the computed factorization and is therefore not considered as an alternative. We
note that case (I), the red dotted line, is used as a benchmark for the other cases. We
can conclude that there is a direct correlation between the number of iterations, the
material stiffness, and the number of aggregates. As the ratio between the elastic
moduli of the bitumen and aggregates increases, the extreme eigenvalues shift in
opposite directions, the condition number increases and the number of iterations
increases. And when the number of aggregates increases the condition number re-
mains unchanged in order of magnitude but the number of iterations still increases.
We have seen that preconditioning will reduce the condition number and therefore
the number of iterations. But the introduction of more aggregates has clearly an
effect on the spectrum of eigenvalues. Figure 4 shows the smallest eigenvalues



106 Copyright © 2009 Tech Science Press CMES, vol.47, no.2, pp.97-118, 2009

of M−1K of all four cases. We should note that the aggregates are independent
sub-domains relative to each other. Hence, no aggregate contains nodes from other
aggregates. In this way we can consider the aggregates as rigid bodies within a
layer of bitumen. It can be shown that all rigid body modes of the aggregates cor-
respond to the smallest eigenvalues of K. In three dimensions we have six rigid
body modes, hence we expect 6, 24 and 48 smallest eigenvalues that correspond
to the rigid body modes for cases (II), (III) and (IV) respectively. This is precisely
what is observed for all cases. Moreover, the increase in very small eigenvalues is
clearly visible as there is a jump between the values of the largest eigenvalues cor-
responding to the rigid body modes and the remaining eigenvalues in the spectrum
of M−1K.

The extreme eigenvalues and condition numbers of the (preconditioned) stiffness
matrices of test cases (I), (II) and (III) are given in Table Tab. 1. Two observa-
tions stand out when interpreting the results. The smallest eigenvalue of the non-
preconditioned problem is almost invariant with respect to increasing E ratio. The
largest eigenvalue of the non-preconditioned problem is not invariant with respect
to an increasing E ratio. The order of the largest eigenvalue increases proportion-
ally to the increase in E ratio. Obviously, both observations do not hold when a
diagonal scaling preconditioner is applied. In contrary, the inverse effect is ob-
served. The smallest eigenvalue becomes even smaller as the E ratio increases and
the largest eigenvalue is a constant value. We have seen that an upperbound for con-
vergence of CG is related to the condition number of the stiffness matrix. Hence,
we can expect an increasing number of iterations when the E ratio increases.

As the condition number of the stiffness matrix is of the same order for a differ-
ent number of aggregates we do not expect a large increase of iterations for an
increasing number of aggregates based on the condition number. However, from
Figure 4 we expect a slow converging solution due to the large number of smallest
eigenvalues, which is indeed observed in Figure 3. The clustering of eigenvalues
is clearly visible for cases (III) and (IV), we observe small plateaus which corre-
spond to the slow converging components of the solutions. The number of plateaus
increases when the number of aggregates increases due to the number of smallest
eigenvalues, i.e. rigid body modes.

4 Deflated Preconditioned CG

As we have shown in the previous Section, the number of iterations to convergence
for preconditioned CG is highly dependent on the number of aggregates as well as
the ratio of the E moduli. Increasing the number of aggregates introduces more
rigid body modes, hence more clustered small eigenvalues. We conclude that the
rigid body modes, thus the smallest eigenvalues, are responsible for the plateaus
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Figure 3: Deterioration of rates of convergence of PCG for increasing number of
aggregates and stiffness. -.- homogeneous material, – E ratio O(103), – E ratio
O(105).

in Figure 3, delaying the convergence of CG. Moreover, we know from [Van der
Sluis and Van der Vorst (1986)] that the smallest eigenvalues correspond to the slow
converging components of the solution. From a physical point of view it would be
natural to try to remove those rigid body modes from the solution process. In fact,
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Figure 4: Spectrum of M−1K, M = diag(K). ×: 1 aggregate, �: 4 aggregates, ◦: 8
aggregates, ∗: homogeneous material

Table 1: 2304 elements, compare the extreme eigenvalues and condition number
of preconditioned stiffness matrices. O (10n) represents the jump in E modulus of
aggregates and bitumen.

Case (I) λmin λmax κ

O(102) K 0.0425 4.15 ·103 9.76 ·104

M−1K 8.62 ·10−5 5.9248 6.87 ·104

Case (II)
O(103) K 0.0460 1.30 ·106 2.82 ·107

M−1K 6.29 ·10−6 5.9248 9.42 ·105

O(105) K 0.0460 1.30 ·108 2.82 ·109

M−1K 6.64 ·10−8 5.9248 8.92 ·107

Case (III)
O(103) K 0.0450 1.01 ·106 2.24 ·107

M−1K 6.48 ·10−6 5.9239 9.15 ·105

O(105) K 0.0450 1.01 ·108 2.24 ·109

M−1K 6.90 ·10−8 5.9239 8.59 ·107
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the principle directions of the rigid body modes can be computed in advance. When
we keep in mind that CG finds a minimal error solution over the Krylov subspace
K i(K;r0), we could augment the subspace by the pre computed rigid body modes
to improve convergence as these displacements are eliminated from the iterative
process.

The deflation technique can be used in conjunction with ordinary preconditioning
techniques such as diagonal scaling or Incomplete Cholesky factorization. This
is a two-level approach, treating the smallest eigenvalues and largest eigenvalues
with deflation and preconditioning respectively. By choosing a smart combination
of deflation and preconditioning a more favorable spectrum is obtained, yielding a
smaller condition number and less iterations.

For the description of deflation we split the solution of (1) into two parts [Frank
and Vuik (2001)]

u =
(
I−PT )u+PT u, (5)

and let us define the projection P by,

P = I−KZ(ZT KZ)−1ZT , Z ∈ Rn×m (6)

where Z is the deflation subspace, i.e. the space to be projected out of the residual,
and I is the identity matrix of appropriate size. We assume that m� n and Z has
rank m. Under this assumption Kc ≡ ZT KZ may be easily computed and factored
and is symmetric positive definite. Hence,

(
I−PT )u = ZK−1

c ZT Ku = ZK−1
c ZT f (7)

can be computed immediately. We only need to compute PT u. Because KPT is
symmetric,

KPT = PK, (8)

we solve the deflated system,

PKû = P f (9)
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for û using the CG method and multiply this by PT . We should note that (9) is
singular. However, the projected solution PT û is unique, it has no consequence
when û contains components of the null space, N (PK) = span{Z}. Moreover,
from [Kaasschieter (1988); Van der Sluis and Van der Vorst (1986)] we learn that
the null space of PK never enters the iteration process and the corresponding zero-
eigenvalues do not influence the solution. For singular systems, the condition num-
ber will go to infinity as the smallest eigenvalue approaches zero. To obtain a
useful bound for the error of CG we define the effective condition number of a
semi-definite matrix C ∈ Rn×n with corank m to be the ratio of the largest and
smallest positive eigenvalues,

κeff(C) =
λn

λm+1
. (10)

Theorem 2.2 of [Frank and Vuik (2001)] implies that a bound on the condition
number of PK can be obtained and leads to the choice of Z applied to the rigid
body modes problems. We assume a splitting K = C + R such that C and R are
symmetric positive semi-definite with N (C) = span{Z} the null space of C. Then,

λi(C)≤ λi(PK)≤ λi(C)+λmax(PR). (11)

Moreover, the effective condition number of PK is bounded by,

κeff(PK)≤ λn(K)
λm+1(C)

. (12)

Because we will use a symmetric preconditioner M = LLT , e.g. diagonal scaling,
with Theorem 2.3 of [Frank and Vuik (2001)] we have,

κeff(L−1PKL−T )≤ λn(L−1KL−T )
λm+1(L−1CL−T )

. (13)

To fully comprehend the construction of the deflation vectors and a specific choice
of Z we use the following experiment. Assume that we have a cube of bitumen
containing one aggregate which is shown in Figure 5. The sub-domains Ω1 and
Ω2 can be considered as bitumen and aggregates respectively. Clearly, without the
constraints of the surrounding bitumen material, the aggregate of Ω2 will act as a
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rigid body. With kernel deflation we aim to solve on both sub-domains separately.
We separate sub-domain Ω1 from sub-domain Ω2 and apply new boundary condi-
tions to the domains. We assume that the aggregates that are not influenced by the
boundary conditions of the whole domain act as rigid bodies, therefore we assume
homogeneous Neumann boundary conditions. The bitumen will be restricted by
the aggregates and we apply homogeneous Dirichlet boundary conditions.

 
Ω1

Ω2

Ω1
∂u

∂n
= 0

u = 0 Ω2
∂u

∂n
= 0

∂u

∂n
= 0

∂u

∂n
= 0

Figure 5: Principle of kernel deflation

The stiffness matrix is assembled from element stiffness matrices which come from
the finite element formulation of the virtual work equation. Assume that we mesh
the domain in Figure 5 with k elements. The mesh consists of 20 noded, cubic el-
ements yielding element stiffness matrices Ke ∈ R60×60. We introduce the element
operator Ne ∈ R60×n that maps a global vector to an element vector, ue = Neu. The
stiffness matrix K is assembled by,

K =
m

∑
e

NT
e KeNe. (14)

Assume that Kb = ∑e∈Ω1 NT
e KeNe, Ka = ∑e∈Ω2 NT

e KeNe and KΓ = ∑e∈Ω1∩Ω2 = NT
e KeNe.

We assume K = C+R according to Theorem 2.2 of [Frank and Vuik (2001)] where
C = Kb + Ka−KΓ and R = KΓ. Matrix C consists of two independent block ma-
trices which correspond to the bitumen and aggregate domains. Matrix R consists
of only those node contributions of elements from Ω1 that lie on the intersection of
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domain Ω1 and Ω2. We should note that by the removal of the bitumen-aggregates
boundary nodes from the bitumen sub-domain, Dirichlet and Neumann boundary
conditions are automatically imposed on the bitumen and aggregate sub matrices
in matrix C. The matrix C contains one singular sub matrix corresponding to the
aggregate and one positive definite sub matrix corresponding to the bitumen. More-
over, because of the Dirichlet boundary conditions, the bitumen domain is statically
determined and numerically well conditioned.

We apply Theorem 2.2 of [Frank and Vuik (2001)] to C = Kb +Ka−KΓ and R = KΓ.
We have, Z = N (C) = span{Za} where Za = {z1

a, ...,z
6
a} with z j

a the j-th base
vector of the null space of Kb which correspond to all six rigid body modes of the
aggregate. We must emphasize that by this choice of deflation subspace Z the rigid
body modes are eliminated from the iterative solution process and removes the
newly acquired Neumann boundary conditions from the aggregate sub-domains.

Extension of the previous experiment to an arbitrary number of aggregates, is
straightforward. Assume that we only consider problems where there are r indepen-
dent aggregates and one homogeneous layer of bitumen. Two arbitrary aggregates
do not share elements and thus nodes. We apply the splitting K = C + R where
C = Kb + ∑r Kar −KΓ and R = KΓ. Matrix C contains r independent singular sub
matrices that correspond to the aggregates and one positive definite sub matrix that
corresponds to the bitumen. The deflation subspace Z = N (C) =

⋃
r span{Zar}

with Zar = {z1
ar

, ...,z6
ar
}. The dimension of Z will be r×6. With respect to the soft-

ware implementation, because all aggregates are independent there is no overlap
of the non zero elements in the deflation vectors. Hence, we can store Z for any
problem size within just six vectors.

One can question the amount of work for the computation of the rigid body modes
of the aggregates. However, we can assume that the stiffness of the aggregates does
not change during the simulation, i.e. the Newton-Raphson iterative process for
the computation of the virtual work. As the stiffness sub-matrices corresponding
to the aggregates do not change, the rigid body modes will not change and the
deflation space remains unchanged. Hence, for any simulation where the geometry
and stiffness of the aggregates does not change only one evaluation of the rigid
body modes is needed. Moreover, parallel direct solvers can be used to compute
the null spaces of the (relatively small) sub-domain matrices. Future research has
to be done on predetermination of the rigid body modes on physical grounds, some
work has been done on fluids in [Tang (2008)].

4.1 Numerical experiments

All numerical experiments use Deflated Preconditioned CG (DPCG) based on the
rigid body modes of the aggregates. The results are benchmarked against the homo-
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geneous material case (I) in which there are no aggregates. The benchmark is CG
with diagonal scaling and represented by the red dotted lines. The DPCG algorithm
is taken from [Tang (2008)] and included in Appendix A.

4.1.1 Convergence results

Figure 6 shows the performance of PCG and DPCG applied to case (II) and (III).
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Figure 6: Convergence of PCG and kernel DPCG for 1 and 4 aggregates respec-
tively. -.- PCG (homogeneous material), – PCG (E ratio O(103)), – kernel DPCG
(E ratio O(103)).

The results of Figure 6 show what we expected from the deflation. The rigid body
modes are no longer active in the iterative process and only the deformation of
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the bitumen has to be computed. Hence, the performance of DPCG is identical
compared to the homogeneous benchmark case. Moreover, in Figure 6 the plots
for case (II) and (III) show the same performance but for a different amount of
aggregates. Therefore, adding more aggregates to the domain has no influence on
the performance of CG. The same behavior can be observed in Figure 7 which
shows the performance of PCG and DPCG applied to case (II), (III) and (IV). We
should note that the results of Figure 6 are also included in Figure 7.

We have seen that the effective condition number of the deflated matrix PK depends
on the smallest positive eigenvalue of C which is identical to the smallest eigenvalue
of the bitumen sub matrix. Hence, the number of iterations of CG is only bounded
by the material properties of the bitumen and not by the stiffness of the aggregates.

5 Conclusions

With the introduction of meshes that result from CT scans, the FE discretization
of composite materials yields large, sparse linear systems. Conventional direct
and iterative solution methods are not capable of handling such large systems due
to ill-conditioned systems and hardware limitations. Moreover, with respect to
future developments of computer hardware, parallellization of the solvers will be
necessary to benefit from multicore, GPU and grid computing.

All 3D meshes in this research contained 20 noded cubic elements with three dis-
placement directions per node. The linearized virtual work equation gives a sym-
metric positive definite (SPD) stiffness matrix. Because of these properties of the
stiffness matrix we use preconditioned CG (PCG) as the initial solver. The PCG
solver has an excellent performance on SPD matrices, is cheap in terms of work and
is highly parallelizable. The error of PCG is bounded by the condition number of
the stiffness matrix. Increasing the stiffness of the materials results in a higher con-
dition number, yielding worse performance. However, the number of aggregates
seems to have no influence on the value of the condition number.

The numerical experiments show that the performance of CG with a diagonal scal-
ing preconditioner is poor. Increasing the stiffness as well as the number of aggre-
gates results in a deterioration of the convergence rates of PCG. The results also
show plateaus in the convergence behavior which indicates the existence of small
eigenvalues related to slow converging components. Analysis of the spectrum of
the preconditioned stiffness matrix shows that the smallest eigenvalues correspond
to the domains containing aggregates. Moreover, the number of small eigenvalues
is equal to the number of rigid body modes of the aggregates.

The performance of PCG can be improved by removing the smallest eigenvalues
from the spectrum of the stiffness matrix. We used deflation to filter out those val-
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Figure 7: Convergence of PCG and kernel DPCG for 1, 4 and 8 aggregates respec-
tively with increasing value of aggregate stiffness. -.- PCG (homogeneous mate-
rial), – PCG (E ratio O(103)), – PCG (E ratio O(105)),– kernel DPCG (E ratio
O(103)), – kernel DPCG (E ratio O(105)).
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ues. All vectors in the deflation subspace are projected out of the residual of the
iterative process. We have used the rigid body modes for the disjunct aggregates as
the deflation subspace. The performance of Deflated Preconditioned CG (DPCG)
is very good. The removal of the rigid body modes results in a mechanical and
mathematical well defined problem that only depends on the material properties of
the bitumen. The convergence behavior of DPCG is identical to the convergence
behavior of the homogeneous material benchmark case. Adding more and stiffer
aggregates has no effect on the performance of DPCG. We have constructed an iter-
ative solver which has aggregate independent convergence behavior. Furthermore,
this is the first application of deflation based preconditioning applied to coupled
systems of partial differential equations.

Further research has to be done on the parallellization of the current algorithm.
Also, as the performance of DPCG now only depends on the bituminous materials,
the effects of plasticity and viscosity have to be taken into account. Hence, more
research on advanced preconditioning will be needed to obtain reasonable perfor-
mance. The Deflated CG algorithm is to be embedded into the CAPA-3D finite
element system [CAPA3D (2009)].
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Appendix A: Appendix

The deflated preconditioned CG algorithm [Tang (2008)].

Algorithm 1 Deflated preconditioned CG solving Ku = f
Select u0. Compute r0 = (f−Ku0), set r̂0 = Pr0 and p0 = r̂0
Solve My0 = r̂0 and set p0 = y0
for j = 0,1, ... until convergence do

ŵ j = PKp j

α j = (r̂ j,y j)
(ŵ j,p j)

û j+1 = û j +α jp j

r̂ j+1 = r̂ j−α jŵ j

Solve My j+1 = r̂ j+1

β j = (r̂ j+1,y j+1)
(r̂ j,y j)

p j+1 = y j+1 +β jp j

end for
u = ZK−1

c ZT f+PT û j+1


